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Abstract—Two important factors that affect the performance
of wireless sensor networks (WSNs) are data quality and network
lifetime. This paper exploits the tradeoff between data quality
and network lifetime to improve data collection precision while
the network lifetime is adapted. The problem is to minimize
the total error bound for approximate data aggregation in
both single-hop and multi-hop WSNs to achieve the adaptive
network lifetime. This problem is formulated as an optimization
problem by combining the changing pattern of sensor readings,
the residual energy of sensor nodes, and the communication
cost from the sensor node to the base station. Our method
is theoretically analyzed and further evaluated by conducting
simulation experiments. To the best of our knowledge, this is the
first study on minimizing the total error bound while achieving
the adaptive network lifetime.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been widely de-
ployed for a number of applications, such as ecosystem
monitoring, surveillance, national security, and wild-fire pre-
vention; thus attracting increasing attention in both academia
and industry. The Sonoma Redwoods sensor network project
[22], which consists of 72 Mica2dot motes placed through
two giant redwood trees in a grove in Sonoma Country, CA,
USA, is such a representative deployment. The biologists at
UC Berkeley are now able to access some data, such as tem-
perature, humidity, and Photo-Synthetically Active Radiation
from many positions under the large redwood canopies. These
data are never before available to the plant biology community.
Figure 1 shows a typical example of a WSN, which consists
of a base station and a number of sensor nodes. The base
station collects the information from the sensor nodes and
transform the collected information into the requested form
to cater for different applications. The sensor nodes, on the
other hand, sense the environmental information and finally

send some sensed information to the base station based on
some data precision 1 requirement. We call the process of this
transformation as data aggregation in this paper.

Fig. 1. Architecture for Wireless Sensor Networks

In a WSN, the base station normally has enough power
supply to fulfil a given task, while the sensor nodes are power-
constrained and are located in the areas that are difficult to

1In this paper, data precision is specified in the form of quantitative error
bounds.
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reach. When a sensor node is out of power, it cannot continue
its mission. Once too many such cases happen, the coverage
loss will be remarkable, making the WSN fail to accomplish
its mission. In this paper we define the time duration that
the WSN fails to accomplish its mission as network lifetime
[1]. In WSNs, data precision and network lifetime are two
tradeoff factors that affect the performance of WSNs. For each
application, the higher the data precision requires, the shorter
the network lifetime is; versus is the same. From the view of
data precision, data aggregation can be classified as exact data
aggregation (EDA) and approximate data aggregation (ADA).
In EDA, each sensor node has to report every information
update to the base station, which requires substantial energy
consumption. While in ADA, each sensor node sends part
of its information updates to the base station given that the
data precision arrives at the desired level. Obviously, it is
desirable to apply EDA for achieving the best data precision.
However, this is generally impractical due to the network
lifetime requirement for the whole network and the energy
limitation for each sensor node. For most of the research
on ADA, the objective is focused on extending the network
lifetime. Though the network lifetime is of great importance
for WSNs, data precision is also very significant for many
applications. In many ecosystem experiments, only the data
in a designated duration are necessary. For example, the
biologists in the Sonoma Redwoods project [22] would like
to receive as much detailed data from the sensor networks as
possible, so that they can try various physical models and test
various hypothesis over the data. In this case, data precision
is the dominant factor given that the network lifetime arrives
the required duration.

The above analysis shows that it is of theoretical and practi-
cal significance to exploit the tradeoff between data precision
and network lifetime for approximate data aggregation in
WSNs to cater for different applications. In this paper we
address the problem of minimizing the total error bound under
the constraint that the predefined network lifetime is achieved.
To the best of our knowledge, this problem has not yet been
studied. The main contributions of this paper are summarized
as follows:

• We address the problem of improving data precision by
minimizing the total error bound under the constraint that
the predefined network lifetime is achieved for approxi-
mate data aggregation in both single-hop and multi-hop
WSNs.

• We formulate this problem as an optimization problem by
combining the changing pattern of sensor readings, the
residual energy of sensor nodes, and the communication
cost from the senor node to the base station.

