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Abstract. Data visualization is a core approach for understanding data
specifics and extracting useful information in a simple and intuitive
way. Visual data mining proceeds by projecting multidimensional data
onto two-dimensional (2D) or three-dimensional (3D) data, e.g., through
mathematical optimization and topology preserved in multidimensional
scaling (MDS). However, this projection does not necessarily comply
with the user’s needs, prior knowledge and/or expectations. This paper
proposes an interactive visual mining approach, centered on the user’s
needs and allowing the modification of data visualization by leveraging
approaches from metric learning. The paper exemplifies the proposed
system, referred to as Interactive Metric Learning-based Visual Data Ex-
ploration (IMViDE), applied to scientific social network browsing.

1 Introduction

Knowledge discovery from databases, the process of extracting knowledge from
data [1], must be focused on the user needs: indeed, the desired knowledge prop-
erties (being new and useful) largely depend on the user’s prior knowledge and
expectations.

Data visualization is a core approach to understanding the data specifics,
and extracting useful information in a simple and intuitive way [2], through
projecting the multidimensional data in IRd onto IR2, thus enabling its visual
inspection. The quality of the projection thereby governs the quality of the
knowledge extracted along data visualization. One of the best known data visu-
alization approaches, Multi-Dimensional Scaling (MDS), proceeds by minimizing
the topology loss induced by the projection from IRd onto IR2 [3] (more in section
2).



However, the MDS projection does not necessarily comply with the users’
prior knowledge and/or expectations about the problem domain. For this rea-
son, several approaches have been proposed to interactively modify the MDS
projection [3, 4]. In particular, Brown et al. [5] proposed to leverage the distance
metric learning pioneered by Large Margin Nearest Neighbor (LMNN) [6] in
the context of supervised machine learning (section 3). Specifically, LMNN [6]
is aimed at the Mahalanobis distance on the data space such that it maximizes
the classification accuracy of the k-nearest neighbor process, and shows that this
problem reduces to a convex optimization problem5.

This paper focuses on distance metric learning in the context of multidimen-
sional data visualization for data exploration. The proposed Interactive Metric
Learning-based Visual Data Exploration (IMViDE) system is an iterative 5-step
process, using the standard Euclidean distance on IRd as initial distance:

1. The data is displayed in IR2 using MDS together with the current distance.
2. The user specifies some distance-related constraints by labeling a few data

points; the requirement is that a labeled point should be close to some other
points with the same label, and further away from points with different
labels.

3. The distance on IRd is optimized to account for the constraints, based on
the ideas from [6].

4. Most importantly, IMViDE provides the user with feedback, displaying the
features most relevant/impacted by the metric changes. This feedback allows
the user to make sense of the search path and clarify his/her intention about
the exploratory data analysis.

5. IMViDE relaunches MDS with the new metric and updates the data visu-
alization. In this visualization result, data points that share the same label
form a cluster as a result of distance metric learning, and the user can find
data points that are as close to the cluster as similar ones in the context of
this exploratory analysis. If the user is not satisfied with the visualization
results, he/she goes back to step 2 to revise the visualization result that fits
his/her intention.

This paper is organized as follows. Section 2 briefly reviews related works of
data visualization and distance metric learning. For the sake of completeness,
distance metric learning is described in section 3. An overview of the IMViDE
system is detailed in section 4. IMViDE is exemplified in section 5, considering
the visualization of a social network. The paper concludes with a discussion and
some perspectives for further research.

2 Related Works

Data visualization techniques are used to represent characteristic information in
the target data to the user’s intuitive ways [2]. In particular, for multidimensional

5 Note that the classification accuracy maximization can also be tackled by feature
selection, that is, a combinatorial optimization problem.



data, there are several methods of projecting multidimensional data in IRd onto
IR2 such as MDS [3], PCA [7], SOM [8], GTM [9], and t-SNE [10]. The results
of visualization using such methods sometimes differ from the user’s intention;
the interactive visualization is, therefore, required for modifying visualization
results based on the user’s intention and intuition.

