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ABSTRACT
This paper reports a dialogue system developed at the Uni-
versity of Tokyo for participation in NTCIR-12 on the short
text conversation (STC) pilot task. We participated in the
Japanese STC task on Twitter and built a system that se-
lects plausible responses for an input post (tweet) from a
given pool of tweets. Our system first selects a (small) set
of tweets as response candidates from the pool of tweets by
exploiting a kernel-based classifier. The classifier uses bag-
of-words in an utterance and a response (candidate) as fea-
tures. We then perform re-ranking of the chosen candidates
in accordance with the perplexity given by Long Short-Term
Memory-based Recurrent Neural Network (lstm-rnn) to re-
turn a ranked list of plausible responses. In order to capture
the diversity of domains (topics, wordings, writing styles,
etc.) in chat dialogue, we train multiple lstm-rnns from
subsets of utterance-response pairs that are obtained by
clustering of distributed representations of the utterances,
and use the lstm-rnn that is trained from the utterance-
response cluster whose centroid is the closest to the input
tweet.
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1. INTRODUCTION
In the Japanese task of the NTCIR-12 short text con-

versation (STC) pilot task, participants need to develop a
system that takes an input tweet and extracts, from a pool
of tweets (utterance-response pairs), a (short) list of tweets
⇤This work is done while the author concurrently served as
a senior researcher at National Institute of Information and
Communications Technology (NICT), Japan.

that are ranked according to their relative suitability as re-
sponse to the input. The size of the pool of tweets is around
one million, which consist of 500K utterance-response pairs.

To solve this task, Long Short-Term Memory-based Re-
current Neural Networks (lstm-rnns) is used to evaluate the
suitability of each response in the pool as response to the
input tweet. The key features of our system are two-folds:

Response pre-filtering Since lstm-rnns are slow to eval-
uate the entire responses in the pool, we utilize a clas-
sifier to select a tractable number of tweets as response
candidates. The classifier based on polynomial kernel
is trained with a large number of utterance-response
pairs that are independently crawled from Twitter.

Domain-aware LSTM-RNNs In chat dialogue on Twit-
ter, the diversity of domains (topics, wordings, writing
styles etc.) is evident. We therefore train multiple
domain-aware lstm-rnns to evaluate the suitability
of each response candidate as response. We obtain
domain-consistent subsets of utterance-response pairs
by clustering and train one lstm-rnn from each sub-
set. The lstm-rnn obtained from a subset of utterance-
response pairs whose utterances are semantically clos-
est to the input tweet is used to evaluate the suitability
of each response tweet as response to the input tweet.

In what follows, we detail the architecture of our system and
briefly summarize the experimental results.

2. SYSTEM ARCHITECTURE
Figure 1 depicts our dialogue system used for NTCIR-12

STC pilot task. The numbers in Figure 1 indicate Sections
in the following explanations.

2.1 Domain-aware dialogue modeling
Topics, wordings and writing styles (or domains) vary sub-

stantially in chat dialogue, which makes it di�cult to build
a universal dialogue model that can handle various domains.
Our dialogue system is inspired by Yamamoto and Sumita’s
work on domain adaptation for statistical machine transla-
tion [6]. They showed that domain-specific models trained
on smaller domain-specific corpora performed better than a
general model trained on a larger general-domain corpus.



Figure 1: System overview.

The major challenge in adopting Yamamoto and Sumita’s
approach to model chat dialogue is in its domain diversity.
To cover a variety of domains, we want to split data (for
modeling dialogue) into pieces. However, as the amount of
the data decreases, a data sparseness problem becomes more
serious. Thus, there will be a trade-o↵ between the perfor-
mance improvement achieved by domain-specific data and
the performance drop caused by data sparseness. Clarifying
this trade-o↵ is the main issue we focus on in this research.

2.1.1 Clustering vector representations of utterances

We first classify utterances in a given pool of utterance-
response pairs (ntcir tweets) into domain-consistent sub-
sets by clustering. We represent the utterances in ntcir
tweets with distributed vector representations. These vec-
tor representations of utterances are obtained by averaging
vector representations of words in the utterances.