• We present an optimal solution for the problem, which
is evaluated by extensive simulation experiments. To the
best of our knowledge, this is the first study on studying
data precision optimization while achieving the desirable
network lifetime.

The rest of the paper is organized as follows. In Section II,

we describe models for data aggregation and energy consump-
tion. We propose and analyze solutions for improving data
precision for approximate data aggregation in single-hop and
multi-hop WSNs in sections III and IV, respectively. In Section
V, we describe simulation model and discuss performance
evaluation. Section VI presents related work. Finally, we
summarize our work and conclude this paper in Section VII.

II. MODELS FOR DATA AGGREGATION AND ENERGY

CONSUMPTION

In this paper, we model the process of data aggregation
in WSNs as described in Figure 2 as a spanning tree [11],
[12], in which the information update from a node will be
first transferred to its parent until it arrives at the base station,
i.e., the root of the tree. The set of sensor nodes is denoted
by {s1, s2, · · · , sn} and the base station is denoted by b. The
height of the tree, denoted by h, is defined as the maximal
hops that an information update from a leaf can be transferred
to the base station. In this paper, we study both single-hop
WSNs (i.e., h = 1) and multi-hop WSNs (i.e., h > 1).

Fig. 2. Data Aggregation Model

In this paper, we assume that there is no energy constraint
at the base station. The energy-constrained sensor nodes are
inconvenient to replace; thus, communication is the dominant
way for consuming energy. We denote the energy consumed
by si to transmit and receive an information update by ti and
ri, respectively. The network lifetime, denoted by P , is defined
as the time duration before the first sensor node runs out of
energy. Our analysis can be easily extended to the case in
which the network lifetime is defined as the time duration
before a given number of sensor nodes run out of energy.

We consider approximate data aggregation in this paper. If
the energy of each sensor node is infinite, then the sensor
node can send every information update to the base station to
collect all the information updates. However, the sensor nodes
are energy-constrained, it is impossible, actually not necessary,
for the sensor nodes to send all its information updates to the
base station. Therefore, we set each sensor node si an error
bound, denoted by ei, for deciding whether an information
update from si should be transferred to the base station or
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TABLE I
NOTATION SUMMARY

Notation Description
(s1, s2, · · · , sn) Set of sensor nodes in the network

P Predefined network lifetime
S Sensing rate
vi Value sensed at si

ei Error bound designed to si

ui(·) Precision driven update rate of si

Ui Information update rate sent by si

ti Energy Cost for si to transmit an information update
ri Energy Cost for si to receive an information update
li Left energy at si

not. Let vi denote the value sensed by si. Whenever the sensed
value vi changes to v

′
i, si checks whether v

′
i ∈ [vi−ei, vi+ei]

or not. If v
′
i /∈ [vi − ei, vi + ei], then a new approximation of

vi, i.e., v
′
i, is sent to the base station. Otherwise, there is no

need to transmit the update to the base station. Therefore, both
communication cost and energy consumption are reduced. This
paper considers five aggregation functions, i.e., SUM, AVG,
COUNT, MIN and MAX. As discussed in [16], these functions
can be treated as a collection of SUM or AVG function, which
apply in our case as well. Therefore, we focus our discussion
on the SUM aggregation function in this paper.

The notations used in this paper are described in Table I.

III. PRECISION DECISION IN SINGLE-HOP WSNS

In this section, We investigate the problem of precision
decision in single-hop WSNs, where each sensor sends its
local information directly to the base station. Single-hop
WSNs have a number of advantages [18]. First of all, the
analytical results for single-hop WSNs provide insights on
the analysis for multi-hop WSNs. Second, it is not beneficial
for energy saving to transmit the information sensed at each
sensor to the base station through some intermediate nodes.
Finally, the limitation of sensor designs (e.g., simplex MAC
with limited buffer) may make relaying practically infeasible.
The problem of precision decision in single-hop WSNs is to
determine the minimal error bound for each sensor node such
that the total error bound is minimized given that the network
lifetime is no less than the predefined network lifetime and the
error bound for each sensor node is greater than the predefined
error bound.

