
Memory Efficient Mining of Periodic-Frequent
Patterns in Transactional Databases

A. Anirudh∗, R. Uday Kiran†, P. Krishna Reddy∗, Masaru Kitsuregawa†
∗Kohli Centre on Intelligent Systems (KCIS)

International Institute of Information Technology, Hyderabad, India
alampally.anirudh@research.iiit.ac.in, pkreddy@iiit.ac.in

†Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
{uday rage, kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract—Periodic-frequent patterns are an important class of
regularities which exists in a transactional database. A frequent
pattern is called periodic-frequent if it appears at regular
intervals in a transactional database. In the literature, a model
of periodic-frequent patterns was proposed and pattern growth
like approaches to extract patterns are being explored. In these
approaches, a periodic-frequent pattern tree is built in which
a transaction-id list is maintained at each path’s tail-node. As
the typical size of transactional database is very huge in the
modern e-commerce era, extraction of periodic-frequent patterns
by maintaining transaction-ids in the tree requires more memory.
In this paper, to reduce the memory requirements, we introduced
a notion of period summary by capturing the periodicity of the
patterns in a sequence of transaction-ids. While building the tree,
the period summary of the transactions is computed and stored
at the tail-node of the tree instead of the transaction-ids. We
have also proposed a merging framework for period summaries
for mining periodic-frequent patterns. The performance could be
improved significantly as the memory required to store the period
summaries is significantly less than the memory required to store
the transaction-id list. Experimental results show that the pro-
posed approach reduces the memory consumption significantly
and also improves the runtime efficiency considerably over the
existing approaches.

I. INTRODUCTION

Periodic-frequent pattern mining [1] is an important knowl-
edge discovery technique in data mining. Its purpose is to
discover all patterns that are not only frequent, but also
periodic in a transactional database. Periodic-frequent pattern
mining has many applications such as detection of unusual
activity [2], finding co-occurring genes in biological datasets
[3], improving the performance of recommender systems [4]
and event detection in social networks [5]. A classic applica-
tion to demonstrate the usefulness of these patterns is market-
basket analysis. It analyzes how regularly a set of items are
being purchased by the customers. An example of a periodic-
frequent pattern is as follows:

{Bread,Battery} [support = 10%, periodicity = 1 hr.]

The above pattern demonstrates that the items ‘Bread’ and
‘Battery’ have been purchased by 10% of the customers,
and the maximum time interval between any two consecutive
purchases containing both of these items is no more than an
hour. This predictive behavior of the customers’ purchases can
facilitate the users in proper inventory management.

The basic model of periodic-frequent patterns is as follows
[1]: Let I = {i1, i2, · · · , in}, 1 ≤ n, be a set of items. A
set X = {ij, · · · , ik} ⊆ I , where j ≤ k and j, k ∈ [1, n] is
called a pattern (or an itemset). A transaction t = (tid, Y) is
a tuple, where tid represents a transaction-id (or timestamp)
and Y is a pattern. A transactional database (TDB) over I
is a set of transactions, i.e., TDB = {t1, t2, · · · , tm}, m =
|TDB|, where |TDB| represents the size of TDB in total
number of transactions. If X ⊆ Y , it is said that t contains
X and such transaction-id is denoted as tidXj , j ∈ [1,m]. Let
TIDX = {tidXj , · · · , tidXk }, j, k ∈ [1,m] and j ≤ k, be
the set of all transaction-ids where X occurs in TDB. The
support of a pattern X is the number of transactions con-
taining X in TDB, which is denoted as Sup(X). Therefore,
Sup(X) = |TIDX |. Let tidXi and tidXi+1, i ∈ [1,m − 1]
be two consecutive transaction-ids where X has appeared in
TDB. The period of a pattern X is the number of transactions
or the time difference between tidXi+1 and tidXi . Let PX =
{pX1 , pX2 , · · · , pXr }, r = Sup(X) + 1, be the complete set of
periods of X in TDB. The periodicity of a pattern X is the
maximum difference between any two adjacent occurrences
of X , denoted as Per(X) = max(pX1 , p

X
2 , · · · , pXr). A pattern

X is a periodic-frequent pattern if Sup(X) ≥ minSup and
Per(X) ≤ maxPer, where minSup and maxPer represent
the user-defined thresholds on support and periodicity re-
spectively. Both support and periodicity of a pattern can be
described in percentage of |TDB|.

Example 1: Consider the transactional database shown in
Table I. Each transaction in this database is uniquely identi-
fiable with a transactional-id (tid), which is also a timestamp
of that transaction. Here, I = {a, b, c, d, e, f, g}. The set of
items containing ‘a’, ‘c’ and ‘d’, i.e., ‘acd’ is a pattern.
This pattern contains 3 items. Therefore, it is a 3-pattern.
In the database, this pattern occurs in the tids of 1, 3, 4,
6, 7, 8, 9, 11, 13, 15, 17 and 19. Therefore, TIDacd =
{1, 3, 4, 6, 7, 8, 9, 11, 13, 15, 17, 19}. The support of this pat-
tern, i.e., Sup(acd) = |TIDacd| = 12. The periods for this
pattern are 1(= 1− tidi), 2(= 3−1), 1(= 4−3), 2(= 6−4),
1(= 7−6), 1(= 8−7), 1(= 9−8), 2(= 11−9), 2(= 13−11),
2(= 15−13), 2(= 17−15) and 1(= tidl−19), where tidi = 0
represents the initial transaction and tidl = 20 represents the
last transaction in the transactional database. The periodicity