The vector representations of words are induced from 2013
portion of our Twitter archive we have crawled since 2011
(ut tweets) in advance. The details of these tweets are sum-
marized in Section 3.1. Since words in Japanese are concate-
nated and the text in tweets contains many out-of-dictionary
words, we use MeCab1 with mecab-ipadic-neologd2 to tok-
enize the text. We then use word2vec skip-gram model [3]
to induce vector representations of words from ut tweets.

Having vector representations for utterances in utterance-
response pairs, we run k-means clustering to obtain clusters
of utterance-response pairs. We regard each cluster as one

1

http://taku910.github.io/mecab/

2

https://github.com/neologd/mecab-ipadic-neologd

domain, following Yamamoto and Sumita’s work [6].
When choosing domain for input tweet, we obtain a vector

representation of the tweet in the same way as above, and
find the cluster (domain) whose centroid is the closest to
the obtained vector representation in terms of the euclidean
distance.

2.1.2 LSTM-RNNs for utterance-response model

We train lstm-rnns from clusters of utterance-response
pairs obtained in Section 2.1.1. Each utterance and its re-
sponse in the clusters is concatenated with a special symbol
([EOU]) to form a pseudo sentence. The resulting pseudo
sentences in each cluster are given to an lstm-rnn for train-
ing a domain-specific language model.

We should mention that rnns encode temporal informa-
tion implicitly for contexts with arbitrary length, which is
proven to be more e↵ective than classical n-gram models [2].
However, it is well known that a vanilla rnn su↵ers from
the vanishing gradient problem. To overcome this problem,
lstm-rnns are introduced and widely used in conversation
modeling tasks [4].

The resulting lstm-rnns are used to evaluate how likely
each response candidate in the pool of tweets is suitable
as response to the input tweet. As in the training lstm-
rnns, the input tweet and each response candidate is con-
catenated to form a pseudo sentence. A perplexity of the
resulting pseudo sentence is used for the evaluation (to avoid
the length factor of the response), and response candidates
with lower perplexities are chosen as plausible responses to
the input tweet.



2.2 Response candidate filtering
High computational cost regarding matrix multiplications

in evaluating with lstm-rnns (Section 2.1.2) causes a practi-
cal issue when there exist hundreds of thousands of response
candidates. We therefore incorporate a pre-filtering step to
reduce the candidates before performing response selection
using lstm-rnns. In this pre-filtering step, we choose the
tractable number3 of response candidates for the following
lstm-rnn evaluation according to the margins from the sep-
arating hyperplane that are provided by a margin-based bi-
nary classifier.

The classifier used as a filter is based on a variant of online
passive-aggressive algorithm (PA-I) [1], and employs bag-of-
words of an utterance-response pair as features. To capture
combinations of words in utterance and response, we use a
second-order polynomial kernel. Since the kernel evaluation
is known to be slow, we adopt opal,4 which implements fast
kernel evaluation based on kernel slicing technique [7].

To train the classifier, we compile utterance-response pairs
from (a part of) ntcir tweets and ut tweets as positive ex-
amples, and prepare the same amount of negative examples
by combining utterances with randomly-chosen responses.

3. EXPERIMENTS
This section evaluates our domain-aware dialogue system

on the response retrieval task. To validate the e↵ectiveness
of domain-aware lstm-rnns, we first report experiments on
a manually-built dataset, followed by results on the formal
run of NTCIR-12.

3.1 Settings
We first built two sets of utterance-response pairs (tweets).

We have crawled 421K (421,050) utterance-response pairs in
2014 (ntcir tweets) from given 500K utterance-response ID
pairs by using Twitter APIs. These are provided for NT-
CIR12 STC Japanese task.5 In addition, we extracted 230M
utterance-response pairs (ut tweets) in 2013 from Twitter
archive we have been crawling since 2011.

