
LAPIN: Effective Sequential Pattern Mining Algorithms
by Last Position Induction for Dense Databases

Zhenglu Yang Yitong Wang Masaru Kitsuregawa

Institute of Industrial Science, The University of Tokyo
4-6-1 Komaba, Meguro-Ku, Tokyo 153-8305, Japan

{yangzl,ytwang,kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract. Sequential pattern mining is very important because it is the basis of
many applications. Although there has been a great deal of effort on sequen-
tial pattern mining in recent years, its performance is still far from satisfactory
because of two main challenges: large search spaces and the ineffectiveness in
handling dense datasets. To offer a solution to the above challenges, we have pro-
posed a series of novel algorithms, called the LAst Position INduction (LAPIN)
sequential pattern mining, which is based on the simple idea that the last position
of an item, α, is the key to judging whether or not a frequent k-length sequen-
tial pattern can be extended to be a frequent (k+1)-length pattern by appending
the item α to it. LAPIN can largely reduce the search space during the mining
process, and is very effective in mining dense datasets. Our performance study
demonstrates that LAPIN outperforms PrefixSpan [4] by up to an order of mag-
nitude on long pattern dense datasets.

1 Introduction

Sequential pattern mining, which extracts frequent subsequences from a sequence data-
base, has attracted a great deal of interest during the recent surge in data mining re-
search because it is the basis of many applications. Efficient sequential pattern mining
methodologies have been studied extensively in many related problems, including the
basic sequential pattern mining [1] [6] [4], constraint-based sequential pattern mining
[2], maximal and closed sequential pattern mining [3].

Although there are many problems related to sequential pattern mining, we realize
that the basic sequential pattern mining algorithm development is the most fundamental
one because all the others can benefit from the strategies it employs, i.e. Apriori heuris-
tic and projection-based pattern growth. Therefore we aim to develop an efficient basic
sequential pattern mining algorithm in this paper.

1.1 Overview of Our Algorithm

For any sequence database, the last position of an item is the key used to judge whether
or not the item can be appended to a given prefix (k-length) sequence.

Example 1. We will use the sequence database S shown in Fig. 1 (a) with min support
= 2 as our running example in this paper. When scanning the database in Fig. 1 (a) for

SID Last Position of SE Item

10 blast=5 clast=5 alast=6 dlast=7

20 alast=3 clast=4 blast=5 dlast=5

30 blast=2 alast=3 clast=4 dlast=4

(a) Sequence DB (b) Last positions of items

SID Sequence

10 a c (b c) d (a b c) a d

20 b (c d) a c (b d)

30 d (b c) (a c) (c d)

Fig. 1. Sample database

the first time, we obtain Fig. 1 (b), which is a list of the last positions of the 1-length
frequent sequences in ascending order. Suppose that we have a prefix frequent sequence
〈a〉, and its positions in Fig. 1 (a) are 10:1, 20:3, 30:3, where sid:eid represents the se-
quence ID and the element ID. Then, we check Fig. 1 (b) to obtain the first indices
whose positions are larger than 〈a〉’s, resulting in 10:1, 20:2, 30:3, i.e., (10:blast =
5, 20:clast = 4, and 30:clast = 4), symbolized as “↓”. We start from these indices to
the end of each sequence, and increment the support of each passed item, resulting in
〈a〉 : 1, 〈b〉 : 2, 〈c〉 : 3, and 〈d〉 : 3, from which, we can determine that 〈ab〉, 〈ac〉
and 〈ad〉 are the frequent patterns. The I-Step methodology is similar to the S-Step
methodology, which is not described here due to limited space.

Let D̄ be the average number of customers (i.e., sequences) in the projected DB,
L̄ be the average sequence length in the projected DB, N̄ be the average total number
of the distinct items in the projected DB, and m be the distinct item recurrence rate or
density in the projected DB. Then m=L̄/N̄ (m ≥ 1), and the relationship between the
runtime of PrefixSpan (Tps) and the runtime of LAPIN (Tlapin) in the support counting
part is

Tps/Tlapin = (D̄× L̄)/(D̄× N̄) = m (1)
Because support counting is usually the most costly step in the entire mining pro-

cess, Eq.(1) illustrates the main reason why LAPIN is faster than PrefixSpan for dense
datasets, whose m (density) can be very high.