Table I: A running example of a Transactional Database

TID Items
1 a, c, d, g
2 c, e, f
3 a, c, d
4 a, b, c, d, e
5 b, f

TID Items
6 a, b, c, d
7 a, c, d, f
8 a, b, c, d
9 a, c, d, e

10 b, e, f, g

TID Items
11 a, c, d, e
12 b, e, g
13 a, c, d, g
14 b, e, f
15 a, c, d

TID Items
16 b, e, f, g
17 a, b, c, d, e
18 b, e, g
19 a, c, d, e, g
20 b, g

of acd, Per(acd) = maximum(1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 1) =
2. If the user-specified minSup = 10 and maxPer = 4, the
pattern acd is a periodic-frequent pattern because Sup(acd) ≥
minSup and Per(acd) ≤ maxPer.

Tanbeer et al. [1] have described a pattern-growth algorithm,
called Periodic-Frequent Pattern-growth (PFP-growth), to find
the complete set of periodic-frequent patterns. The algorithm
contains two steps: (i) Compress the transactional database
into a Periodic-Frequent Pattern Tree (PF-Tree), and (ii)
discover the complete set of periodic-frequent patterns by
recursively mining the PF-tree.

It can be noted that, for extracting periodic-frequent pat-
terns, the transaction-ids of all transactions have to be stored
in the tail-nodes of the PF-tree. As the typical size of transac-
tional database is very huge in this era, extraction of periodic-
frequent patterns from voluminous databases, such as Twitter
logs and Facebook logs, require ample main memory for
building and mining PF-tree.

In this paper, we have proposed an efficient approach to
extract periodic-frequent patterns based on the notion of period
summary. It is based on the observation that it is also possible
to extract periodic-frequent patterns by maintaining the period
summary of the list of transaction-ids. The period summary
captures the periodicity of a list of transactions and can be
stored in a compact manner. In the proposed approach, instead
of transaction-ids, we store the period summary of the list
of transactions in the tree called Period-Summary tree (PS-
tree). We have proposed a pattern-growth algorithm on PS-
tree, called PS-growth, in which we determine if a pattern is
periodic or not by merging period summary information of the
tail-nodes.

With the proposed approach, it is possible to achieve the
improved performance as the memory required to store period
summaries is significantly less than the memory required to
store transaction-ids. As a result, the proposed approach can be
extended to mine the periodic-frequent patterns from the data
sets of increased size. Experimental results of three types of
data sets show that the proposed approach is memory efficient
significantly and run time efficient considerably as compared
to the existing approaches.

The rest of the paper is organized as follows. In Section
2, we discuss the existing approaches in the field of periodic
pattern mining. Section 3 discusses the overview of existing
approaches (PFP-growth). A pattern-growth approach based
on a tree structure, called Period Summary tree (PS-tree) is
discussed in Section 4. We report our experimental results in
Section 5. Finally, Section 6 concludes the paper.

II. RELATED WORK

Periodic-frequent patterns were first introduced by Tanbeer
et al. [1]. Variations in periodic-frequent patterns has been
widely studied in [6]–[9]. These variations are regarding types
of innovations in pruning methods. However, in this paper,
we have proposed an innovation to improve the memory
efficiency. So, the contribution in this paper is orthogonal
to above mentioned approaches and the proposed approach
can be employed to improve the memory efficiency of these
approaches.

To improve the runtime of mining periodic-frequent pat-
terns, Kiran and Kitsuregawa [10] have suggested a greedy-
search technique to determine the periodic interestingness
of a pattern. Amphawan et al. [11] introduced approximate
periodicity to reduce the the memory requirements of mining
periodic-frequent patterns. In Amphawan’s model the trans-
actional timeline is divided into intervals of size maxPer and
interval information is stored only when a pattern is occurring
in that interval. The proposed model is different from this as
the size of interval is not restricted to maxPer and can expand
as long as the transaction-ids merge.

III. OVERVIEW OF EXISTING APPROACHES

The existing PFP-growth algorithm [1] accepts a transac-
tional database, minSup and maxPer as inputs and outputs
a complete set of periodic-frequent patterns. It involves the
following two steps: (i) Construction of PF-tree and (ii)
Mining of PF-tree. Before we discuss these two steps, we
describe the structure of PF-tree. As an example, we consider
entries in Table I as our transactional database. Let us assume
that minSup = 10 and maxPer = 4.

A. Structure of PF-tree
The structure of PF-tree resembles that of Frequent Pattern-

tree (FP-tree) [12]. It contains a PF-list and a prefix-tree. A PF-
list consists of three fields - itemname (Item), support (sup)
and periodicity (per). The items in PF-tree are sorted in the
descending order of support to facilitate high compactness.
Two types of nodes are maintained in PF-tree: ordinary node
and tail-node. The former is the type of node similar to that
used in FP-tree, whereas the latter node explicitly maintains
the transaction-ids (tids) for each occurrence of that pattern
only at the tail-node of every transaction.