Now we begin to formulate the problem. First, we look at
the objective. Obviously, the objective is to minimize the total

error bound, i.e., min
n∑

i=1

ei. Then we look through the con-

straints. The first constraint is that the network lifetime should
be no less than the predefined lifetime. Since the left energy
at si is li and the energy consumption rate of si is ui(ei) · ti,
the expected lifetime of si is given by li

ui(ei)·ti
. Therefore, the

network lifetime is given by min
1≤i≤n

{ li
ui(ei) · si

}. So the first

constraint can be expressed as min
1≤i≤n

{ li
ui(ei) · si

} ≥ P . The

second constrain is that the error bound at each sensor node
should be no more than the predefined error bound, i.e., ei ≤ e
for i = 1, 2, · · · , n. Here, we assign each sensor node the same
error bound. Our analysis can be easily extended to the case
in which the error bounds assigned to each sensor node are
different. Based on the above analysis, we can formulate the
problem as follows:




min
n∑

i=1

ei

s.t. min
1≤1≤n

{ li
ui(ei) · ti } ≥ P

ei ≤ e (i = 1, 2, · · · , n)

(1)

Now we begin to present an optimal solution for (1). For
simplicity, we assume that ui(·) (for i = 1, 2, · · · , n) is
a continuous function with its inverse function denoted by
u−1

i (·). The following theorem gives an optimal solution for
(1).

Theorem 1: An optimal solution for (1) is e∗i =
min{e, u−1

i ( li
P ·ti

)} for i = 1, 2, · · · , n.

Proof: Obviously, min
1≤1≤n

{ li
ui(ei) · ti } ≥ P is equivalent

to li
ui(ei)·ti

≥ P (for i = 1, 2, · · · , n). Since u−1
i is continuous

and non-increasing, we have ei ≤ u−1
i ( li

P ·ti
) (i = 1, 2, · · · , n).

With the constraint ei ≤ e (i = 1, 2, · · · , n), it is easy to

see that
n∑

i=1

e∗i = min
n∑

i=1

ei, where e∗i = min{e, u−1
i ( li

P ·ti
)}.

Hence, the theorem is proven.
In practice, it is difficult to have the exact form of ui(·) due

to the dynamic patterns of sensor readings. Thus, we apply the
adaptive precision location method proposed in [21] to solve
this problem. The key idea is to decide the normalized energy
consumption rate of each sensor node according to historical
sensor readings.

IV. PRECISION DECISION IN MULTI-HOP WSNS

In this section, we investigate the problem of precision
decision in multi-hop WSNs, where each sensor sends its
local information directly to its parent node, i.e., the base
station cannot cover the radio of all the sensor nodes. It
has been shown that in-network aggregation is an important
technique to reduce the network traffic of data collection in
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multi-hop networks [8], [19], [20]. In-network aggregation
has the following benefits. First, it yields more manageable
data streams avoiding overwhelming sources with massive
amounts of information. Second, it performs some filtering
and preprocessing on the data, making the task of further
processing the data less time and resource consuming. Spe-
cially, the sensor nodes are organized as a tree structure with
its root at the base station. On receiving information updates
from its children, each intermediate sensor node aggregates
the information updates before sending them upstream; thus,
the amount of information updates is cut down over the upper-
stream links in the networks. In a spanning tree, ti refers to
the energy cost for si to send an information update to its
parent, and ri refers to the energy cost for si to receive an
information update from one of its child.

Let Ui be the information update rate sent by si to its
parent. Obviously, the information updates sent by si consist
of two parts. One part includes the information updates from
si itself, i.e., ui(ei) and the other part includes the information
updates from the children of si, i.e.,

∑
c∈C(si)

Uc. Since the left

energy at si is li, the expected lifetime of si is given by
li

Ui·ti+

∑
c∈C(si)

Uc · ri

. Therefore, the network lifetime is given

by min{ li

Ui·ti+

∑
c∈C(si)

Uc · ri

}. Therefore, we can formulate

the problem as follows:



min
n∑

i=1

ei

s.t. min{ li

Ui·ti+

∑
c∈C(si)

Uc · ri

} ≥ P

ei ≤ e (i = 1, 2, · · · , n)