2 LAPIN Sequential Pattern Mining

In this section, we describe the LAPIN algorithms in detail. Refer [5] for the notations
and lemmas used in this paper. The pseudo code of LAPIN is shown in Fig. 2.

In step 1, by scanning the DB once, we obtain the SE position list table and all the
1-length frequent patterns. At the same time, we can get the SE item-last-position
list, as shown in Fig. 1 (b). In function Gen Pattern, we obtain the position list of the
last item of α, and then perform a binary search in the list for the (k-1)-length prefix
border position (step 3). Step 4, shown in Fig. 2, is used to find the frequent SE (k+1)-
length pattern based on the frequent k-length pattern and the 1-length candidate items.
We can test each candidate item in the local candidate item list (LCI-oriented), which
is similar to the method used in SPADE [6]. Another choice is to test the candidate item
in the projected DB, just as PrefixSpan [4] does (Suffix-oriented).

We found that LCI-oriented and Suffix-oriented have their own advantages for
different types of datasets. Thus we formed a series of algorithms categorized into two
classes, LAPIN LCI and LAPIN Suffix. Please refer [5] for detail.

——————————————————————————————————————–
Input: A sequence database, and the minimum support threshold, ε
Output: The complete set of sequential patterns

Function: Gen Pattern(α, S, CanIs, CanIi)
Parameters: α = length k frequent sequential pattern; S = prefix

border position set of (k-1)-length sequential pattern;
CanIs = candidate sequence extension item list of (k+1)
-length sequential pattern; CanIi = candidate itemset
extension item list of (k+1)-length sequential pattern

Goal: Generate (k+1)-length frequent sequential pattern

Main():
1. Scan DB once to do:

1.1 Ps ← Create the position list representation of the 1-
length SE sequences

1.2 Bs ← Find the frequent 1-length SE sequences
1.3 Ls ← Obtain the item-last-position list of the 1-length

SE sequences
2. For each frequent SE sequence αs in Bs

2.1 Call Gen Pattern (αs, 0, Bs, Bi)

Function: Gen Pattern(α, S, CanIs, CanIi)
3. Sα ← Find the prefix border position set of α based on S
4. FreItems,α ←Obtain SE item list of α based on CanIs and Sα

5. For each item γs in FreItems,α

5.1 Combine α and γs as SE, results in θ and output
5.2 Call Gen Pattern (θ, Sα, FreItems,α, FreItemi,α)

——————————————————————————————————————

Fig. 2. LAPIN algorithm pseudo code

3 Performance Study

We conducted experiments on synthetic and real life datasets to compare LAPIN with
PrefixSpan. We used a 1.6 GHz Intel Pentium(R)M PC with 1G memory. Refer [1] for
the meaning of the different parameters used to generate the datasets. We first compared
PrefixSpan and our algorithms using several small-, medium-, and large- sized datasets.
The statistics of the datasets is shown in Fig. 3 (a).

Fig. 3 (b) and Fig. 3 (c) show the running time and the searched space comparison
between PrefixSpan and LAPIN and clearly illustrate that PrefixSpan is slower than
LAPIN using the medium dataset and the large dataset. This is because the searched
spaces of the two datasets in PrefixSpan were much larger than that in LAPIN. For the
small dataset, the initial overhead needed to set up meant that LAPIN was slower than
PrefixSpan. LAPIN Suffix is faster than LAPIN LCI for small datasets because the for-
mer searches smaller spaces than the latter does. However, for medium and large dense
datasets, LAPIN LCI is faster than LAPIN Suffix because the situation is reversed. The
memory usage of the algorithms is shown in Fig. 3 (d).

