Discovering Periodic Patterns in Non-uniform Temporal Databases

R. Uday Kiran^{1(⊠)}, J.N. Venkatesh², Philippe Fournier-Viger³, Masashi Toyoda¹, P. Krishna Reddy², and Masaru Kitsuregawa^{1,4}

¹ Institute of Industrial Science, The University of Tokyo, Tokyo, Japan {uday_rage,toyoda,kitsure}@tkl.iis.u-tokyo.ac.jp

² Kohli Center on Intelligent Systems (KCIS),

International Institute of Information Technology Hyderabad, Hyderabad, India jn.venkatesh@research.iiit.ac.in, pkreddy@iiit.ac.in

³ Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China philfv8@yahoo.com

Abstract. A temporal database is a collection of transactions, ordered by their timestamps. Discovering periodic patterns in temporal databases has numerous applications. However, to the best of our knowledge, no work has considered mining periodic patterns in temporal databases where items have dissimilar support and periodicity, despite that this type of data is very common in real-life. Discovering periodic patterns in such non-uniform temporal databases is challenging. It requires defining (i) an appropriate measure to assess the periodic interestingness of patterns, and (ii) a method to efficiently find all periodic patterns. While a pattern-growth approach can be employed for the second sub-task, the first sub-task has to the best of our knowledge not been addressed. Moreover, how these two tasks are combined has significant implications. In this paper, we address this challenge. We introduce a model to assess the periodic interestingness of patterns in databases having a non-uniform item distribution, which considers that periodic patterns may have different period and minimum number of cyclic repetitions. Moreover, the paper introduces a pattern-growth algorithm to efficiently discover all periodic patterns. Experimental results demonstrate that the proposed algorithm is efficient and the proposed model may be utilized to find prior knowledge about event keywords and their associations in Twitter data.

Keywords: Data mining \cdot Periodic pattern \cdot Non-uniform temporal database

1 Introduction

Temporal databases are commonly used in many domains. A temporal database is a collection of transactions, ordered by their timestamps. A temporal database is said to be non-uniform if it contains items with dissimilar *support*

DOI: 10.1007/978-3-319-57529-2_47

⁴ National Institute of Informatics, Tokyo, Japan

[©] Springer International Publishing AG 2017 J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 604–617, 2017.

Timestamp	Tweets										
1301575750	#Discrimination n demagoguery 4 foreigners, mainly #Asian s by #Japanese in #Sendai. #earthquake #jishin http://htn.to/rhGtmd										
1301575750	shhhhh dont tell @jimcramer El-Erian says recent Japanese earthquake is NOT like Kobe, won't have same V shaped recovery - Reuters #newsmkr										
1301583131	Some people will never be able to go home. They lost their homes in the tsunami. #VOAAsiachat1										
1301583579	Social media had a critical role in Japan during/after the quake/tsunami. Somewhat else can better assess overall than me. #VOAAsiachat1										

Table 1. Some tweets produced during GEJE

and *periodicity*. Non-uniform temporal data is naturally produced in many real-world situations. For instance, disasters such as earthquakes and tsunami happen at irregular time intervals. Twitter data related to these disasters is thus non-uniform. For example, Table 1 shows a part of a temporal database generated from the tweets produced during the Great East Japan Earthquake (GEJE), which occurred on the 11th March 2011.

Discovering patterns in temporal databases is challenging because they not only allow time gaps between consecutive transactions, but also to have multiple transactions with the same timestamp. An important type of patterns that can be extracted from temporal databases is (Partial) periodic patterns. A periodic pattern is something persistent and predictable that appears in a database. Finding periodic patterns is thus useful to understand the data. For example, it was revealed in our present study on Twitter data related to the GEJE that over 80% of the event keywords found by a supervised event detection algorithm [1] can also be discovered as periodic patterns. The proposed study thus may be used as an unsupervised learning technique to generate some prior knowledge about event keywords and their associations in Twitter data.