We next induced vector representations for words in the
utterances of the ut tweets by using skip-gram model (im-
plfemented in word2vec6) with setting dimension to 200 and
window size to 5. We then chose 100K utterance-response
pairs from ntcir tweets, and applied k-means clustering
(implemented in scikit-learn toolkit7) to the vector repre-
sentations of the utterances, as stated in Section 2.1.1.
We varied the number of clusters, k, from 1 to 40, and

used the resulting clusters of utterances (and associated re-
sponses) to train lstm-rnns (implemented by TensorFlow8).
The hyperparameters of lstm-rnns are tuned using a small
set of utterance-response pairs taken from the ntcir tweets.
To solely validate the e↵ectiveness of domain-aware lstm-

rnns and investigate the e↵ect of the number of clusters, we
manually built a small test set in the following way. We first
sampled 1K utterance-response pairs from ntcir tweets, and
assumed the utterances as input tweets and the responses as
correct (or appropriate) responses. We next extracted 19 re-

3We choose 500 candidates in the experiments.
4

http://www.tkl.iis.u-tokyo.ac.jp/~ynaga/opal/

5

https://github.com/mynlp/stc

6

https://code.google.com/archive/p/word2vec/

7

http://scikit-learn.org/stable/

8

https://www.tensorflow.org/

system accuracy@3

random 15.0%
baseline (k = 1) 30.8%
proposed (k = 10) 33.2%
proposed (k = 20) 35.4%
proposed (k = 40) 35.0%

Table 1: Results on the small test set: accuracy@3 is

the proportion of the input tweets where the top-3

response candidates chosen by the system included

the correct response.

sponses for each input tweet from ut tweets and regard them
as (additional) candidates (wrong responses). We then ob-
tained 1K problems (1 input tweet and 20 response candi-
dates including one correct one). We directly use the above
lstm-rnns to evaluate the suitability as response.

On the other hand in the NTCIR-12 formal-run dataset,
204 input tweets in 2015 are given and the above 421K re-
sponses are regarded as response candidates. As stated in
Section 2.2, a kernel-based classifier (implemented in opal4)
is leveraged to select plausible candidates from the entire re-
sponse candidates. We have used the ntcir tweets (exclud-
ing 200 pairs for evaluating pre-filtering) augmented with
randomly sampled ut tweets (in total, around 8.4M training
examples) to train the classifier, and chose 500 candidates
for each input tweet in accordance with a margin from the
separating hyperplane of the classifier. We will also solely
evaluate the e↵ectiveness of the pre-filter later.

3.2 Results on the small test set
Table 1 lists experimental results on the small test set built

in Section 3.1. We can clearly observe that our proposed
systems with multiple lstm-rnns (k > 1) outperformed the
system with a single lstm-rnn (k = 1, baseline). The per-
formance is saturated when k = 20, which indicates the
trade-o↵ between data sparseness and domain consistency.

We next investigated the detailed performance of the best-
performing system (k = 20) and baseline (k = 1) on the
input tweets in each cluster when k = 20 (Table 2). The
proposed system (k = 20) outperformed baseline for 13 out
of 20 clusters (and ties for 3 clusters). The improvement is
evident for larger size of clusters (#elems (train) > 5000).
Considering that the number of the utterance-response pairs
for training lstm-rnns was reduced significantly from 100K
(baseline) (0.7% (ID: 11) to 11.8% (ID: 13)), use of consis-
tent subsets of the training data compensated for the reduc-
tion of the training data.

The performance drop against baseline is attributed to
the increase of unknown words due to the data sparseness
problem. This issue will be ameliorated by adopting a soft
clustering method that allows us to interpolate all the lstm-
rnns to evaluate the suitability of tweets as response.

Table 3 shows input tweets and the correct responses along
with selected responses, in which our method returned the
correct or more appropriate results than baseline system.
The baseline system often returned wrong responses that fre-
quently observed in training data (e.g., greetings domain or
acknowledgments domain). Our system divided these com-
mon but harmful responses into other clusters so that it
can obtain more consistent lstm-rnns to select correct re-
sponses.



