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Abstract. Periodic Frequent patterns (PFPs) are an important class
of regularities that exist in a transactional database. In the literature,
pattern growth-based approaches to mine PFPs have be proposed by
considering a single machine. In this paper, we propose a Map-Reduce
framework to mine PFPs by considering multiple machines. We have
proposed a parallel algorithm by including the step of distributing trans-
actional identifiers among the machines. Further, the notion of partition
summary has been proposed to reduce the amount of data shuffled among
the machines. Experiments on Apache Spark’s distributed environment
show that the proposed approach speeds up with the increase in number
of machines and the notion of partition summary significantly reduces
the amount of data shuffled among the machines.

Keywords: Data mining · Periodic frequent pattern mining · Map-
Reduce

1 Introduction

Periodic frequent pattern (PFP) mining extracts regularities from transactional
databases (TDB). A PFP is an itemset which is both frequent and periodic. For
example, PFP mining extracts the knowledge about how regularly a set of items
are being purchased by the customers from the super-market TDB. An example
of PFP is {Bread,Butter} [support = 10%, periodicity = 1h]. The preceding
pattern demonstrates that both ‘Bread’ and ‘Butter’ are purchased in 10% of
the transactions, and the maximum time interval between any two consecutive
purchases containing both of these items is no more than an hour. The predictive
behavior of PFPs could be used to improve the performance of several data min-
ing based applications in the areas of customer relation management, inventory
management, recommendation systems and so on.

In the literature, Tanbeer et al. [1] proposed a pattern-growth-based algo-
rithm by considering a single machine. Several improvements to the approach
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proposed in [1] have been investigated [2–4] by considering a single machine.
A Map-Reduced framework to exploit the power of thousands of machines is
proposed in [5]. Encouraged by power of Map-Reduce paradigm, researchers are
making efforts to propose parallel algorithms under Map-Reduce framework. A
Map-Reduce based parallel FP growth approach to extract frequent patterns has
been proposed in [6]. In this paper, we proposed a parallel PFP mining approach
under Map-Reduce framework.

The PFP mining approach requires the processing of transaction identifiers
(tids) for computing the periodicity. We have proposed a parallel approach which
contains two Map-Reduce phases similar to [6]. In each phase the step to manage
tids is integrated. Further, we have developed an improved approach by propos-
ing the notion of partition summary in which instead of processing tid-list, the
corresponding summary information is processed. Experimental results on three
real-world datasets show that the proposed approach speeds up with the increase
in number of machines and the notion of partition summary reduces the amount
of data shuffled.

The rest of the paper is organized as follows. Section 2 discusses background.
Proposed approach is discussed in Sect. 3. Performance evaluation is reported in
Sect. 4. Finally, Sect. 5 concludes the paper.

2 Background

2.1 Mining Periodic-Frequent Patterns on a Single Machine

Model of PFPs [1]: Let I = {i1, i2, · · · , in}, 1 ≤ n, be a set of items. A set
X = {ij , · · · , ik} ⊆ I is called a pattern. A transaction t = (tid, Y ) is a tuple,
where tid represents a TID and Y is a pattern. A transactional database (TDB)
over I is a set of transactions, i.e., TDB = {t1, t2, · · · , tm}, m = |TDB|. If
X ⊆ Y , it is said that t contains X and such tid is denoted as tidXj . Let
TIDX = {tidXj , · · · , tidXk }, be the set of all tids where X occurs in TDB. The
support of a pattern X is the number of transactions containing X in TDB,
denoted as Sup(X). Therefore, Sup(X) = |TIDX |. Let tidXi and tidXj be two
consecutive tids where X appeared in TDB. The period of a pattern X is the
number of transactions between tidXi and tidXj . Let PX = {pX1 , pX2 , · · · , pXr },
r = Sup(X) + 1, be the complete set of periods of X in TDB. The
periodicity of a pattern X is the maximum difference between any two adja-
cent occurrences of X, denoted as Per(X) = max(pX1 , pX2 , · · · , pXr ). A pattern
X is a PFP if Sup(X) ≥ minSup and Per(X) ≤ maxPer, where minSup
and maxPer represent the user-specified thresholds on minimum support and
maximum periodicity respectively.

The existing periodic pattern growth (PF-growth) algorithm [1] accepts a
TDB, minSup and maxPer as inputs and outputs a complete set of PFPs. The
structure of periodic-frequent pattern tree (PF-tree) consists of a PF-list and a
prefix tree. Here, the prefix tree of PF-tree explicitly maintains the tids for each
occurrence of the pattern only at the tail-node of every branch unlike FP-tree
which maintains support in every node. The algorithm consists of two database
scans.
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(1) Finding one sized PFPs: In the first database scan, the PF-growth scans
the entire database and discovers 1-patterns by computing support and period-
icity values for each item. The final PF-list is generated after pruning the items
that have failed to satisfy the minSup and maxPer constraints and sorting the
items in the increasing order of support.