B. Construction of PF-tree
The periodic-frequent patterns satisfy the downward clo-

sure property [1]. Henceforth, periodic-frequent items (or 1-
patterns) play a key role in efficient discovery of periodic-
frequent patterns. These items are discovered by scanning the

Item sup per idl

a

c

d

g

1

1

1

1

1

1

1

1

1

1

1

1

Item sup per idl

a

c

d

g

1

2

1

1

1

1

1

1

1

2

1

1

e

f

1

1

2

2

2

2

(a) (b)

Item sup per idl

a

c

d

g

12

13

12

8

2

2

2

9

19

19

19

20

e

f

11

6

7

4

19

16

(c)

b 11 4 20

Item sup per idl

c

a

d

b

13

12

12

11

2

2

2

4

19

19

19

20

(d)

Figure 1: Construction of PF-list/PS-list. (a) After scan-
ning the first transaction (b) After scanning the second
transaction (c) After scanning all transactions (d) Final
sorted list of the periodic-frequent items of size 1.

Item sup per idl

c

a

d

b

13

12

12

11

2

2

2

4

19

19

19

20

{}

c

a

d:1

null {}

c:2

a

d:1

null {}

c:2

a

d:1,3,7,9,
 11,13,15,19

null

b:4,6,8,17

b:5,10,12,14,
 16,18,20

(a) (b) (c) (d)

Figure 2: Construction of PF-tree. (a) PF-list (b) After
scanning the first transaction (c) After scanning the second
transaction (d) After scanning all transactions.

{}

c:2

a

d:1,3,4,6,7,
 8,9,11,13,
 15,17,19

null

i:f:p

c:13:2

a:12:2

d:12:2

PF List

(a) (b)

PF List

i:f:p

{} null

(c)

{}

c

a

d:4,6,8,17

null

i:f:p

c:4:9

a:4:9

d:4:9

PF List

Figure 3: Mining using PFP-growth algorithm. (a) PF-tree
after removing ‘b’ (b) Prefix tree of ‘b’ (c) Conditional
Tree of ‘b’.

{}

c:2

a:1,3,4,6,7,
 8,9,11,13,
 15,17,19

null

i:f:p

c:13:2

a:12:2

PF List

(a) (b) (c)

{}

c

null

i:f:p

c:12:2

a:12:2

PF List {}

c

null

i:f:p

c:12:2

a:12:2

PF List

a:1,3,4,6,7,
 8,9,11,13,
 15,17,19

a:1,3,4,6,7,
 8,9,11,13,
 15,17,19

Figure 4: Mining using PFP-growth algorithm. (a) PF-tree
after removing ‘d’ (b) Prefix tree of ‘d’ (c) Conditional
Tree of ‘d’.

database and populating the PF-list as per the steps given
in Algorithm 1. Figure 1(a), 1(b) and 1(c) show the PF-list
generated after scanning the first, second and entire database,
respectively. Figure 1(d) shows the final PF-list generated after
pruning all items that have failed to satisfy the minSup and
maxPer constraints.

Algorithm 1 PF-list (TDB, maxPer, minSup)

1: for each transaction tcur ∈ TDB do
2: for each item i in tcur do
3: if tcur is i’s first occurrence then
4: Set supi = 1, pi = ticur and idil = ticur
5: else
6: Set supi += 1, picur = ticur - idil and idil = ticur
7: if picur > p then
8: p = picur

In the second database scan, the items in the PF-list will
take part in the construction of PF-tree. The tree construction
starts by inserting the first transaction, (1, acdg), according to
PF-list order, as shown in Figure 2(b). The elements which are
not present in the PF-list are not considered while inserting
into the prefix tree. The tail-node ‘d’ carries the transaction-id
of the first transaction, ‘d : [1]’. The second transaction, (2,
cef), is inserted into the tree with node ‘c : [2]’ as the tail-
node (Figure 2). The process is repeated for the remaining
transactions in the database. The final PF-tree generated after
scanning the entire database is shown in Figure 2(d).

C. Mining of PF-tree

PFP-growth employs the following steps to discover
periodic-frequent patterns from PF-tree:

– Choosing the last item i in the PF-list (Figure 2(a)) as
an initial suffix item, its prefix-tree (denoted as PTi) is
constructed. This constitutes the prefix sub-paths of the
nodes labeled i.

– For each item j in PTi, we aggregate all of its nodes’
transaction-id list to derive the transaction-id list of the
pattern ij, i.e., TIDij. Then, we determine whether ij
is a periodic-frequent pattern or not by comparing its
support and periodicity against minSup and maxPer,
respectively. If ij is a periodic-frequent pattern, then we
consider j to be periodic-frequent in PTi.

– Choosing every periodic-frequent item j in PTi, we
construct its conditional tree, CTij, and mine it recursively
to discover the patterns.

– After finding all periodic-frequent patterns for a suffix
item i, we prune it from the original PF-tree and push
the corresponding nodes’ transaction-id lists to their par-
ent nodes. We repeat the above steps until the PF-list
becomes NULL. Figure 3 and Figure 4 show the mining
process for item ‘b’ and item ‘d’.