Some studies provided functions for interactively changing parameters for
dimension reduction and visualization. iPCA [11] and XGvis [12] enable users
to interactively adjust dials or sliders to modify influential parameters in PCA
or MDS respectively. However, it is difficult for users with no mathematical
knowledge to predict the results caused by varying parameters. They therefore
rely on trial-and-error to obtain desirable responses.

InterAxis [13] and Dust & Magnet [14] enable users to intuitively define
and modify axes by dragging data points on the side of the x or y axes or
attributes on a scatter plot respectively. iVisClassifier [15], using semisupervised
Linear Discriminant Analysis (LDA), allows users to interactively label data and
recompute clusters and projections. However, they did not provide functions
for directly defining relationships between data points such as closeness and
remoteness.

Another approach is using the concept of distance metric learning [16]. Dis-
tance metric learning is a framework for calculating appropriate distance metrics
to classify labeled data more accurately. Most of these algorithms are formalized
as supervised Mahalanobis distance learning. There are two main approaches.
One is driven by nearest neighbors, such as Neighborhood Components Analysis
(NCA) [17] and LMNN[6] and the other covers information-theoretic approaches,
such as Information-Theoretic Metric Learning (ITML) [18] and Sparse Distance
Metric Learning (SDML) [19].

There are some studies that use distance metric learning for constructing ap-
propriate distance metric that fits the users’ prior knowledge [20–23, 5]. LAMP
[21] provided a multidimensional projection technique enabling users to build lo-
cal transformations from some control points directly specified by users. Mizuno
et al. presented an approach for manipulating arrangements of the local features
and global categories of images by projecting the overall feature space onto a
two-dimensional (2D) screen space [22]. V2PIs [20] and its extension [23], and
Dis-function [5] allowed users to move data points in a 2D projected space to
update the weight of a weighted-MDS model and the distance function of MDS
respectively. Their method is similar to our method in that they allow users to
explicitly reflect their intention by directly manipulating data points. However,
their purpose of interaction on the scatter plot is mostly to provide a global
optimum projection or distance functions from labeled or sampled data points
based on the user’s prior knowledge. By contrast, our purpose is exploring the
user’s classification standards based on distance metric learning through inter-
active manipulation of data points, and constructing an information retrieval
system enabling users to retrieve related and/or similar information from their
interesting data points. In addition, because our system would like to learn new



distance metric by using a few numbers of labeled data, it is difficult to use an
information-theoretic approach for our problem.

In the information retrieval research, there are several methods for provid-
ing feedback information to show the characteristics of a document that attract
users’ intention. For example, DualNavi [24] provides characteristic terms from
selected retrieved results to modify the original retrieved query. Scatter/gather
[25] is an interactive document clustering technique that is widely used in several
domains [26, 27]. In this framework, the system conducts document clustering
in the original document collection and provides information about the cluster
by using topical words of the cluster (scatter). From the clustering results, the
user selects one or more clusters that attract his/her attention and make a new
document collection for further analysis (gather). The user iterates the scat-
ter/gather process to find out the useful information. Although the framework
of the system is different from our approach; i.e., IR starts with a query and
our approaches start with selecting interesting data, it is helpful to show such
feedback information to understand the characteristics of the results.

3 Distance Metric Learning for kNN Classification

The k-nearest neighbors (kNN) method, is one of the oldest and simplest meth-
ods for pattern classification that associates an instance with the majority class
of its k nearest neighbors. The performance of this method critically depends on
the distance metric used to identify nearest neighbors. In a supervised machine
learning context, optimizing the distance metric based on labeled examples in
such a way that it maximizes the kNN performance, comes naturally.