(2) Construction of PF-tree: In the second database scan, the PF-tree is con-
structed by inserting the transactions according to PF-list order with tail-node
carrying the tid. After completing two database scans PF-tree is constructed.

Mining of PFPs: The mining of PFPs start by constructing prefix tree (PTi)
for the last item i in the PF-list as an initial suffix item. For each item j in PTi,
all of its nodes’ tid-list is aggregated to derive the tid-list of the pattern ij. If ij is
a PFP, then j is considered to be periodic-frequent in PTi. The conditional tree
is constructed by choosing every periodic-frequent item j in PTi, and is mined
recursively to discover the patterns. After finding all PFPs for a suffix item i,
it is pruned from the original PF-tree and the corresponding nodes’ tid-lists are
pushed to their parent nodes. The above steps are repeated until the PF-list
becomes NULL.

2.2 Mining PFPs with Period Summary

The concept of period summary [4] was introduced to mine PFPs on a single
machine, where only the summary information is stored instead of the tids in
the tail-node. It has been shown that the notion of period summary results in
lower memory consumption.

2.3 Map-Reduce Framework

Map-Reduce [5] framework has been proposed to enable the processing of large
datasets on a large cluster of commodity machines. Users specify the problem as
a sequence of Map-Reduce steps. In each Map-Reduce step, the Map function
processes key-value pairs and the reduce function merges all the values associated
values with the same key.

2.4 Parallel FP-growth

Li et al. [6] proposed parallel FP-growth to extract frequent patterns using two
Map-Reduce phases. The first phase constructs the F-list, which contains 1-
sized frequent patterns. For each transaction, the mapper outputs key-value
pairs as 〈item, 1〉 and reducer sums up all the ones for each item to count the
corresponding support. The second phase constructs independent local FP-trees
on different machines. For each transaction, all the sub-patterns are generated
and mapper outputs the key-value pairs as 〈partition-id,sub-pattern〉 and reducer
aggregates the transactions and construct local FP-trees. Frequent patterns are
extracted at each worker by mining the local FP-trees.
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Table 1. A running example of a transactional database

tid Items tid Items tid Items tid Items tid Items

1 bcdf 4 abde 7 acdef 10 cd 13 de

2 abdef 5 e 8 abc 11 bcde 14 ae

3 b 6 bc 9 bf 12 abc 15 e

3 Proposed Approaches

3.1 Parallel Periodic Frequent Pattern Growth (PPF-growth)

Both FP-growth (Sect. 2.4) and PF-growth (Sect. 2.1) mining are recursive
pattern-growth approaches. The difference comes in the tree structure where
additional tid information is processed which is required for computing the peri-
odicity in PF-growth. The proposed approach consists of initial step, two Map-
Reduce phases and the mining step.

(1) Initialization: Initially, the TDB is segmented into multiple partitions. As
an example, consider Table 1 as a TDB which is divided into two partitions with
minSup = 5 and maxPer = 4. Here, 0th and 1st partitions contain transactions
with tids between 1–8 and 9–15 respectively.

(2) Map-Reduce phase 1 (first database scan): The phase is depicted
in Fig. 1(a). In this step, parallel periodic frequent pattern list (PPF-list) is
constructed by calculating the support and periodicity values for each item. The
Map-Reduce steps are as follows.

Map: For each item in a transaction, it outputs key-value pairs where key is the
item and value is the tid of the current transaction (〈item, tid〉).
Reduce: It groups all the tids of each item in a tid-list (Algorithm 1). The tid-
list is sorted and then its support and periodicity are computed (Fig. 2(a)–(c)).

The final PPF-list is obtained by filtering the items which do not satisfy the
minSup and maxPer thresholds. After the master machine obtains the PPF-
list, the items are sorted in decreasing order of their supports and are assigned
a rank (to simplify the distribution of transactions using a hash function). The
most frequent item is assigned a rank of 0, the second most frequent item is
assigned a rank of 1 and so on.

(3) Map-Reduce phase 2 (second database scan): The phase is depicted
in Fig. 1(b). In this step, parallel periodic frequent pattern trees (PPF-trees) are
constructed on each machine. The Map-Reduce steps are as follows.