IV. PROPOSED APPROACH

A. Issues with the Existing Approaches

The space complexity for constructing a PF-tree is O(n +
|TDB|), where n represents the total number of nodes gen-

0 4 8 12 16 20

1 3 7 9 11 13 15 19

Figure 5: Occurrence timeline for pattern ‘cad’

0 4 8 12 16 20

<1,19,4>

Figure 6: Occurrence timeline for pattern ‘cad’ using the
notion of period summary

erated in PF-tree and |TDB| represents the total number
of transactions in TDB. The databases of many real-world
applications (e.g. eCommerce and Twitter) contain millions of
transactions. In other words, |TDB| normally could be a very
large number and the size of PF-tree depends on the number of
transactions. So, the application of existing algorithm to mine
the knowledge of periodic-frequent patterns is constrained due
to the size of the transactional database. As we construct a
conditional tree for every pattern we extract, the amount of
main memory consumed is directly proportional to number of
patterns. So, investigation of efficient approaches is a research
issue.

B. Basic idea

During the construction of PF-Tree, the entire tid-list of
a pattern gets fragmented into multiple distinct sub-lists at
different tail-nodes of the PF-Tree.

Example 2: In Table I, the tid-list of pattern ‘b’ is, TIDb =
{4, 5, 6, 8, 10, 12, 14, 16, 17, 18, 20}. The tid list of ‘b’ gets
divided into two branches ‘b’ and ‘cadb’ (Figure 2(d)), and
the corresponding sub-lists at the tail-node are {4, 6, 8, 17}
and {5, 10, 12, 14, 16, 18, 20}.

It can be observed that instead of storing transaction-ids,
it is sufficient to store the interval in which the transactional
sequence is periodic. Let us say a pattern X is periodic in
the range [a,b] such that the difference between any two of
its occurrences in that range is no more than maxPer. Then,
it is enough to store the interval extremes [a,b] denoting that
the pattern is periodic in that range.

Based on this idea, we have proposed two concepts. One is
the concept of period summary which is employed to build the
tree and the other is the process of merging period summaries
for the extraction of periodic-frequent patterns.

The concept of period summary is defined as follows.
Definition 1: A period summary of a pattern X , psXi , cap-

tures the interval information in which a pattern has appeared
periodically in the data and the periodicity of respective pat-
tern within that interval. That is, psXi = 〈tidXj , tidXk , perXi 〉,
where tidXj and tidXk , 1 ≤ j ≤ k ≤ |TDB|, represents
the first and last tids of that range respectively, in which a
pattern has appeared periodically in a subset of database and
perXi is the periodicity of a pattern within the interval whose
tids are within tidXj and tidXk . Let tidXj be denoted as first
and tidXk be denoted as last in the respective intervals. Let
PSX = {psX1 , psX2 , · · · , psXk }, 1 ≤ k ≤ |TDB|, denote the
complete set of period summaries of X for any tail-node.

Example 3: Continuing with the previous example, the sub-
lists of ‘b’ will result in following period summaries at their
respective tail-nodes: PScadb = {〈4, 8, 2〉, 〈17, 17, 0〉} (b
along with c, a and d) and PSb = {〈5, 5, 0〉, 〈10, 20, 2〉}
(b in isolation). The first element in PScadb, says that ‘cadb’
has occurred with the periodicity of 2 in the sub-database
whose tids are from 4 to 8. The second element in PScadb,
says that ‘cadb’ has occurred with periodicity of 0 in the
sub-database whose tids are from 17 to 17.

In Figure 5 and Figure 6, we can see how occurrences of
pattern ‘cad’ are stored in the existing methods and proposed
method respectively.

The merging process of period summaries at different tail-
nodes are as follows.

In the mining phase, period summaries at different tail-
nodes have to be merged to generate the final period summary
of the pattern to determine whether a pattern X is periodic
or not. We encounter the following cases while merging two
intervals:

1) One interval is subset of another interval.
2) Both the intervals are overlapping.
3) Both the intervals are non-overlapping, and the differ-

ence between them is less than maxPer.
4) Both the intervals are non-overlapping, and the differ-

ence between them is greater than maxPer.
In the first three cases, we merge both the intervals and store

the extended interval in final period summary. In the fourth
case, we store both the intervals separately in final period
summary. The periodicity of the merged element is calculated
as follows:

perXk = maximum(perXi , per
X
j , (tid

X
i (l)− tidXj (f)))

In the above equation, perXi and perXj are the periodicity
values of ith and jth period summaries. The tids tidXi (l) and
tidXj (f) represent the last tid and first tid of the ith and jth

period summaries which are to be merged.
Example 4: The merging starts with pointers P1 and P2

pointing to the start of PScadb and PSb respectively. Since
〈5, 5, 0〉 of P2 is subset of 〈4, 8, 2〉 (4 < 5 < 8), we increment
P2 and point it to 〈10, 20, 2〉. Now, intervals 〈4, 8, 2〉 and
〈10, 20, 2〉 are non-overlapping and the difference between
rightmost tid of P2 and leftmost tid of P1 is less than
maxPer (case 3) i.e., 10−8 = 2 < maxPer(= 4). Therefore,
we merge the intervals to form 〈4, 20, 2〉 and add this element
to final period summary. The periodicity of the added element