The task of finding periodic patterns has two important sub-tasks: (i) determining the periodic interestingness of patterns, and (ii) finding all periodic patterns in a given database. While a variation of pattern-growth algorithms could be employed for the second sub-task, the first sub-task is non-trivial because of the following reasons:

- 1. Current periodic pattern models [2–4] do not take into account the information about the temporal occurrences of items in a dataset.
- 2. Since a temporal database allows transactions to share a common timestamp, the periodic interestingness of a pattern has to be determined by taking into account not only its *support*, but also its inter-arrival times in a database. Unfortunately, current measures assess the interestingness of a pattern by only taking its *support* into account. We need to investigate new measure(s) to assess the interestingness of patterns by taking into account both their *support* and *periodicity* in a database.

Moreover, how to combine the two aforementioned tasks has significant implications.

This paper addresses this challenge. It presents a model to discover periodic patterns in non-uniform temporal databases. The proposed model lets the user specify a different maximum inter-arrival time (MIAT) for each item. Thus, different patterns may satisfy different period depending on their items' MIAT values. A new measure, Relative Periodic-Support (RPS), is proposed to determine the periodic interestingness of a pattern in a database. Unlike existing support-based measures, the proposed measure assess the interestingness of a pattern by taking into account its number of cyclic repetitions in the database. An inter-arrival time of a pattern is considered periodic (or cyclic) if it is no more than period. This measure satisfies the null-invariant property [5]. Thus, the usage of item specific MIAT values and RPS allows the proposed model to capture the non-uniform distribution of items in a database. We also propose a pattern-growth algorithm that discovers the complete set of periodic patterns. Experimental results demonstrate that the proposed algorithm is efficient. We also demonstrate the usefulness of the proposed model by finding various event keywords and their associations in disaster related Twitter data.

The rest of paper is organized as follows. Section 2 describes the related work. Section 3 describes the proposed periodic pattern model. Section 4 introduces our algorithm to find all periodic patterns in a database. Section 5 reports on experimental results. Finally, Sect. 6 concludes the paper with future research directions.

2 Related Work

Frequent pattern mining is an important data mining task. Several support related measures have been discussed to determine the interestingness of a pattern in a transactional database. Each measure has a selection bias that justifies the significance of a knowledge pattern. As a result, there exists no universally acceptable best measure to judge the interestingness of a pattern in any given database. Researchers have proposed criteria to select an interestingness measure based on user and/or application requirements [5]. Recently, measures that satisfy the null-invariant property have became popular for finding frequent patterns. The reason is that this property guarantees finding genuine correlation patterns that are not influenced by object co-absence in a database. Unfortunately, current measures cannot be used to determine the periodic interestingness of a pattern in temporal databases. This is because these measures only take the support into account and completely ignore the temporal occurrence behavior of patterns in databases. We introduce a new null-invariant measure that assess the interestingness of a pattern by taking into account both the support and temporal occurrence information of patterns.

Periodic patterns are an important class of regularities that exist in a time series data. Since it was first introduced in [2], the problem of finding these patterns has received a great deal of attention [4]. A major limitation of these

studies is that they consider time series as a symbolic sequence and ignore the temporal occurrence information about events in a series.

Similar to our problem, the mining of full periodic-frequent patterns in a transactional database has been studied in [6–8]. This problem of finding full periodic-frequent patterns greatly simplifies the design of the model because there is no need of any measure to determine the partial periodic interestingness of a pattern. More important, these studies also consider transactional database as a symbolic sequence of transactions (or itemsets) and ignore the temporal occurrence information of the transactions in a database. To the best of our knowledge, this is the first study that considers the problem of finding (partial) periodic patterns by taking into account the temporal occurrence information of the transactions in a database.