3.1 LMNN Classification

Weinberger et al. [6] formalized the problem of metric learning in terms of op-
timizing a linear change in representation, such that the Euclidean distance in
the new representation yields optimal kNN performances as follows. Let us first
introduce some notations:

– Let the training set E be defined as:

E = {(xi, yi),xi ∈ IRd, yi ∈ {−1, 1}, i = 1 . . . n}

– For each pair (i, j) with 1 ≤ i, j ≤ n, let yi,j be 1 iff yi = yj and 0 otherwise.
– Let j  i denote that xj is a target neighbor of xi (that is, xj is among

the k nearest neighbors of xi with same label as xi, yj = yi).
– Finally, let [z]+ = max(z, 0) denote the standard hinge loss of z.

With these notations, the goal is to find a linear change in representation on
IRd, with L, a d× d matrix, such that the distance DL on IRd is defined as:

DL(x,x′) = ||L(x− x′)||, (1)



optimize two cost functions, respectively noted as εpull(L) and εpush(L). The
cost function εpull(L), to be minimized, is the sum of the distances between any
xi and its target neighbors:

εpull(L) =
∑
j i

DL(xi,xj)2

The cost function εpush(L), to be minimized, measures the excess distance
between a point xi and its target neighbor xj , compared to another neighbor xl

which belongs to another class than xi:

εpush(L) =
∑
i,j i

∑
l

(1− yil)[1 +DL(xi,xj)2 −DL(xi,xl))
2]+

Finally, with α the weight parameter balancing the two criteria, the opti-
mization problem is defined as:

Find L∗ = arg max
L

(αεpull(L) + (1− α)εpush(L)) (2)

.
For the sake of convex optimization, one rather seeks M = LtL with Lt the

transpose matrix of L, such that

DL(x,x′)2 = ||L(x− x′)||2 = (x− x′)tLtL(x− x′)

For simplicity of notation, DL is denoted DM in the following.
This change in representation enables to reformulate Pb (2) as a semidefinite

programming problem (SDP):

Minimize (α)εpull(M) + (1− α)εpush(M) (3)

s.t. (xi − xj)tM(xi.xj) ≤ 1− ξijl (4)

ξijl ≥ 0 (5)

M � 0 (6)

.
The constraint M � 0 indicates that matrix M is required to be positive

and semidefinite. While general-purpose solvers can solve this SDP, such solvers
tend to scale poorly when the number of constraints increases. Therefore, they
propose to use a special- purpose solver based on a combination of subgradient
descent in both matrices L and M .

3.2 Efficient computation

The gradient computation can be done most efficiently by careful book-keeping
from one iteration to the next. Let Mt denote the current solution at step t. As
a simplifying notation, let matrix Cij be defined as:

Cij = (xi − xj)(xi − xj)t



The loss function in Eq. 6 is rewritten as:

ε(Mt) = (1− µ)
∑
j i

tr(MtCij) + µ
∑
i,j i

∑
l

(1− yil) [1 + tr(MtCij)− tr(MtCil))]+(7)

with tr(A) denoting the trace of matrix A.
Note that Eq. 7 is piecewise linear with respect to Mt. Let Nt be the set of

triplets (i, j, l), such that the indices (i, j, l) satisfy

1 + tr(MtCij)− tr(MtCil > 0

(they trigger the hinge loss in Eq. 7). With this definition, the gradient Gt of
ε(Mt) can be written as:

Gt =
∂ε(Mt)

∂Mt

= (1− µ)
∑
j i

Cij + µ
∑
i,j i

∑
l

(1− yil)(Cij − Cil) (8)

.

4 Overview of Interactive Metric Learning-based Visual
Data Exploration

MDS is a popular method for projecting a set of data points x1 . . .xm (not
necessarily in a metric space) onto IR2 based on the matrix of their dissimilarities
or distances. Formally, to each xi MDS associates a projection zi ∈ IR2, in such
a way that the Euclidean distance d(zi, zj) in IR2 approximates the dissimilarity
between xi and xj . This projection in the 2D plane enables visual inspection
of the data. However, the initial dissimilarities and the associated visualization
might not reflect the user’s prior knowledge and desires, hindering the visual
data mining process.