Item sup per idl

c

a

d

b

13

12

12

11

2

2

2

4

19

19

19

20

{}

c

a

d:<1,1,0>,1

null {}

c:<2,2,0>,1

a

d:<1,1,0>,1

null {}

c:<2,2,0>,1

a

d:<1,19,4>,8

null

b:<4,8,2>;
 <17,17,0>,4

b:<5,5,0>;
 <10,20,2>,7

(a) (b) (c) (d)

Figure 7: Construction of PS-Tree. (a) PS-list (b) After
scanning the first transaction (c) After scanning the second
transaction and (d) After scanning all transactions.

is maximum(2, 2, 2) = 2. Now, we move our pointer P1 to
〈17, 17, 0〉. P1 is subset of 〈4, 20, 2〉. Hence, the final period
summary of ‘b’ gets merged into single element as {〈4, 20, 2〉}.

Let PS be the final period summary. To check if a pattern
is periodic or not, we check for three conditions in PS :

• PS.size() = 1
• PS[0].first ≤ maxPer
• (|TDB| − PS[0].last) ≤ maxPer
Example 5: Continuing with the previous example, the final

period summary of ‘b’ is {〈4, 20, 2〉}. Since it satisfies all the
three conditions mentioned above (i.e., size = 1, 4 ≤ 4 and
(20 − 20) = 0 ≤ 4), we say pattern ‘b’ is periodic in the
database.

This optimization helps in reducing the memory require-
ments for constructing a tree. The advantage will be even more
if the original tid-list does not split into multiple branches as
we just store one element in the tail-node implying that it is
periodic in the entire range of database.

The algorithm involves the following two steps: (i) Con-
struction of PS-tree and (ii) Recursively mining PS-tree to
discover periodic-frequent patterns. Before we discuss these
two steps, we describe the structure of PS-tree.

C. PS-Tree: Structure and Construction

1) Structure of PS-Tree: Period Summary tree contains
PS-list and a summarized prefix-tree. A PS-list consists of
three fields: itemname (Item), support (sup) and periodicity
(per). Two types of nodes are maintained in PS-tree: ordinary
node and tail-node. The former is the type of the node similar
to that used in PF-tree, whereas the latter node represents the
last item of any sorted transaction. In PS-tree, we maintain the
period summary of occurrences of that branch’s items only
at the tail-node of every transaction. The tail-node structure
maintains (i) the summarized tid list (period summaries),
which is of the structure explained in Definition 1 and (ii)
the support of that branch’s items.

2) Construction of PS-Tree: In the first database scan,
the PS-growth scans the database contents and constructs the
PS-list to discover periodic-frequent items of size 1. The
construction of PS-list is same as the construction of PF-list
(Algorithm 1). The final PS-list is shown in Figure 1(d).

In the second database scan, the items in the PS-list will take
part in the construction of PS-Tree. The tree construction starts

by inserting the first transaction, (1, acdg), according to PS-list
order, as shown in Figure 7(a). All the items in the transaction
are inserted in the same order as in PS-list except ‘g’. The tail-
node ‘d : [〈1, 1, 0〉], 1’ carries the summarized transaction-id
list and support. In the similar fashion, the second transaction,
(2, cef), is also inserted into the tree. The tail-node structure
for the second transaction would be ‘c : [〈2, 2, 0〉], 1’ (see
Figure 7). The final PS-tree as shown in Figure 7.

Example 6: Consider the tail-node structure of ‘d’, from
the branch ‘cad’. The original occurrences of ‘cad’ in TDB
are {1, 3, 7, 9, 11, 13, 15, 19} and maxPer = 4. For the
first transaction, the list will be {〈1, 1, 0〉}, 1. For the third
transaction, it checks for condition 1 + 4(= maxPer) ≥ 3.
Since it is satisfied, the list’s last occurrence will be updated
as {〈1, 3, 2〉}, 2. In a similar fashion, the list gets updated
for each occurrence of the pattern ‘cad’. After scanning all
the transactions, the tail-node structure of ‘d’ in ‘cad’ will be
{〈1, 19, 4〉}, 8.

D. Mining of PS-tree
The mining process starts by considering the last item i

in the PS-list (least support) and constructing its prefix tree
(PTi), which has the prefix sub path of the nodes labeled i.
We update the support and periodicity values by merging
the summarized tid-lists (Algorithm 3) of each item in the
PS-list by traversing the item node pointers. All items in PS-
list whose support is greater than minSup and periodicity
is less than maxPer are used in conditional tree - CTi (Figure
8(c)).

Algorithm 2 PS-growth (PS-Tree, α)

1: Select the last element in the PS-list.
2: for each ai in header of Tree do
3: Generate pattern β = ai ∪ α.
4: Aggregate all of the ai’s summarized tid-lists into PSβ ,

using Algorithm 3.
5: if PSβ .support ≥ minSup and Check(TSβ) then
6: Construct β’s conditional PS-tree, Treeβ .
7: if Treeβ 6= φ then
8: Call PS-growth (Treeβ , β)
9: Remove ai from the tree

10: Push ai’s summarized tid-list to its parent nodes using
Algorithm 3.