3 Proposed Model

Let $I = \{i_1, i_2, \dots, i_n\}$ be the set of 'n' items appearing in a database. A set of items $X \subseteq I$ is called an itemset (or **a pattern**). A pattern containing k items is called a k-pattern. The length of this pattern is k. A transaction is a triplet tr = (tid, ts, Y), where tid represents the transactional identifier, $ts \in \mathbb{R}$ represents the transaction time (or timestamp) and Y is an itemset. A temporal database TDB is an ordered set of transactions, i.e. $TDB = \{tr_1, tr_2, \dots, tr_m\}$, where m = |TDB| represents the database size (the number of transactions). Let ts_{min} and ts_{max} denote the minimum and maximum timestamps in TDB, respectively. For a transaction tr = (tid, ts, Y), such that $X \subseteq Y$, it is said that X occurs in tr and such a timestamp is denoted as ts^X . Let $TS^X = (ts_a^X, ts_b^X, \dots, ts_c^X)$, $a \le b \le c$, be the **ordered list of timestamps** of transactions in which X appears in TDB. The number of transactions containing X in TDB (i.e., the size of TS^X) is defined as the support of X and denoted as sup(X). That is, $sup(X) = |TS^X|$.

Example 1. Table 2 shows a temporal database with $I = \{abcdefg\}$. The set of items 'a' and 'b,' i.e., 'ab' is a pattern. This pattern contains 2 items. Therefore, it is a 2-pattern. The length of this pattern is 2. In the first transaction, $tr_1 = (100, 1, ab)$, '100' represents the tid of the transaction, '1' represents the timestamp of this transaction and 'ab' represents the items occurring in this transaction. Other transactions in this database follow the same representation. The size of the database is m = 12. The minimum and maximum timestamps in this database are 1 and 14, respectively. Therefore, $ts_{min} = 1$ and $ts_{max} = 14$. The pattern 'ab' appears in the transactions whose timestamps are 1, 3, 6, 8, 10, 11 and 12. Therefore, $TS^{ab} = \{1, 3, 6, 8, 10, 11, 12\}$. The support of 'ab,' i.e., $sup(ab) = |TS^{ab}| = 7$.

Definition 1 (Period of a pattern X). Let $MIAT(i_j)$ be the user-defined maximum inter-arrival time (MIAT) specified for an item $i_j \in I$. The period of a pattern X, denoted as PER(X), represents the largest MIAT value of all items in X. That is, $PER(X) = max(MIAT(i_j)|\forall i_j \in X)$. The items' MIAT values can also be expressed in percentage of $(ts_{max} - ts_{min})$.

tid	ts	items									
100	1	ab	103	4	cd	106	8	abcd	109	11	abf
101	3	acdg	104	6	abcd	107	9	ce	110	12	abcd
102	3	abef	105	7	efg	108	10	abef	111	14	acdeg

Table 2. Running example: temporal database

Example 2. Let the MIAT values for the items a, b, c, d, e, f and g be 2, 2, 2, 2, 3, 4 and 4, respectively. The period of the pattern 'ab,' i.e., PER(ab) = max(2,2) = 2.

The usage of items' MIAT values enable us to achieve the goal of having lower periods for patterns that only involve frequent items, and having higher periods for patterns that involve rare items. The items' MIAT values may be derived using the period determining functions, such as Fast Fourier Transformations (FFTs) and auto-correlation.

Definition 2 (Periodic occurrence of a pattern X). Let ts_j^X , $ts_k^X \in TS^X$, $1 \leq j < k \leq m$, denote any two consecutive timestamps in TS^X . The time difference between ts_k^X and ts_j^X is referred as an inter-arrival time of X, and denoted as iat^X . That is, $iat^X = ts_k^X - ts_j^X$. Let $IAT^X = \{iat_1^X, iat_2^X, \cdots, iat_k^X\}$, k = sup(X) - 1, be the list of all inter-arrival times of X in TDB. An interarrival time of X is said to be **periodic** (or cyclic) if it is no more than PER(X). That is, $a iat_i^X \in IAT^X$ is said to be **periodic** if $iat_i^X \leq PER(X)$.