0

100

200

300

400

500

2 4 6 8 10

R
u

n
n

in
g

 t
im

e
(s

)

PrefixSpan

LAPIN_Suffix

LAPIN_LCI

0

2000

4000

6000

8000

91 92 93 94 95

R
u

n
n

in
g

 t
im

e
(s

)

PrefixSpan

LAPIN_Suffix

LAPIN_LCI

0

1000

2000

3000

4000

5000

98.4 98.6 98.8 99 99.2

R
u

n
n

in
g

 t
im

e
(s

)

PrefixSpan

LAPIN_Suffix

LAPIN_LCI

Dataset # sequences Avg length Total size
 C10T5S5I5N100D1K 1000 46 270K
 C30T20S30I20N200D20K 20000 518 46M
 C50T20S50I20N300D100K 100000 903 401M

Dataset (C10T5S5IN100D1K)

0

2

4

6

2 4 6 8 10

Minimum support (%)

S
e

a
rc

h
e

d
 s

p
a

c
e

 (
G

B
)

PrefixSpan

LAPIN_Suffix

LAPIN_LCI

Dataset (C30T20S30I20N200D20K)

0

100

200

300

91 92 93 94 95

Minimum support (%)

S
e

a
rc

h
e

d
 s

p
a

c
e

 (
G

B
)

PrefixSpan

LAPIN_Suffix

LAPIN_LCI

0

50

100

150

98.4 98.6 98.8 99 99.2

Minimum support (%)

S
e

a
rc

h
e

d
 s

p
a

c
e

 (
G

B
) PrefixSpan

LAPIN_Suffix

LAPIN_LCI

(b) Running time comparison

(a) Dataset characteristics

Dataset (C30T20S30I20N200D20K)

100

150

200

250

91 92 93 94 95

Minimum support (%)
T

o
ta

l
m

e
m

o
ry

 u
s
e

d
 (

M
B

)

PrefixSpan

LAPIN_Suffix

LAPIN_LCI

(d) Memory usage comparison

(c) Searched space comparison

Dataset (C30T20S30I20N200D20K)Dataset (C10T5S5IN100D1K) Dataset (C50T20S50I20N300D100K)

Dataset (C50T20S50I20N300D100K)

450

600

750

900

98.4 98.6 98.8 99 99.2

PrefixSpan

LAPIN_Suffix

LAPIN_LCI

Minimum support (%)

Dataset (C50T20S50I20N300D100K)

T
o

ta
l
m

e
m

o
ry

 u
s
e

d
 (

M
B

)

Minimum support (%)Minimum support (%)Minimum support (%)

0

5

10

15

20

2 4 6 8 10

PrefixSpan

LAPIN_Suffix

LAPIN_LCI

Minimum support (%)

T
o
ta

l
m

e
m

o
re

y
 u

s
e
d
 (

M
B

)

Dataset (C10T5S5I5N100D1K)

Fig. 3. The different sizes of the datasets

Different parameters analysis When C increases, T increases, and N decreases, then
the performance of LAPIN improves even more relative to PrefixSpan, by up to an order
of magnitude. The reason is that on keeping the other parameters constant, increasing
C, T and decreasing N , respectively, will result in an increase in the distinct item
recurrence rate, m.

4 Conclusions

We have proposed a series of novel algorithms, LAPIN, for efficient sequential pat-
tern mining. By thorough experiments, we have demonstrated that LAPIN outperforms
PrefixSpan by up to an order of magnitude on long dense datasets.

References

1. R. Agrawal and R. Srikant. Mining sequential patterns. In ICDE, pp. 3-14, 1995.
2. M.N. Garofalakis, R. Rastogi and K. Shim. SPIRIT: Sequential PAttern Mining with Regular

Expression Constraints. In VLDB, pp. 223-234, 1999.
3. C. Luo and S.M. Chung. Efficient Mining of Maximal Sequential Patterns Using Multiple

Samples. In SDM, pp. 64-72, 2005.
4. J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M.C. Hsu.

Mining Sequential Patterns by Pattern-growth: The PrefixSpan Approach. In TKDE, Volume
16, Number 11, pp. 1424-1440, 2004.

5. Z. Yang, Y. Wang, and M. Kitsuregawa. LAPIN: Effective Sequential Pattern Mining Algo-
rithms by Last Position Induction. Technical Report, Info. and Comm. Eng. Dept., Tokyo
University, 2005. http://www.tkl.iis.u-tokyo.ac.jp/∼yangzl/Document/LAPIN.pdf

6. M. J. Zaki. SPADE: An Efficient Algorithm for Mining Frequent Sequences. In Machine
Learning, Vol. 40, pp. 31-60, 2001.