For each item j in PTi, we aggregate all of its nodes’
summarized transaction-id list to derive the summarized
transaction-id list of the pattern ij, i.e., summarized TIDij.
Next, to check if the final summarized transaction-id list is
periodic or not, we use Algorithm 4. If j satisfies Algorithm
4 and support > minSup, we consider j as periodic-frequent
in PTi. Choosing every periodic-frequent item j in PTi , we
construct its conditional tree, CTij, and mine it recursively to
discover the patterns.

After finding all periodic-frequent patterns for a suffix item
i, we prune i from the original PS-tree and push the corre-
sponding nodes’ summarized transaction-id lists to their parent

{}

c:<2,2,0>,1

a

d:<1,19,2>,12

null

i:f:p

c:13:2

a:12:2

d:12:2

PF List

(a) (b)

PF List

i:f:p

{} null

(c)

{}

c

a

d:<4,8,2>;
 <17,17,0>,4

null

i:f:p

c:4:9

a:4:9

d:4:9

PF List

Figure 8: Mining using PS-growth algorithm. (a) PS-Tree
after removing ‘b’ (b) Prefix tree of ‘b’ (c) Conditional
Tree of ‘b’.

{}

c:<2,2,0>,1

a:<1,19,2>,12

null

i:f:p

c:13:2

a:12:2

PF List

(a) (b) (c)

{}

c

a:<1,19,2>,12

null

i:f:p

c:12:2

a:12:2

PF List {}

c

a:<1,19,2>,12

null

i:f:p

c:12:2

a:12:2

PF List

Figure 9: Mining using PS-growth algorithm. (a) PS-Tree
after removing ‘d’ (b) Prefix tree of ‘d’ (c) Conditional
Tree of ‘d’.

Algorithm 3 Aggregating Intervals(I1, I2)

1: Initialize interval vector I3
2: if I1.first > I2.first then
3: swap (I1, I2)
4: if I1.last > I2.last then
5: I3.append(I1.first, I1.last)
6: else if I1.last+maxPer ≥ I2.first then
7: I3.append(I1.first, I2.last)
8: else
9: I3.append(I1.first, I1.last)

10: I3.append(I2.first, I2.last)

11: return I3

nodes. The above steps are repeated until PS-list becomes
NULL. PFP-growth and PS-Growth generate the same set of
periodic-frequent patterns.

Algorithm 4 Check (I)

1: if I.size() = 1 then
2: if I[0].first <= maxPer then
3: if |TDB| − I[0].last <= maxPer then
4: return TRUE
5: return FALSE

V. EXPERIMENTAL RESULTS

In this section, we compare the performance of the pro-
posed approach (PS-growth) with the existing approaches
(PFP-growth [1], PF-growth++ [10] and ITL-Tree [11]). The
structure of PF-tree++ is the same as the structure of PF-tree.
Since, PF-growth++ focuses only on improving the runtime
for extracting periodic-frequent patterns. Only runtime of PF-
growth++ is compared with the proposed approach. All the
algorithms are written in GNU C++ and run with CentOS-7.1
on a 3.00GHz machine with 8GB of memory. The runtime
specifies the total execution time, i.e., CPU and I/Os. Details
from /proc/<pid>/stat are used to compute the process’ CPU
usage (RAM).

A. Datasets description

The real-world datasets, mushroom, twitter, and retail, have
been used for conducting experiments. The mushroom dataset
is obtained from UCI Machine Learning Repository [13]. It is

a dense dataset containing 8,124 transactions and 119 distinct
items. The twitter dataset is provided by Kiran et al. [5], and
contains hashtags appeared on May 1st. The dataset contains
12 hours data with 43,200 transactions and 44,201 items.
Retail dataset is large scale sparse dataset containing 88,162
transactions with 16,470 items. The retail database is provided
by Brijs et al. [14], and contains market-basket data of an
anonymous Belgian retail supermarket store.

B. Performance Evaluation

Performance evaluation was done on three factors: tree
memory, total memory and time consumed. Total memory
consumed is usually very high compared to tree memory as
we construct a conditional tree for every pattern we mine.

Figures 10(1) - 10(3) show the number of periodic-frequent
patterns generated in various datasets at different maxPer
values. It can be observed that increase in maxPer results in
an increase in number of periodic-frequent patterns because
more patterns satisfy periodicity condition.

Figures 10(4) - 10(6) show the memory requirements of PS-
tree, ITL-Tree and PF-tree (or PF-tree++) for different datasets
at different maxPer values. Figures 10(7) - 10(9) show the
total memory consumed by PS-growth, ITL-Growth and PFP-
growth (or PFP-growth++) algorithms for various datasets at
different maxPer values. Figures 10(10) - 10(12) show the
total runtime consumed to discover periodic-frequent patterns
by PS-growth, ITL-Growth, PFP-growth and PFP-growth++
algorithms at different maxPer values.

As maxPer increases, the two reasons which decide the
memory/time consumption are number of period summaries
stored and number of patterns generated. As maxPer in-
creases, the number of period summaries stored (proposed
approach) decreases, resulting in lower consumption of mem-
ory. At the same time, as maxPer increases, number of pat-
terns also increase, resulting in higher memory consumption.
Considering these two factors, memory/time consumption will
either increase or decrease (proposed approach), depending on
the dataset.

