
論文 DBSJ Letters Vol.5, No.1

――――――――――――――――――――――――――――――――――――

日本データベース学会 Letters Vol.5, No.11

Effective Algorithms for
Sequential Pattern Mining

Zhenglu YANG


 Yitong WANG


Masaru KITSUREGAWA


Sequential pattern mining is very important because it
is the basis of many applications. Although there has been
a great deal of effort on sequential pattern mining in
recent years, its performance is still far from satisfactory
because of two main challenges: large search spaces and
the ineffectiveness in handling dense data sets. To offer a
solution to the above challenges, we have proposed a
series of novel algorithms, called the LAst Position
INduction (LAPIN) sequential pattern mining, which is
based on the simple idea that the last position of an item,
α , is the key to judging whether or not a frequent
k-length sequential pattern can be extended to be a
frequent (k+1)-length pattern by appending the item α

to it. LAPIN can largely reduce the search space during
the mining process, and is very effective in mining dense
data sets. Our experimental data and performance
studies show that LAPIN outperforms PrefixSpan by up
to an order of magnitude on long pattern dense data sets.

1. Introduction
Sequential pattern mining, which extracts frequent

subsequences from a sequence database, has attracted a

great deal of interest during the recent surge in data

mining research because it is the basis of many

applications, such as customer behavior analysis, stock

trend prediction, and DNA sequence analysis.

The sequential mining problem was first introduced in

[4]. From then on, much work has been carried out on mining

frequent patterns, as for example, in [1][2][3][5].

However, all of these works suffer from the problems of

having a large search space and the ineffectiveness in

handling dense data sets. In this work, we propose a new

strategy to reduce the space necessary to be searched.

Instead of searching the entire projected database for

each item, as PrefixSpan [2] does, we only search a small

portion of the database by recording the last position

of each item in each sequence. Because support counting

is usually the most costly step in sequential pattern

mining, the Last Position INduction (LAPIN) technique can

 Student Member Institute of Industrial Science, the
University of Tokyo
yangzl@tkl.iis.u-tokyo.ac.jp
Computer Science Department, Fudan Univerisy, China
yitongw@fudan.edu.cn
 Regular Member Institute of Industrial Science, the
University of Tokyo
kitsure@tkl.iis.u-tokyo.ac.jp

Table 1: Sequence Database

SID Sequence

10 ac(bc)d(abc)ad

20 b(cd)ac(bd)

30 d(bc)(ac)(cd)

improve the performance greatly by avoiding cost scanning

and comparisons using a pre-constructed table in bit

vector format.

 Let our running database be the sequence database S
shown in Table 1 with min_support = 2. We can see that

the set of items in the database is {a,b,c,d}. The length

of the second sequence is equal to 7. A 2-sequence<ac>

is contained in the sequence 10, 20, and 30, respectively,

and its support is equal to 3. Therefore, <ac> is a

frequent pattern.

1.1 Overview of Our Algorithm

Discovering (k+1)-length frequent patterns. For any time

series database, the last position of an item is the key

used to judge whether or not the item can be appended to

a given prefix (k-length) sequence (assumed to be s). For
example, in a sequence, if the last position of item α

is smaller than, or equal to, the position of the last

item in s, then item α cannot be appended to s as a
(k+1)-length sequence extension in the same sequence.

Example 1. When scanning the database in Table 1 for the

first time, we obtain Table 2, which is a list of the last

positions of the 1-length frequent sequences in ascending

order. At the same time, we can obtain Table 3, which is

a list of the last positions of the frequent 2-length IE
sequences in ascending order. Suppose that we have a

prefix frequent sequence <a>, and its positions in Table

1 are 10:1, 20:3, 30:3, where sid:eid represents the

sequence ID and the element ID. Then, we check Table 2

to obtain the first indices whose positions are larger

than <a>'s, resulting in 10:1, 20:2, 30:3, i.e., (10:blast
= 5, 20:clast = 4, and 30:clast = 4). We start from these

indices to the end of each sequence, and increment the

support of each passed item, resulting in <a>:1, :2,

<c>:3, and <d>:3, from which, we can determine that <ab>,

<ac> and<ad> are the frequent patterns. The I-Step

methodology is similar to the S-Step methodology, with

the only difference being that, when constructing the

mapping table, I-Step maps the specific position to the

index whose position is equal to or larger than the

position in Table 3. To determine the itemset extension

pattern of the prefix sequence <a>, we obtain its mapped

indices in Table 3, which are 10:1, 20:2, and 30:2. Then,

we start from these indices to the end of each sequence,

and increment the support of each passed item, resulting

in <(ab)>:1, and<(ac)>:2. We can also obtain the support

of the 3-length sequences <a(bc)>:1, <a(bd)>:1, and

<a(cd)>:1, which is similar to the bi-level strategy of

PrefixSpan, but we avoid scanning the entire projected

database.