ID domain #elems #corr improvement
(topics, wording, writing style) train test ours baseline �#corr

#elems (test)

13 - 11801 108 38 27 10.19%
7 - 11524 124 37 32 4.03%

14 politics, economics, social matters 10294 130 48 38 7.69%
3 - 9743 94 32 23 9.57%

16 animation, comics 6747 56 11 10 1.79%
12 - 6552 66 24 23 1.52%
19 game 5677 50 13 5 16.00%
10 - 5627 45 14 13 2.22%
1 end with ‘?’ r ‘!’ 5190 63 17 15 3.17%
0 moaning (esp., sleepy, weary) 5064 52 17 21 -7.69%

15 - 4908 50 22 24 -4.00%
17 numbers 3803 31 5 7 -6.45%
6 eating 2630 16 6 4 12.50%
2 frank acknowledgment (follow, RT) 2252 33 29 30 -3.03%

18 end with ’ !!!’ 1869 17 8 8 0.00%
8 polite acknowledgement (follow, RT) 1553 13 12 12 0.00%
4 greetings 1537 21 7 6 4.76%
9 end with ‘· · · ’ 1326 12 3 2 8.33%
5 polite morning greetings 1174 13 9 6 23.08%

11 shouting with word lengthing or repetition 729 6 2 2 0.00%
total 100000 1000 354 308 4.60%

Table 2: Results on each cluster of the small test set: our system with k = 20 clusters vs. baseline (k = 1);
#corr is the number of tweets in which the correct response was included in top-3 response candidates.

Utterance Correct Response baseline proposed (k = 20)
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Table 3: Example input tweets for which our system returned better results than baseline (top-1 responses).



Figure 2: Evaluation results on formal run test.

Figure 3: Filtering performance.

3.3 Results on NTCIR-12 formal-run datasets
The results on NTCIR-12 formal-run datasets were manu-

ally evaluated by multiple human annotators in the following
way. The annotators are asked to examine the top-1 or top-
5 response candidates returned by a system and to assign
score of 0 (inappropriate), 1 (appropriate in some context),
and 2 (appropriate) to each response.

We have provided two systems for this evaluation. One
is the proposed system (k = 20) pre-filtered by the kernel-
based classifier (R1), while the other just returns the top-10
pre-filtered responses (R2).

Figure 2 shows the results. 1,2-rankn refers to the accu-
racy of the top-n responses assuming those scored with 1 or
2 as correct, while 2-rankn refers to the accuracy of the top-
n responses assuming those scored with 2 are correct. For
all the cases the lstm-rnns improved the accuracy against
the responses chosen by the kernel-based classifier.

To analyze the e↵ectiveness of the filtering step, we eval-
uated the recall of two pre-filters (classifiers). We randomly
sampled 200 utterances from ntcir tweets as input tweet,
and chose the top-N response candidates from 421k (421,050)
responses in ntcir tweets. To see the impact of the size
of training data, another pre-filter is trained with 842K
training examples created only from ntcir tweets (421K
(421,050) pairs) excluding 200 pairs used for the test set, in
addition to the pre-filter (R1) trained with 8.4M examples.

Figure 3 shows the recall of the pre-filters plotted against

the number of selected response candidates, N . Here, re-
call is the proportion of input tweets for which the top-N
response candidates returned by pre-filters included the cor-
rect responses. In the formal-run, our lstm-rnn model se-
lected responses from filtered top-500 response candidates.
Figure 3 shows that use of larger training data (8.4M) signif-
icantly improved the recall of top-500 responses from 6.5%
to 16%. This is significantly higher than random sampling
(500/420850 = 0.001) but is not high enough unless there
are 5 (⇠ 100/16 � 1) alternative responses other than the
correct ones in the given pool of tweets.

We will increase the training data size of a pre-filter to im-
prove the recall and accelerate the evaluation of lstm-rnns
to increase the number of processible response candidates.

4. CONCLUSIONS
Our system for the Japanese task of NTCIR-12 short text

conversation pilot task is presented. Our system has made
lstm-rnns scalable for this task by choosing a (small) set of
tweets as response candidates, from a large pool of tweets,
using a kernel-based classifier. To capture the diversity of
domains in chat dialogue, we have trained multiple lstm-
rnns for consistent subsets of utterance-response pairs ob-
tained by applying k-means clustering to their distributed
representations. The e↵ectiveness of the multiple lstm-
rnns are validated through a manually-tailored testset, and
they are successfully utilized at the formal run of NTCIR-12.

We are going to investigate the e↵ectiveness of our method
based on the recent sophisticated models like bi-directional
lstm [5] instead of lstm-rnn we have employed here.
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