4.1 The IMViDE algorithm

The proposed Interactive Metric Learning-based Visual Data Exploration (IM-
ViDE) system aims at addressing this drawback, by allowing the user to interac-
tively modify the MDS visualization results. In the following, it is assumed that
the data points are real-value vectors (x1 ∈ IRd; further research is concerned
with extending the proposed approach to the general case.

The user interacts with IMViDE by specifying that some data points should
or should not be close to each other in the representation 2D space. The IMViDE
algorithm is a four-step process:

1. The MDS projection is applied on the basis of the current distance matrix;
the resulting projection of the data points is displayed in the 2D plane.



2. The user interacts with IMViDE by selecting pairs of points as similar or
dissimilar.

3. The metric is revised to account for the above constraints (pairs of similar
or dissimilar data points).

4. A new distance matrix is computed according to the new distance and the
process is iterated (go to step 1).

4.2 Distance Metric Learning for MDS

The inspiration for the IMViDE algorithm was taken from the metric learning
approach presented in section 3 to find a linear transformation of the initial
feature space, complying with the user-specified constraints.

In contrast to the standard kNN context, however, the number of neighborhood-
related constraints is low as they result from the interaction with the user. We,
therefore, adapt the optimization objective (Eq. 6). The original pull cost func-
tion “penalizes” small distances between every data point and close data points
with different labels. In our case, as few points are “labeled”, we penalize the
small distances between every labeled xi and all xj that do not have the same
label as xj .

Finally, the optimization criterion used to find the Mahalanobis distance
complying with the current constraints, where yil is set to 1 if xi and xj share
the same label, and 0 in all other cases is the following:

εpull(Mt) =
∑
i,j l

DMt
(xi,xj) (9)

ε′push(Mt) =
∑
i,j l

∑
l

(1− yij)yil (10)

[1 +DMt
(xi,xl)−DMt

(xi,xl)]+ (11)

ε′(Mt) = (1− µ)ε′push(Mt) + µεpush(Mt) (12)

.

The gradient of ε′(Mt), noted G′t, reads:

G′t =
∂ε′(Mt)

Mt

= (1− µ)
∑
i,j l

Cij + µ
∑
i,j l

∑
l

(Cij − Cil). (13)

The minimization of the cost function is handled using the same gradient
algorithm as in [6].



4.3 Functionalities of IMViDE

We implemented the IMViDE system based on the discussion above. This system
is made of two components:

– The first component, Visualization, takes charge of the visualization of the
members of the social network. The current distance matrix is used as input
of MDS to yield a projection of the members on the 2D plane. The metric
is initially the Euclidean metric (M0 = Id) on the representation space.

– The second component, Interaction and Metric Learning, takes charge of the
following operations:
• The user selects similar and dissimilar pair(s) of nodes for distance metric

learning. The system adds the same label for nodes of similar pair(s) and
adds a different label for dissimilar pair(s).

• An important functionality is to provide some feedback to the user, in-
dicating what (the system thinks) are the main goals of his/her search.

The detailed procedure of updating the distance metric is as follows.

1. Selection of similar and dissimilar pair(s) for metric learning.
From the MDS visualization results, the user selects nodes that belong to

the same group for adding same labels. When the user selects nodes without
a label, the system generates a new label for the nodes. When the user selects
nodes with labels, all labels are merged as one label and add merged label
are added to all related nodes. For example, at first the user selects n1, n2, n3
for adding labels, these three nodes have the label l1. Next, the user selects
n4, n5 for adding labels, these two nodes have the label l2. When the user
selects n1, n4, n6 for adding labels, labels l1 and l2 are merged as l1 and all
6 nodes n1, ..., n6 are labeled as l1.

2. Metric learning by using similar and dissimilar pair(s) information.
Based on the information about labeled nodes, the system refines M for

minimizing the cost function by using a linear programming problem with a
positive semidefinite constraint [6]. In this process, the gradient G′t (eq. 13)
is used to refine M stepwise. As the total minimization process requires high
computational cost and may change the distance among nodes drastically,
there are several cases for which the visualization results change drastically
and result interpretation is inappropriate. Therefore, the system produces
an intermediate result of the stepwise refinement process for the MDS visu-
alization.