Map: For each transaction, the items which are not present in PPF-list are
filtered, translated into their ranks and are sorted in ascending order. Then all the
sub-patterns (n sub-patterns will be generated) are extracted and are assigned
to a partition based on a simple hash function rank[item]%numOfPartitions.
Here, numOfPartitions is the number of partitions available and item is the
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Fig. 1. Two phases of parallel periodic frequent pattern mining

Algorithm 1. PPF-listConstruction (TDB)
Procedure: Map(key = null, value = TDBi)

for each transaction tcur ∈ TDBi do
for each item itintcur do

Output (it, tid) // tid is the current transaction id
Procedure: Reduce(key = it, value = TID-list)

Sort TID-list and initialize idl = 0, sup = 0 and per = 0
for each tid ∈ TID-list do

Set sup+ = 1, per = max(per, tid − idl) and idl = tid

last item in a sub-pattern. The hash function gives a partition-id for which the
pattern is responsible for further computation. Each sub-pattern is outputted as
a key-value pair, with key as the partition-id and value as a tuple of sub-pattern
and current tid (〈partition-id,(sub-pattern, tid)〉).
Reduce: Independent local PPF-trees are constructed by inserting all the sub-
patterns into the tree in the same order as the PPF-list with tid stored only in
the tail-node of the branch. The process of tree construction (Algorithm 2) is
the same as the construction of PF-tree [1]. Trees constructed on two different
machines are shown in Fig. 2(d), (e).

(4) Mining of PPF-trees: Note that for any suffix item, the complete condi-
tional tree information is available in the corresponding machine. So, during con-
ditional pattern building, communication is not required between the machines
and PFPs can be mined in parallel. Parallel mining of PFPs is similar to the

TID(a)={2,4,7,8,12,14}

TID(b)={1,2,3,4,6,8,9,11,12}

TID(c)={1,6,7,8,10,11,12}

TID(d)={1,2,4,7,10,11,13}

TID(e)={2,4,5,7,11,13,14,15}

TID(f)={1,2,7,9}

Sup(a)=6

Sup(b)=9

Sup(c)=7

Sup(d)=7

Sup(e)=8

Sup(f)=4

Per(a)=4
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{}
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Fig. 2. Construction of PPF-list and prefix tree (a)–(c) Finding support and periodicity
for each item (d) tree at partition-id 0 (e) tree at partition-id 1
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mining process of PF-growth but worker machine processes only for those suffix
items for which it is responsible for computation. This is checked by using the
hash function rank[it]%numOfPartitions. Here, it is the chosen suffix item.
Mining for a suffix item (in increasing order of support) is done only if the out-
put of hash function is equal to the partition-id of that machine. In the existing
approach, the mining process of ‘d’ occurs only after the mining process of ‘a’
is completed. Whereas in the proposed approach, both the processes happen in
parallel due to which the time taken to extract the PFPs is reduced.

Algorithm 2. PPF-treeConstructionMining (TDB, PPF-list)
Procedure: Map(key = null, value = TDBi) // TDBi is the segment of TDB

for each transaction tcur ∈ TDBi do
filter and sort the elements in tcur which are not in PPF-list
for j = (|tcur| − 1) to 0 do

partition-id = getPartition(tcur[j])
if H does not contain partition-id then

Output(partition-id; (tcur[0 : j], tid) ) // tid is the current trans-
action id

Procedure: Reduce(key = partition-id, value = transactions)
Initialize PPF-tree, T
for tcur in transactions do

for it in tcur do
if T does not have child it then

Create a new child node it and link it with the parent
Traverse to the child it

Add the current transaction id to the tid-list at the tail node of the
transaction tcur

Procedure: Map(key = partition-id, value = PPF -tree) // Parallel Mining
for each suffix item i in PPF-list do

if current partition-id is responsible for item i then
Generate PTi and CTi and mine recursively in CTi for patterns with

suffix i

3.2 PPF-growth Using Partition Summary

A straight-forward approach for the first phase was discussed where large tid-
lists are shuffled across machines. In [4], the notion of period summary is used
to reduce the memory consumption by storing the interval information instead
of tids in the tail-node of the PF-tree. Similarly, instead of tid-list for each item,
only interval information can be processed in a partition. The summarized inter-
val information concerning to an item for the given partition is called partition
summary. We proposed an improved Map-Reduce based PF mining approach
based on partition summary, which is defined as follows.

Definition 1. A partition summary (PS) captures the interval information
of the item occurrences, the periodicity and support of respective item within
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that interval. That is, PS = 〈tidi, tidj , per, sup〉, where tidi and tidj , represents
the first and last tids of that interval respectively, per is the periodicity and sup
is the support of a pattern within the interval whose tids are within tidi and tidj .