Example 3. The pattern 'ab' has initially appeared at the timestamps of 1 and 3. The difference between these two timestamps gives an inter-arrival time of 'ab.' That is, $iat_1^{ab} = 2 \ (= 3 - 1)$. Similarly, other inter-arrival times of 'ab' are $iat_2^{ab} = 3 \ (= 6 - 3), iat_3^{ab} = 2 \ (= 8 - 6), iat_4^{ab} = 2 \ (= 10 - 8), iat_5^{ab} = 1 \ (= 11 - 10)$ and $iat_6^{ab} = 1 \ (= 12 - 11)$. Therefore, $IAT^{ab} = \{2, 3, 2, 2, 1, 1\}$. If PER(ab) = 2, then $iat_1^{ab}, iat_3^{ab}, iat_4^{ab}, iat_5^{ab}$ and iat_6^{ab} are considered as the periodic occurrences of 'ab'. The iat_2^{ab} is considered as an aperiodic occurrence of 'ab' because $iat_2^{ab} \not\leq PER(ab)$.

Definition 3 (Relative periodic-support of a pattern X). Let $\widehat{IAT^X}$ be the set of all inter-arrival times in IAT^X that have $iat^X \leq PER(X)$. That is, $\widehat{IAT^X} \subseteq IAT^X$ such that if $\exists iat^X_k \in IAT^X$: $iat^X_k \leq PER(X)$, then $iat^X_k \in \widehat{IAT^X}$. The relative periodic-support of X, denoted as $RPS(X) = \frac{|\widehat{IAT^X}|}{|IAT^{ij}|}$, where i_j is an item that has the lowest support and maximum MIAT value among all items in X. This measure satisfies the null-invariant property [5].

Example 4. Continuing with the previous example, $\widehat{IAT^{ab}} = \{2, 2, 2, 1, 1\}$, the item 'b' in the pattern 'ab' has the lowest support and maximum MIAT value. Therefore, the relative periodic-support of 'ab,' i.e., $RPS(ab) = \frac{|\widehat{IAT^{ab}}|}{|IAT^{b}|} = \frac{5}{6} = 0.83$.

For brevity, we call $\widehat{IAT^X}$ as **periodic-frequency**. The periodic-frequency determines the number of cyclic repetitions of a pattern in the data. The proposed measure enables us to achieve the goal of specifying a higher number of cyclic repetitions for patterns that only involve frequent items, and a lower number of cyclic repetitions for patterns that involve rare items. For a pattern X, $RPS(X) \in [0,1]$. If all inter-arrival times of X are more than PER(X), then RPS(X) = 0. In other words, X is an irregular pattern. If all inter-arrival times of X are within PER(X), then RPS(X) = 1. In other words, X is a full periodic pattern.

In the proposed model, we have considered an inter-arrival time of X as interesting if $iat^X \leq PER(X)$. However, our model is flexible and allows other ways to consider an inter-arrival time of a pattern as interesting. For instance, we can consider an inter-arrival time of a pattern as interesting if $iat^X \leq PER(X) \pm \Omega$, where $\Omega > 1$ is a constant that denotes time tolerance. We stick to the above definition for brevity.

Definition 4 (Periodic pattern X). The pattern X is a periodic pattern if $RPS(X) \ge minRPS$, where minRPS is the user-specified minimum relative periodic-support.

Example 5. Continuing with the previous example, if the user-specified min RPS = 0.6, then 'ab' is a periodic pattern because $RPS(ab) \ge minRPS$.

Definition 5 (Problem definition). Given a temporal database (TDB), set of items (I), user-defined minimum interval times of the items (MIAT) and minimum relative periodic-support (minRPS), the problem of finding periodic patterns involve discovering all patterns in TDB that have relative periodic-support no less than minRPS.

The periodic patterns generated by the proposed model satisfy the **convertible anti-monotonic property** [9].