3. Updating MDS results by using the Mahalanobis distance metric.
Based on the stepwise refinement result of M , the system updates the MDS
visualization result. To keep the continuity of the visualization results, the
MDS visualization result is updated by using the SMACOF (scaling by ma-
joring a convex function) algorithm [28] and a previous visualization result
is used as the initial input. As a result, the position of all nodes slightly
moves based on this update process. The user can continue this minimiza-
tion process in step 2 to see the effect of the distance metric learning (e.g.,



some unlabeled nodes move in the same direction and some unlabeled nodes
do not move). In addition, the user can also go back to step 1 for modifying
labels.

The IMViDE system produces feedback information to the users by using the
difference between the most important words for each class before and after the
interaction. Formally, let ci and c′i respectively denote the center of mass of the
i-th class in the initial representation (respectively in the current representation):

ci =
∑
j∈Cli

xj/|Cli| (14)

c′i = Mtci (15)

The contribution of the initial j-th dimension in the current representation,
denoted as raj is defined, where rj is a vector whose j-th element is 1 and 0
otherwise:

raj = Mtrj (16)

Finally, noting cij , c
′
ij , raij the j-th coordinates of the ci, c

′
i, rai vectors, and

P (w|zj) the probability of the word w for class j as computed by probabilistic
latent semantic analysis (PLSA), we compute the characteristic score vectors
Iwi and I ′wi, indicating the relevance of every term for class i, with respect to
the initial and current metric:

Iwi =

T∑
j=0

cijP (w|zj) (17)

I ′wi =

T∑
j=0

T∑
k=0

c′ijrajkP (w|zk) (18)

The top-` words (` = 10 in the experiments) relevant to each class before and
after the interaction are displayed, giving the user feedback about the most
important aspects of the i-th class, as interpreted through the metric learning
and PLS preprocessing.

5 Visualization of a Scientific Social Network

The proposed IMViDE algorithm was empirically assessed on the visualization
of a social network. For the sake of reproducibility and easy assessment, we used
the social network of scientists involved in the European Network of Excellence
PASCAL (Pattern Analysis, Statistical Modelling and Computational Learning,
2003-2013), where each scientist member of the network is described by his/her
papers.



5.1 Pre-processing

We used the data made public for the Pascal Visualization Challenge, available
at: http://analytics.ijs.si/˜blazf/pvc/data.html. The goal was to visualize the
relationship between the authors based on the similarity among the contents
of their paper (as opposed to the similarity induced by the coauthorship and
citations).

The available data were preprocessed as follows:

1. Construction of the paper database with abstract and author information.
Noun, adjective, adverb, and verb are selected and normalized by using Tree-
Tagger 6 as candidates for the index keywords.

2. Selection of keywords.
Keywords with the minimum document frequency and listed in stop list
(e.g., be, do, one, etc.) were removed from the index keyword lists. We used
a minimum document frequency of 1 in this experiment.

3. Construction of feature vectors.
For each author, index keyword information on all his/her papers were col-
lected and coded as his/her feature vector. In this vector, all index keywords
correspond to one dimension in the feature vector space, and the value for
that dimensions are calculated by TF · IDF.

4. Construction of reduced dimension feature vector by PLSA [29].
To avoid the effect of the sparseness of the keyword feature vectors, we
applied PLSA for constructed feature vectors for dimension reduction.

From the Pascal challenge data, we constructed feature vectors for 313 au-
thors with 2986 index keywords and the feature vectors were reduced into 40
dimensions by using PLSA.

5.2 Experiments

Figure 1 shows an example of initial MDS visualization results. In this case,
the user selected four coauthors of a paper; Bernhard Schoelkopf (who is the
author with the largest number of papers in this database), Thomas Navin Lal,
Dengyong Zhou, Olivier Bousquet who belong to the same group (red points
in Figure 1). These authors have multiple articles in the database and Table 1
shows the number of subject category articles for each researcher7.