Overall, it can be observed from Figure 10 that PS-growth is
memory and runtime efficient as compared to the existing al-
gorithms. In dense datasets, mushroom and twitter, PS-growth
outperform PFP-growth (or PFP-growth++) by a wider margin.
However, in sparse datasets like retail, PS-growth outperforms
PFP-growth (or PFP-growth++) by a narrow margin.

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 2 3 4 5 6 7 8 9 10
 11000

 11500

 12000

 12500

 13000

 13500

 14000

 14500

 15000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
 460

 470

 480

 490

 500

 510

 520

 530

 540

 550

 560

 10 15 20 25 30 35 40 45 50

Nu
mb

er
 of

 pa
tte

rn
s

maxPer %maxPer % maxPer %

Nu
mb

er
 of

 pa
tte

rn
s

Nu
mb

er
 of

 pa
tte

rn
s

(1) Mushroom (2) Twitter (3) Retail

minSup = 5% minSup = 70% minSup = 0.5%

PS-Growth/PF-Growth
/PF-Growth++/ITL-Growth

PS-Growth/PF-Growth
/PF-Growth++/ITL-Growth

PS-Growth/PF-Growth
/PF-Growth++/ITL-Growth

maxPer vs Number of patterns

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 2 4 6 8 10
 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0.1 0.2 0.3 0.4 0.5
 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 10 20 30 40 50

(4) Mushroom (5) Twitter (6) Retail

maxPer %maxPer % maxPer %

Tr
ee

 M
em

or
y (

MB
)

Tr
ee

 M
em

or
y (

MB
)

Tr
ee

 M
em

or
y (

MB
)

minSup = 5% minSup = 70% minSup = 0.5%

PF-Tree

PS-Tree

ITL-Tree

PF-Tree

PS-Tree

ITL-Tree

maxPer vs Tree memory

 0

 100

 200

 300

 400

 500

 600

 2 4 6 8 10
 0

 1000

 2000

 3000

 4000

 5000

 6000

 22

 24

 26

 28

 30

 32

 34

 36

 38

 40

 42

To
ta

l M
em

or
y (

MB
)

To
ta

l M
em

or
y (

MB
)

To
ta

l M
em

or
y (

MB
)

(7) Mushroom (8) Twitter (9) Retail

maxPer %maxPer % maxPer %

minSup = 5%
minSup = 70% minSup = 0.5%

PF-Growth

PS-Growth
ITL-Growth

 0.1 0.2 0.3 0.4 0.5

PF-Growth

PS-Growth
ITL-Growth

 10 20 30 40 50

PF-Growth

PS-Growth
ITL-Growth

maxPer vs Total memory

 0

 2

 4

 6

 8

 10

 12

 14

 16

 50

 100

 150

 200

 250

 300

 8.8

 9

 9.2

 9.4

 9.6

 9.8

 10

 10.2

 10.4

 10 20 30 40 50

(10) Mushroom (11) Twitter (12) Retail

maxPer %maxPer % maxPer %

Tim
e (

se
cs

)

Tim
e (

se
cs

)

Tim
e (

se
cs

)

minSup = 5%

minSup = 70%
minSup = 0.5%

 2 4 6 8 10

PF-Growth++

PS-Growth

ITL-Growth

PF-Growth

0.1 0.2 0.3 0.4 0.5

PS-Growth
ITL-Growth

PF-Growth++
PF-Growth

maxPer vs Time

Figure 10: Comparative analysis by varying maxPer

Figure 11 shows how memory/time consumed change at
different minSup values. It can be observed that increase
in minSup results in decrease of the number of periodic-
frequent patterns generated. Thus tree memory, total memory
and run time decreases as minSup increases. From Figure
11(8), we can notice that the existing approaches failed to
extract periodic-frequent patterns for minSup < 65% because
of over consumption of RAM (exceeded 8 GB).

C. Discussion

For patterns containing millions of transaction-ids, the
proposed compact representation of transaction-ids using the
notion of period summaries will result in a huge reduction in
memory and run time requirements. The reduction in memory
is because instead of storing thousands of transaction-ids in the
tail-node, we store the summary of these transactions in very
few intervals. The reduction in run time to extract periodic-
frequent patterns is because the existing approaches require the
scanning of the entire transaction-id list for determining the

periodicity of a pattern whereas in the proposed approach we
just have to check for three conditions (Algorithm 4), which
can be done in O(1) time.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed an efficient approach
to extract periodic-frequent patterns from large transactional
databases by using the notion of period summaries. The
proposed approach reduces the computational cost without
missing any knowledge pertaining to periodic-frequent pat-
terns as compared to the existing approaches. As a part of
future work, we are planning to explore efficient approaches
to extract periodic-frequent patterns for incremental data sets.