論文 DBSJ Letters Vol.5, No.1

――――――――――――――――――――――――――――――――――――

日本データベース学会 Letters Vol.5, No.12

 Table 2: SE Item Last Position List
SID Last Position of SE Item

10 blast=5 clast=5 alast=6 dlast=7

20 alast=3 clast=4 blast=5 dlast=5

30 blast=2 alast=3 clast=4 dlast=4

 Table 3: IE Item Last Position List
SID Last Position of IE Item

10 (ab)last=5 (ac)last=5 (bc)last=5

20 (cd)last=2 (bd)last=5

30 (bc)last=2 (ac)last=3 (cd)last=4

From the above example, we can show that the main

difference between LAPIN and previous works is the scope

of the search space. PrefixSpan scans the entire

projected database to find the frequent pattern. SPADE

temporally joins the entire ID-List of the candidates to

obtain the frequent pattern of next layer. LAPIN can

obtain the same result by scanning only part of the search

space of PrefixSpan and SPADE, which indeed, are the last

positions of the items. Let D be the average number of

customers (i.e., sequences) in the projected DB, L be

the average sequence length in the projected DB, N be

the average total number of the distinct items in the

projected DB, and m be the distinct item recurrence rate

or density in the projected DB. Then m= L / N (m≥1), and

the relationship between the runtime of PrefixSpan (Tps)

and the runtime of LAPIN (Tlapin) in the support counting

part is

Tps/Tlapin=(D X L)/(D X N)=m (1).

Because support counting is usually the most costly

step in the entire mining process, Eq. (1) illustrates

the main reason why our LAPIN algorithm is faster than

PrefixSpan for dense data sets, whose m (density) can be
very high.

The remainder of this paper is organized as follows.

In Section 2, we introduce a series of LAPIN algorithms

in detail. Our experimental results and performance

analysis are reported in Section 3. We conclude the paper

in Section 4.

2. LAPIN: Design and Implementation
In this section, we describe the LAPIN algorithms in

detail. We use a lexicographic tree [1] as the search path

of LAPIN and adopt a lexicographic order [1], which

employs the Depth First Search (DFS) strategy. The pseudo

code of LAPIN is shown in Fig. 1.

As Example 1 in Section 1.1 shows, the I-Step

methodology is similar to the S-Step methodology in LAPIN.

We will first describe the S-Step process. In Step 1, by

scanning the DB once, we obtain the SE position list table
and all the 1-length frequent patterns. Based on the last

element in each position list, we sort and construct the

SE item-last-position list in ascending order, as shown
in Table 2.

In function Gen_Pattern, to find the prefix border
position set of k-length α (Step 4), we first obtain the

Figure 1. LAPIN Algorithm pseudo code

position list of the last item ofα, and then perform a

binary search in the list for the (k-1)-length prefix

border position. For S-Step, we look for the first
position that is larger than the (k-1)-length prefix

border position.

Step 5, shown in Fig. 1, is used to find the frequent

SE (k+1)-length pattern based on the frequent k-length

pattern and the 1-length candidate items. Step 5 can be

justified in [6]. Commonly, support counting is the most

time consuming part in the entire mining process. Here,

we face a problem. "Where do the appended 1-length

candidate items come from?" We can test each candidate

item in the local candidate item list (LCI-oriented),
which is similar to the method used in SPADE [3]. Another

choice is to test the candidate item in the projected DB,

just as PrefixSpan [2] does (Suffix-oriented). The
correctness of these methods was discussed in [2] and [3],

respectively.

We find that LCI-oriented and Suffix-oriented have
their own advantages for different types of data sets [6].

Based on this discovery, we propose two algorithms

categorized into two classes. One class is LCI-oriented,
LAPIN_LCI, and the other class is Suffix-oriented, LAPIN
_Suffix.