(2)

where Ui = 1 − (1−ui(ei))
S ·

∏
c∈C(si)

(1 − Uc

S
) and C(si)is the

set of nodes that are children node of si.
From li

Ui·ti+

∑
c∈C(si)

Uc · ri

≥ P , we can calculate ei as

follows:

ei ≥ u−1
i




S −
S · ti − P · li +

∑
c∈C(si)

Uc · ri

ti ·
∏

c∈C(si)

(1 − Uc

S
)




(3)

Corollary 1: An optimal solution for (2) is calculated as
follows:

e∗i = min




e, u−1
i




S −
S · ti − P · li +

∑
c∈C(si)

Uc · ri

ti ·
∏

c∈C(si)

(1 − Uc

S
)






(4)

The proof of Corollary 1 can be easily obtained based that
of Theorem 1. Based on Corollary 1 and (3), we can obtain
an optimal solution for (2) by the following algorithm.

Algorithm 1: Precision Decision for Multi-Hop WSNs
for i = 1 to n do

if C(si) = φ then
e∗i = min{e, li

ui(ei)·ti
}

else

e∗i = min




e, u−1
i


S −

S·ti−P ·li+
∑

c∈C(si)

Uc · ri

ti·
∏

c∈C(si)

(1 − Uc

S
)







From Algorithm 1, we can see it works as follows: If si

is an intermediate sensor node, it collects the lists of error
bounds, data update rates and energy consumption rates from
all of its children and computes its optimal error bound. If
si is a leaf sensor node, it computes its optimal error bound
directly. Regarding to the time complexity of Algorithm 1, it
can be easily verified that its time complexity is O(n), where
n is the total number of sensor nodes in the network.

V. SIMULATION MODEL AND PERFORMANCE EVALUATION

A. Simulation Model

The simulation is conducted based on ns-2 (version 2.27)
[26] and NRLs sensor network extension [25]. The sensor
nodes send and receive message. For simplicity, we assume
in the simulation that there is no energy consumption when
the sensor is in the sleeping mode. The energy consumption
for sending a message is determined by a cost function:
s · (α + β · dq), where s is the message size, α is a distance-
independent term, β is the coefficient for a distance-dependent
term, q is the component for the distance-dependent term, and
d is the distance of message transmission. In the simulation,
we set α = 40nJ/b, β = 100pJ/b/m2, and q = 2. The energy
consumption for receiving a message is given by s·γ, where γ
is set at 30nJ/b. We set the size of a data update message at 8
bytes, and the size of a refresh message at 4 bytes. The initial
energy budget at each sensor node was set at 0.1 Joule. We
conduct the simulation on a multi-hop network of 100 sensor
nodes. The sensor readings are Poisson distribution with mean
inter-reading time of 1 second. The main metric used in the
performance evaluation is the average error bound, which is
defined as the summation of the error bound set (i.e., the total
error bound) to each sensor node divided by the number of
sensor nodes. The error bound can be specified in a form of
quantity (temperature and humidity for instance).

We include the following schemes in the simulation for the
purpose of performance comparison.

• Uniform Precision Decision (UPD): This scheme allo-
cates each sensor node the same error bound. Obviously,
this scheme does not consider the effect caused by the
changing pattern of sensor readings, the residual energy
of sensor nodes, and the communication cost from the
senor node to the base station.
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• Burden-based Precision Decision (BPD) [16]: This
scheme decides the error bound for each sensor node
according to the objective of minimizing the total com-
munication cost between data sources and the data sink.

• Adaptive Precision Decision (APD) [21]: This scheme
decides the error bound for each sensor node with the
objective of maximizing the network lifetime.

• Optimal Precision Decision (OPD): This scheme is pro-
posed in this paper, which decides the error bound for
each sensor node with the objective of minimizing the
total error bound while achieving the predefined network
lifetime.