Property 1. Let $Z = \{i_1, i_2, \cdots, i_k\}, 1 \leq k \leq |I|$, be a pattern with $MIAT(i_1) \geq MIAT(i_2) \geq MIAT(i_k)$. If $Y \subset Z$ and $i_1 \in Y$, then $RPS(Y) \geq RPS(Z)$ as $\frac{|\widehat{IAT^Y}|}{|IAT^{i_1}|} \geq \frac{|\widehat{IAT^Z}|}{|IAT^{i_1}|}$.

4 Periodic Pattern-Growth Algorithm

In this section, we describe the proposed PP-growth algorithm that discovers the complete set of periodic patterns. Our algorithm involves the following two steps: (i) compress the database into a periodic pattern tree (PP-tree) and (ii) recursively mine the PP-tree to find all periodic patterns. Before we discuss these two steps, we describe the PP-tree structure.

Structure of PP-Tree Structure. A PP-tree has two components: a PP-list and a prefix-tree. The PP-list consists of each distinct $item\ (i)$ with $minimum\ interval\ time\ (MIAT),\ support\ (S),\ periodic-frequency\ (PF)$ and a pointer pointing to the first node in the prefix-tree carrying the item. The prefix-tree in a PP-tree resembles that of the prefix-tree in a FP-tree [10]. However, to capture both support and inter-arrival times of the patterns, the nodes in the PP-tree explicitly maintain the occurrence information for each transaction by keeping an occurrence timestamp list, called a ts-list. To achieve memory efficiency, only the last node of every transaction maintains the ts-list. We now explain the construction and mining of PP-tree.

Construction of PP-tree. The procedure for constructing a PP-tree is shown in Algorithm 1. We illustrate the working of this algorithm using the database

Algorithm 1. Construction of PP-Tree(TDB: Time series database, I: Set of items, MIAT: minimum interval time, minRPS: minimum relative periodic-support)

- 1: Insert all items in TDB into the PP-list with their MIAT values. Set the support and periodic-frequency values of all these items to 0. The timestamps of the last occurring transactions of all items in the PP-list are explicitly recorded for each item in a temporary array, called ts_l .
- 2: Let $t = \{ts_{cur}, X\}$ denote the current transaction with ts_{cur} and X representing the timestamp and pattern, respectively.
- 3: for each transaction $t \in TDB$ do
- 4: **for** each item $i \in X$ **do**
- 5: S(i) + +;
- 6: if $((ts_l(i) \neq 0) \&\& (ts_{cur} ts_l(i)) \leq MIAT(i))$ then
- 7: PF(i) + +;
- 8: $ts_l(i) = ts_{cur};$
- 9: All items in PP-list are sorted in ascending order of their MIAT values. The items having a common MIAT value are sorted in descending order of their support.
- 10: Measure the RPS value for the bottom most item in the PP-list. If the RPS value of this item is less than minRPS, then prune this item from the PP-list and repeat the same step for the next bottom most item in the PP-list. Stop this pruning process once the RPS value of the bottom most item in PP-list is no less than minRPS. Let CI denote this sorted list of items.
- 11: Create a root node in the prefix-tree, T, and label it as "null."
- 12: for each transaction $t \in TDB$ do
- 13: Sort the items in X according to the order of CI. Let the sorted candidate item list in t be [p|P], where p is the first item and P is the remaining list. Call $insert_tree([p|P], ts_{cur}, T)$, which is performed as follows. If T has a child N such that $N.item_name \neq p.item_name$, then create a new node N, Let its parent link be linked to T. Let its node-link be linked to nodes with the same $item_name$ via the node-link structure. Remove p from P. If P is nonempty, call $insert_tree(P, ts_{cur}, N)$ recursively; else add ts_{cur} to the leaf node.