The approach with PS is as follows: With PS, the phase 1 of PPF-growth pro-
posed in the preceding section is modified. The map function is the same but
instead of a reduce function, the combine function is applied which consists of
three steps: initialization, intra-partition and inter-partition merging steps. Dur-
ing the initialization step, PS = 〈0, 0, 0, 0〉 is initialized for each item. During
the intra-partition merging step, the interval information in PS is updated for
each item by iterating over its tids as explained in Algorithm 3. All the PS for
an item are merged into one PS during inter-partition merging step as explained
in Algorithm 3. Figure 3(a)–(c) shows the construction of PPF-list after scanning
first transaction, second transaction and the entire shard of data assigned to par-
tition 1. Similarly, Fig. 3(d)–(f) shows the construction of PPF-list in partition 2.
Figure 3(g) represents the final PPF-list constructed by merging the PPF-lists
built on partition 1 and 2. The elements striked off are the ones which did not
satisfy minSup and maxPer constraints.

Algorithm 3. PPF-list with Partition Summaries
Procedure: Combine(key = it, value = TID-list)

Initialize PS = 〈0, 0, 0, 0〉 // (first tid, last tid, periodicity, support)
intra-partition: generatingSummaries (PS, TID-list)

PS[0] = TID-list[0]
for each tid ∈ TID-list do

PS[2] = max(PS[2], tid − PS[1]), PS[1] = tid and PS[3]+ = 1
inter-partition: mergingSummaries (PS1, PS2, · · · , PS3)

Group all PSi into PS-List
Sort PS-List based on first tid
Final-PS = <PS-List[0][0] , 0, 0, 0 >
for each PS ∈ PS-List do

Final-PS[2] = max(Final-PS[2], PS[2], PS[0]−Final-PS[1])
Final-PS[1] = PS[1] and Final-PS[3] + = PS[3]

return Final-PS
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4 Performance Evaluation

We have conducted the experiments to evaluate the speed up performance of
the proposed approach. The algorithm is written in Python using Apache Spark
architecture and the experiments are conducted on Amazon Elastic Map-Reduce
(EMR) cluster with each machine of 8 GB memory. The runtime in the experi-
ments specifies the total execution time of a Spark job. We employed 3 real-world
datasets for conducting experiments, Retail store [7] (88,162 transactions with
16,470 items), Twitter dataset [2] (43,200 transactions with 44,201 items) and
Online store [8] (541,909 transactions with 2,603 items).

The experiments are conducted by increasing the number of machines from 1
to 16 against the total time consumed. Figure 4(a) shows variation of total time
consumed with increase in number of machines for the Retail store dataset with
minSup = 0.05% and maxPer = 10%. As the number of machines is increased,
the total time consumed decreases rapidly due to parallel computation. This
shows that it is possible to improve performance with parallel computation. Here,
the time taken for 1 machine is 282 s which is reduced to 72 s for 8 machines.
The speedup can be computed as (282/72)/8 = 48.95%. However, the algorithm
reaches a saturation point for all the datsets and is obtained when 16 machines
are used.
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Fig. 4. Time Consumed and corresponding amount of data shuffled vs number of
machines for different datasets at different minSup and maxPer values

Figure 4(b) shows the results for the twitter dataset by fixing minSup = 65%
and maxPer = 10%. It can be noticed it is not possible to extract patterns with
one or two machines as it is a dense dataset and the main memory is not sufficient
to carry out recursive computation of patterns from PPF-tree. The Map-Reduce
model enables the extraction of patterns by splitting the task among multiple
machines and processing in parallel. Figure 4(c) also shows a similar performance
for Online store dataset.
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Results with Partition Summary: Figure 4(d)–(f) shows how the amount
of data shuffled among the machines varies with and without using the notion
of PS. It can be observed that there is a significant reduction of data shuffled
with PS for all datasets. Figure 4(a)–(c) shows the corresponding improvement
in total time consumed with PS because of the reduced amount of data shuffled.
Figure 4(a) shows no improvement in time (overlapping lines) as it is a sparse
dataset (Retail) and optimization using PS did not have much effect. Overall, the
reason for minor improvement with PS is that in the experimental environment
of Amazon EMR the data transfer speeds among the machines is very fast. So,
the influence of reduction in data shuffled is not significant. However, we believe
that in the slow LAN, and WAN environments, the effect of reduction in data
shuffled will lead to significant improvement in total time consumed.

5 Conclusion

In this paper, we presented a parallel periodic frequent pattern extraction
approach with Map-Reduce. Further, the notion of partition summary was intro-
duced to reduce the amount of data shuffled among the machines. Experi-
ments on massive datasets show that the proposed algorithm speeds up with
the increase in number of machines. The modern e-Commerce applications and
social network sites which normally collect huge datasets could exploit the pro-
posed Map-Reduce based framework to extract knowledge of periodic-frequent
patterns for improving the efficiency. As part of future work, we will develop
algorithms for balanced load distribution for mining PFPs in parallel.
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