B. Performance Evaluation

The first experiment explores the relationship between the
average error bound and network lifetime. As we know, the
frequencies of data updates should be lowered to maintain a
longer network lifetime since data updates consume the limited
power of each senor node. Therefore, the longer the network
lifetime, the larger the average error bound. From Figure 3, we
can see that the average error bound increases for each scheme
as the network lifetime becomes longer. We can also see that
the average error bound decided by our proposed scheme is
lower than the other three schemes for each specific network
lifetime. This can be validated from the optimality of our
scheme, while the other schemes consider this problem from
other points of view. Specifically, the mean improvements of
OPD over UPD, BPD, and APD are 21.3% , 15.3%, and
14.9%, respectively.
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Fig. 3. Average Error Bound vs. Network Lifetime

This second experiment explores the relationship between
the average error bound and energy consumption speed (the
average amount of power consumed per unit time, second for
instance). Figure 4 shows that all schemes tend to have a larger
error bound when energy consumption speed becomes larger
(i.e., ,more data updates are sent to the base station). From the
figure, we can also see that our scheme allocate each sensor
node a lower error bound than other schemes. Specifically, the

average improvements of OPD over UPD, BPD, and APD
are 18.7% , 13.2% , and 11.8% , respectively.
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Fig. 4. Average Error Bound vs. Energy Consumption Speed

This last experiment explores the relationship between the
average error bound and sensing range (the diameter that each
sensor can sense data) for a given network lifetime. In the
simulation, we assume that the sensing ranges for each sensor
node are the same. Figure 5 shows that all schemes have a
larger error bound when the sensing range becomes larger.
Specifically, the average improvements of OPD over UPD,
BPD, and APD are 13.2% , 9.5% , and 8.6% , respectively.
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Fig. 5. Average Error Bound vs. Sensing Range

Comparing the performance of different precision decision
schemes, we can see our proposed scheme significantly outper-
forms the other schemes. In general, data precision measured
by the average error bound decreases with increasing network
lifetime. This is because a higher data precision requires
more data updates, which consumes more energy and leads to
shorter network lifetime. This is also true for the relationship
between the average error bound and the energy consumption
speed, and the average error bound and the sensing range.
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VI. RELATED WORK

As we mentioned previously, data aggregation can be clas-
sified into two categories, i.e., exact data aggregation (EDA)
and approximate data aggregation (ADA). For EDA, each
sensor will send every information update to the base station,
while for ADA, only the information updates that violated the
allocated error bound will be transferred to the base station.
Although EDA can guarantee a very higher data precision [7],
[14], [15], it is not applicable for most of the applications to
transfer all information updates to the base station due to the
energy limitation for each sensor node. Therefore, ADA has
been widely deployed in WSNs [2], [3], [6], [24].

In this paper, we concentrate on ADA. In [5], the authors
presented a precision allocation scheme for data aggregation
based on online estimation of potential gains to reduce the
number of messages in the network. In [9], the authors
developed quality-aware data collection protocols that enable
quality requirements of the queries to be satisfied while
minimizing the energy consumption. In [16], the authors
proposed decides a scheme for determining the error bound
for each sensor node according to the objective of minimizing
the total communication cost between data sources and the
data sink. In [21], the authors proposed optimal solutions
for extending network lifetime for precision-constrained data
aggregation in WSNs. In [23], the authors modeled the prob-
lem of maximizing network lifetime for data aggregation in
WSNs as a multicommodity flow problem and proposed a fast
approximate algorithm. In this paper, we address the problem
of minimizing the total error summation under the constraint
that the predefined network lifetime, which is complementary
to the current research on maximizing network lifetime in
WSNs.

Other inspiring work includes querying approximate data
over distributed caches and streams in database literature.
Olston et al [17] presented a query-driven replica mainte-
nance scheme for approximate data replication. Similarly, in
[10], Kalman Filters were used to reduce the amount of
data communicated in distributed data streams. In [13] the
authors employed piecewise constant approximation schemes
for data compression and prediction. The authors in [4] applied
predictive models to solve the problem of maintaining accurate
quantile summaries over distributed data sources.