2.1 LAPIN LCI
LAPIN_LCI tests each item which is in the local candidate

item list. In each customer sequence, it directly judges

whether an item can be appended to the prefix sequence

or not by comparing this item's last position with the

prefix border position. Increment the support value of

the candidate item by 1 if the candidate item's last

position is larger than the prefix border position. As

an optimization, we use bitmap strategy to avoid such

comparison process. A pre-constructed table,

論文 DBSJ Letters Vol.5, No.1

――――――――――――――――――――――――――――――――――――

日本データベース学会 Letters Vol.5, No.13

Figure 2. Finding the SE frequent patterns using LAPIN_LCI

Figure 3. Finding the SE frequent patterns using LAPIN_Suffix

named ITEM_IS_EXIST_TABLE is constructed while first

scanning to record the last position information. In the

table, we use a bit vector to represent all the 1-length

frequent items existing for a specific position. To

accumulate the candidate sequence's support, we only need

to check this table, and add the corresponding item's

vector value, thus avoiding the comparison process.

Space Optimization of LAPIN_LCI. We find that only part

of the table is useful, and that most is not. The useful

information is stored in some key positions' lines, which

indicate the last positions of the 1-length frequent

items (except the last one). Hence, we only store these

vectors. The pseudo code of LAPIN_LCI is shown in Fig.

2. Please refer [6] for detail.

Example 2. Let us assume that we have obtained the

prefix border position set of the pattern <a> in Table

1, i.e., (1,3,3). We also know that the local candidate
item list is (a, b, c, d). Then, we can obtain the bit

vector mapped from the specific position, which are 1111,

0111, and 0011 with respect to the pattern <a>'s prefix

border position set, (1,3,3), and accumulate them,

resulting in <a>:1, :2, <c>:3, and <d>:3. From here,

we can deduce that <ab>, <ac>, and <ad> are frequent

patterns.

2.2 LAPIN Suffix
When the average size of the candidate item list is larger

than the average size of the suffix, then scanning in the

suffix to count the support of the (k+1)-length sequences

is better than scanning in the local candidate item list.

Therefore, we propose a new algorithm, LAPIN_Suffix. In

the item-last-position list, i.e., Table 2, we look for

the first element whose last position is larger than the

prefix border position. Then, we go to the end of this

list and increment each passed item's support. Obviously,

we only pass and count once for each different item in

Figure 4. The different sizes of the data sets

the suffix (projected database). The pseudo code of

LAPIN_Suffix is shown in Fig. 3. Example 1 in Section 1.1

describes the flow of LAPIN_Suffix.

Note that in LAPIN, the I-Step is similar to the S-Step.
Due to limited space, we do not describe it here.

Interested readers can refer [6] for detail.

3. Performance Study
We perform the experiments using a 1.6 GHz Intel

Pentium(R)M PC machine with a 1 G memory, running WinXP.

We conducted experiments on both synthetic and real

datasets. However, due to space limitation, we will only

report results on synthetic data here.

The synthetic data sets are generated by an IBM data

generator [4]. We first test on different sized data sets

for various minimum supports. The statistics of these

data sets is shown in Fig. 4(a).

PrefixSpan vs. LAPIN. We define search space as in

PrefixSpan, to be the size of the projected DB, denoted

as Sps, and in LAPIN the sum of the number of different

items for each sequences in the suffix (LAPIN_Suffix) or

in the local candidate item list (LAPIN_LCI), denoted as

Slapin. Fig. 4(b) and Fig. 4(c) show the running times and

the searched space comparison between PrefixSpan and

LAPIN and clearly illustrate that PrefixSpan is slower

than LAPIN using the medium data set and the large data

set. This is because the searched spaces of the two data

sets in PrefixSpan are much larger than that in LAPIN.

For the small data set, the ineffectiveness of searched

space saving and the initial overhead needed to set up

meant that LAPIN is slower than PrefixSpan. Overall, our

runtime tests show that LAPIN excels at finding the

frequent sequences for many different types of large data

sets.

Eq.(1) in Section 1.1 illustrates the relationship

between the runtime of PrefixSpan and that of LAPIN in

the support counting part, which also approximately

expresses the relationship between the entire mining time

論文 DBSJ Letters Vol.5, No.1

――――――――――――――――――――――――――――――――――――

日本データベース学会 Letters Vol.5, No.14

Figure 5. Varying the parameters of the data sets

of PrefixSpan and that of LAPIN because support counting

is usually the most costly step in the entire mining

process. Eq.(1) illustrates that, the higher the value

of m is, the faster LAPIN becomes compared to PrefixSpan.

The experimental data shown in Fig. 4(c) and Fig. 4(c)

is in accordance with our theoretical analysis.

LAPIN_Suffix vs. LAPIN_LCI. The main difference of

LAPIN_Suffix and LAPIN_LCI is in the support counting

phase: LAPIN_Suffix searches in the suffix, whereas

LAPIN_LCI searches in the local candidate item list. Let

mSuffix be the distinct item recurrence rate of the

projected DB, mLCI be the distinct item recurrence rate

of the local candidate item list. The relationship

between the entire mining time of LAPI_Suffix (TSuffix) and

that of LAPIN_LCI (TLCI) is as

TSuffix/TLCI ≈ mLCI/mSuffix (2).