VII. ACKNOWLEDGMENT

This work was supported by the Research and Development
on Real World Big Data Integration and Analysis program
of the Ministry of Education, Culture, Sports, Science, and
Technology, JAPAN.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 5 10 15 20 25 30 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 60 62 64 66 68 70
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Nu
mb

er
 of

 pa
tte

rn
s

minSup %minSup % minSup %

Nu
mb

er
 of

 pa
tte

rn
s

Nu
mb

er
 of

 pa
tte

rn
s

(1) Mushroom (2) Twitter (3) Retail

PS-Growth/PF-Growth
/PF-Growth++/ITL-Growth

maxPer = 10% maxPer = 0.5% maxPer = 10%

PS-Growth/PF-Growth
/PF-Growth++/ITL-Growth

PS-Growth/PF-Growth
/PF-Growth++/ITL-Growth

minSup vs Number of patterns

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.2 0.4 0.6 0.8 1

minSup % minSup %

(4) Mushroom (5) Twitter (6) Retail

Tr
ee

 M
em

or
y (

MB
)

Tr
ee

 M
em

or
y (

MB
)

maxPer = 10%

maxPer = 10%

maxPer = 0.5%

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 60 62 64 66 68 70

minSup %
Tr

ee
 M

em
or

y (
MB

)PF-Tree

PS-Tree

ITL-Tree

 5 10 15 20 25 30

7

PF-Tree

PS-Tree

ITL-Tree

minSup vs Tree memory

 0

 20

 40

 60

 80

 100

 120

minSup % minSup %

To
tal

 M
em

or
y (

MB
)

To
tal

 M
em

or
y (

MB
)

(7) Mushroom (8) Twitter (9) Retail

maxPer = 10%

To
tal

 M
em

or
y (

MB
)

minSup %

 0

 100

 200

 300

 400

 500

 600

 5 10 15 20 25 30

PF-Growth

PS-Growth

ITL-Growth

maxPer = 10%

 60 62 64 66 68 70

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000
maxPer = 0.5%

 0.2 0.4 0.6 0.8 1

PF-Growth

PS-Growth

ITL-Growth

 0

M
ai

n
M

em
or

y
Ex

ha
us

te
d

minSup vs Total memory

 0

 2

 4

 6

 8

 10

 12

 14

 16

 5 10 15 20 25 30
 7

 8

 9

 10

 11

 12

 13

 14

(10) Mushroom (11) Twitter (12) Retail

minSup % minSup %

Tim
e (

se
cs

)

Tim
e (

se
cs

)

maxPer = 10%

maxPer = 0.5%

maxPer = 10%

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 60 62 64 66 68 70

minSup %

Tim
e (

se
cs

)PF-Growth++

PS-Growth

ITL-Growth

PF-Growth

 550

 0.2 0.4 0.6 0.8 1

PF-Growth++

PS-Growth

ITL-Growth

PF-Growth

minSup vs Time

Figure 11: Comparative analysis by varying minSup

REFERENCES

[1] S. K. Tanbeer, C. F. Ahmed, B.-S. Jeong, and Y.-K. Lee, “Discover-
ing periodic-frequent patterns in transactional databases,” in PAKDD.
Springer, 2009, pp. 242–253.

[2] E. Keogh, J. Lin, and A. Fu, “Hot sax: Efficiently finding the most
unusual time series subsequence,” in ICDM, 2005, pp. 226–233.

[3] M. Zhang, B. Kao, D. W. Cheung, and K. Y. Yip, “Mining periodic
patterns with gap requirement from sequences,” KDD, vol. 1, 2007.

[4] H. Stormer, “Improving e-commerce recommender systems by the
identification of seasonal products,” pp. 92–99.

[5] R. U. Kiran, H. Shang, M. Toyoda, and M. Kitsuregawa, “Discovering
recurring patterns in time series,” in EDBT, 2015, pp. 97–108.

[6] R. Uday Kiran and P. Krishna Reddy, “Towards efficient mining
of periodic-frequent patterns in transactional databases,” in DEXA.
Springer, 2010, pp. 194–208.

[7] K. Amphawan, P. Lenca, and A. Surarerks, “Mining top-k periodic-
frequent pattern from transactional databases without support threshold,”
in Advances in Information Technology. Springer, 2009, pp. 18–29.

[8] M. M. Rashid, M. R. Karim, B.-S. Jeong, and H.-J. Choi, “Efficient min-
ing regularly frequent patterns in transactional databases,” in DASFAA.
Springer, 2012, pp. 258–271.

[9] R. U. Kiran and P. K. Reddy, “An alternative interestingness measure
for mining periodic-frequent patterns,” in DASFAA, 2011, pp. 183–192.

[10] R. U. Kiran, M. Kitsuregawa, and P. K. Reddy, “Efficient discovery of
periodic-frequent patterns in very large databases,” JSS, vol. 112, pp.
110–121, 2016.

[11] K. Amphawan, P. Lenca, and A. Surarerks, “Mining periodic-frequent
itemsets with approximate periodicity using interval transaction-ids list
tree,” in WKDD, 2010, pp. 245–248.

[12] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candi-
date generation,” in International Conference on Management of Data.
ACM, 2000, pp. 1–12.

[13] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[14] T. Brijs, B. Goethals, G. Swinnen, K. Vanhoof, and G. Wets, “A data
mining framework for optimal product selection in retail supermarket
data: The generalized PROFSET model,” CoRR, pp. 300–304, 2001.