VII. CONCLUSIONS

In this paper, we explored the relationship between data
quality and network lifetime by minimizing the total error
bound while achieving desirable network lifetime in both
single-hop and multi-hop WSNs. We proposed optimal so-
lutions for precision decision in terms of network lifetime.
We also conducted simulation experiments to evaluate our
proposed scheme by comparing with existing schemes. The
simulation results show that our scheme significantly outper-
forms other schemes in terms of all the performance metrics.
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[7] P. Floréen, P. Kaski, and J. Kohonen, and P. Orponen. Exact and
Approximate Balanced Data Gathering in Energy-Constrained Sensor
Networks. Theoretical Computer Science, Vol. 344, No. 1, pp. 30-46,
December 2005.

[8] D. Goldin. Faster In-Network Evaluation of Spatial Aggregationin
Sensor Networks. Proc. of ICDE2006, 2006.

[9] Q. Han, S. Mehrotra, and N. Venkatasubramanian. Energy Efficient Data
Collection in Distributed Sensor Environments. Proc. of ICDCS’04, pp.
590-597, March 2004.

[10] A. Jain, E. Chang, and Y.-F.Wang. Adaptive Stream Resource Manage-
ment Using Kalman Filters. Proc. of SIGMOD, 2004.

[11] K. Kalpakis, K. Dasgupta, and P. Namjoshi. Maximum Lifetime Data
Gathering and Aggregation in Wireless Sensor Networks. Proc. of
ICN’02, pp. 685-696, August 2002.

[12] B. Krishnamachari, D. Estrin, and S. Wicker. Modelling Data-Centric
Routing in Wireless Sensor Networks. Proc. of INFOCOM 2002, 2002.

[13] I. Lazaridis and S. Mehrotra. Capturing Sensor-Generated Time Series
with Quality Guarantees. Proc. of ICDE, 2003.

[14] X. Li, Y. J. Kim, R. Govindan, and W. Hong, Multi-Dimensional Range
Queries in Sensor Networks. Proc. of ACM SenSys’03, pp. 63-75,
November 2003.

[15] S. Madden, M. J. Franklin, J. M. Hellerstein, and Wei Hong. The Design
of an Acquisitional Query Processor For Sensor Networks. Proc. of
ACM SIGMOD, pp. 491-502, June 2003.

[16] C. Olston, J. Jiang, and J. Widom. Adaptive Filters for Continuous
Queries over Distributed Data Streams. Proc. of ACM SIGMOD, pp.
563-574, June 2003.

[17] C. Olston, B. Loo, and J.Widom. Adaptive Precision Setting for Cached
Approximate Values. Proc. of ACM SIGMOD, May 2001.

[18] J. Pan, Y. T. Hou, L. Cai, Y. Shi, and S. X. Shen. Topology Control for
Wireless Sensor Networks. Proc. of ACM MobiCom03, pp. 286-299,
September 2003.

[19] M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysanthis. TiNA: A
Scheme for Temporal Coherency-Aware In-Network Aggregation. Proc.
ACM MobiDE’03, pp. 69-76, September 2003.

[20] I. Solis and K. Obraczka. In-Network Aggregation Trade-offs for Data
Collection in Wireless Sensor Networks. International Journal on Sensor
Networks (IJSNet), Vol. 1, No. 2, 2006.

[21] X. Tang and J. Xu. Extending Network Lifetime for Precision-
Constrained Data Aggregation in Wireless Sensor Networks. Proc. of
IEEE INFOCOM 2006, April 2006.

[22] G. Tolle. Sonoma Redwoods Data.
http://www.cs.berkeley.edu/get/sonoma.

[23] Y. Xue, Y. Cui, and K. Nahrstedt. Maximizing Lifetime for Data Ag-
gregation in Wireless Sensor Networks. ACM/Kluwer Mobile Networks
and Applications (MONET), Vol. 10, No. 6, pp. 853-864, December
2005.

[24] X. Yu, S. Mehrotra, N. Venkatasubramanian, and W.
Yang. Approximate Monitoring inWireless Sensor Networks.
http://www.cs.berkeley.edu/get/sonoma, 2005.

[25] NRL’s Sensor Network Extension to ns-2.
http://nrlsensorsim.pf.itd.nrl.navy.mil.

[26] The Network Simulator: ns-2. http://www.isi.edu/nsnam/ns.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 

3166