Figure 2 shows a zoomed image of an MDS visualization based on a result of
distance metric learning, showing that the system found a new distance metric in
which the three authors are closer to each other. Figure 3 shows the characteristic
terms in Figure 1 and 2, with Center and Center(diff) the list of top ranked
keywords respectively based on the I ′wi value and I ′wi − Iwi.

6 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
7 The total differs from the sum of the categories as each article may have more than

one subject category.



Fig. 1. Initial MDS visualization results

Table 1. Number of articles for categorized topics

Name BC CS IT LO MV TA total

Bernhard Schoelkopf 4 15 1 21 8 19 34

Thomas Navin Lal 4 1 0 3 0 3 7

Dengyong Zhou 0 3 1 5 0 8 8

Olivier Bousquet 0 11 0 14 0 17 19

BC: brain–computer interface, CS: computational, information-theoretic learning
with statistics, IT: information retrieval and textual information access, LO:

learning/statistics and optimization, MV: machine vision, TA: theory and algorithms



Fig. 2. Zoomed MDS visualization results based on DML

At the initial stage, as I ′wi = Iwi, all values for Center(diff) equal zero.
Initially, keywords related to these authors common topic categories “CS”, “LO”,
and “TA” (e.g., “algorithm” and “method”) had a higher value. After distance
metric learning those values are increased that represents keywords related to
those categories are important features for calculating similarities. Followings
is the list of top-ranked keywords based on Center:I ′wi value and Center(diff):
I ′wi − Iwi value were as follows.

Center:I ′wi use, algorithm, problem, text, paper, datum, approach, base,
model

Center(diff):I ′wi − Iwi algorithm, problem, classification, number, different,
model, result, statistical, evolutionary

In addition, from Figure 2, we could determine some other authors (depicted
as green points), who have a research topic that is also related to “CS”, the
application of machine learning algorithms to text data. Although those authors
were somewhat close to Bernhard Schoelkopf, Thomas Navin Lal, Dengyong
Zhou, or Olivier Bousquet in the initial visualization, there were many other
researchers around them (Figure 4). This result shows how the metric learning
state could help retrieving researchers with similar research interest during the
interaction with the user.



Characteristic Terms (initial)

Characteristic Terms (After Distance Metric Learning)

Fig. 3. List of characteristics terms in Figure 1 and 2

Fig. 4. Original positions of related authors in the initial MDS visualization



5.3 Discussion

There are several issues to be discussed in this system. One is the scalability issue.
Because of the high computational complexity of LMNN based on SDP, LMNN
does not scale well for a large data set [30]. The random sampling algorithm
proposed by Wu et al. [30] may be a possible solution. Another solution is similar
to the concept of scatter/gather [25]. At the initial stage a limited number of
nodes (e.g., selection of researchers based on the number of articles) are used
for initial visualization and distance metric learning. When the user is satisfied
with the result at a certain level, the system selects nodes close to the labeled
nodes and expands nodes by adding nodes that are close to these selected nodes
by using the Mahalanobis distance. This approach is also good for improving
the readability of the data presented on the screen, as it is quite difficult to read
through the label of nodes more than thousands. Another issue is related to the
technique for projecting the multidimensional data in IRd onto IR2. There are
several other techniques for this projection. First, we will investigate how the
nonlinear t-distributed stochastic neighbor embedding (t-SNE) [10] compares to
MDS. In addition to these further research directions, we also plan to extend
our framework with multi-user functionalities, when several users interact with
a large map.

6 Conclusions

This paper shows how metric learning can be embedded in an interactive visual
data mining system, providing an intuitive and easy control of the visualization
functionality. A main contribution of the approach is the provision of feedback,
indicating the “angles” of users’ queries in terms of the dimensions (here, terms)
most relevant to the new display. We also discuss the future research directions
of this approach.
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