Eq.(2) is in accordance with the experimental data shown

in Fig. 4(b) and Fig. 4(c). LAPIN_Suffix is faster than

LAPIN_LCI for small data sets because the former one

searches smaller spaces than the latter one does. However,

for medium and large dense data sets, LAPIN_LCI is faster

than LAPIN_Suffix because the situation is reversed.

Memory usage analysis. As Fig. 4(d) shows, LAPIN_Suffix

expends almost the same amount of memory as PrefixSpan

does, except for small data sets because LAPIN_Suffix

uses more memory than PrefixSpan to store initialization

information. LAPIN_LCI, because it needs to store the

items' last position information in bit vector format,

requires more space than LAPIN_Suffix and PrefixSpan do.

Let C' be the average number of the key positions per
customer. LAPIN_LCI requires (DC'N)/8 bytes to store the

last position information for all the items. From Fig.

4, it can be seen that there is a trade-off between

LAPIN_Suffix and LAPIN_LCI in terms of speed and space.

Different parameters analysis. Please refer [4] for the

meaning of the different parameters. As Fig. 5 shows, when

C increases, T increases, and N decreases, the
performance of LAPIN improves even more relative to

PrefixSpan. Let us consider Eq.(1), m= L / N =C T / N ,

where C is the average number of transactions per

customer in the projected DB, and T is the average

number of items per transaction in the projected DB. On

keeping the other parameters constant, increasing C, T
and decreasing N, respectively, will result in an
increase in the distinct item recurrence rate, m, which
is in accordance with the experimental data shown in Fig.

5. With regards to the other parameters, the discrepancy

between the running times does not change significantly

because these parameters do not contribute to the

variance of the distinct item recurrence rate, m. For
LAPIN_LCI and LAPIN_Suffix, the former is always the

fastest because its searched space is less than that of

the latter.

4. Conclusion
In this work, we have proposed novel algorithms for

efficient sequential pattern mining. LAPIN can reduce

searching significantly by only scanning a small portion

of the projected database or the ID-List, as well as

handling dense data sets efficiently. By thorough

experiments and evaluations, we have demonstrated that

LAPIN outperforms PrefixSpan by up to an order of

magnitude, which is in accordance with our theoretical

analysis.

[References]
[1] J.Ayres, J.Flannick, J.Gehrke, and T.Yiu, “Sequential Pattern Mining

using A Bitmap Representation,” In KDD, pp. 429-435, 2002.
[2] J.Pei, J.Han, M.A.Behzad, and H.Pinto, “PrefixSpan:Mining Sequential

Patterns Efficiently by Prefix-Projected Pattern Growth,”In ICDE, 2001.
[3] M. J. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent

Sequences,” In Machine Learning, Vol. 40, pp. 31-60, 2001.
[4] R. Agrawal and R. Srikant, “Mining sequential patterns,” In ICDE, pp.

3-14, 1995.
[5] R.Srikant and R.Agrawal,“Mining sequential patterns: Generalizations
and performance improvements,” In EDBT, pp. 13-17, 1996.
[6] Z. Yang, Y. Wang, and M. Kitsuregawa. LAPIN: Effective Sequential

Pattern Mining Algorithms by Last Position Induction. Technical Report,
Tokyo University, 2005.
http://www.tkl.iis.u-tokyo.ac.jp/»yangzl/Docu-ment/LAPIN.pdf

Zhenglu YANG
Ph.D student of Graduate School of Information Science
and Technology, the University of Tokyo. He received the
Master degree in the above graduate school. His research
interests include sequence mining and data mining.
Yitong WANG
Associate professor at Fudan University, China. She
received Ph.D degree in computer science in 1999 from the
above university. Her research interests include data
clustering and data mining.
Masaru KITSUREGAWA
Professor and the director of center for information at
Institute of Industrial Science, the University of Tokyo.
He received the Ph.D degree in information engineering in
1983 from the University of Tokyo. His research interests
include parallel processing and database engineering. He
is a member of steering committee of IEEE ICDE, PAKDD
and WAIM, and has been a trustee of the VLDB
Endowment. He was the chair of data engineering special
interest group of Institute of Electronic, Information,
Communication, Engineering, Japan, the chair of ACM SIGMOD
Japan, Chapter. He is currently a trustee of DBSJ.