Algorithm 2. PP-growth(Tree, α)

- 1: for each a_i in the header of Tree do
- 2: if $\frac{PF(a_i)}{S(a_i)-1} \ge minRPS$ then
- 3: Generate pattern $\beta = a_i \cup \alpha$. Traverse Tree using the node-links of β , and construct an array, TS^{β} , which represents the timestamps at which β has appeared in TDB. Construct β 's conditional pattern base and β 's conditional PP-tree $Tree_{\beta}$ by calling calculateRPS(β , TS^{β} , $MIAT(a_i)$). The calculateRPS function calculates the *periodic-frequency* of β from TS^{β} , and returns RPS value by dividing the *periodic-frequency* with $S(a_i) 1$.
- 4: **if** $Tree_{\beta} \neq \emptyset$ **then**
- 5: call PP-growth($Tree_{\beta}, \beta$);
- 6: Remove a_i from the *Tree* and push the a_i 's ts-list to its parent nodes.

										ıı					L					11			
i	MIAT	s	PF	tsı	i	MIAT	S	PF	tsı	i	MIAT	S	PF	tsı	IL	i	MIAT	S	PF	i	MIAT	S	PF
a	2	0	0	0	a	2	1	0	1	a	2	9	7	14	IC	a	2	9	7	a	2	9	7
b	2	0	0	0	b	2	1	0	1	b	2	7	5	12	IC	Ь	2	7	5	b	2	7	5
С	2	0	0	0	С	2	0	0	0	С	2	7	5	14	ľ	С	2	7	5	С	2	7	5
d	2	0	0	0	d	2	0	0	0	d	2	6	4	14	ᄠ	d	2	6	4	d	2	6	4
e	3	0	0	0	e	3	0	0	0	е	3	5	2	14	ᄠ	е	3	5	2	е	3	5	2
g	4	0	0	0	g	4	0	0	0	f	4	4	3	11	IΓ	f	4	4	3	f	4	4	3
f	4	0	0	0	f	4	0	0	0	g	4	3	0	14	I	g	4	3	0	ΙΤ			
	(a) (b) (c)								(c	1)			(e)									

Fig. 1. Construction of PP-List. (a) Before scanning the database. (b) After scanning the first transaction. (c) After scanning the entire database. (d) Updated PP-list. (e) Final PP-list with sorted list of items

shown in Table 2. (Please note that we ignore the *tid* information of transactions for brevity).

For the construction of PP-list, we insert all items into the PP-list with their MIAT values. The support and periodic-frequency of all these items are simultaneously set to 0. Figure 1(a) shows the PP-list generated before scanning the database (line 1 in Algorithm 1). The scan on the first transaction, "1:ab," updates the *support* and ts_l values of a and b to 1 and 1, respectively. Figure 1(b) shows the PP-list generated after scanning the first transaction. This process is repeated for other transactions in the database and PP-list is updated accordingly. Figure 1(c) shows the PP-list generated after scanning the entire database (lines 2 to 8 in Algorithm 1). The items in PP-list are sorted in ascending order of their MIAT values. Items having a common MIAT value are sorted in descending order of their support (to achieve memory efficiency). Figure 1(d) shows the sorted PP-list (line 9 in Algorithm 1). We calculate RPS for the item 'g,' which is the bottom-most item in the PP-list. As $RPS(g) \geq minRPS$, the item 'g' is pruned from the PP-list. Next, we calculate the RPS value for the item f, which is the current bottom-most item in the PP-list. As RPS(f) > minRPS, we consider f as a periodic 1-pattern and stop the process of pruning other aperiodic 1-patterns from the PP-list. Figure 1(e) shows the final PP-list after pruning some of the aperiodic 1-patterns whose supersets can never produce any

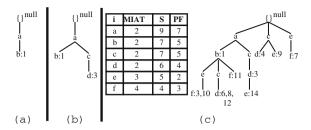


Fig. 2. Construction of PP-Tree. (a) After scanning the first transaction. (b) After scanning the second transaction. (c) After scanning the entire database

periodic pattern (line 10 in Algorithm 1). Let CI denote the sorted list of items in PP-list. That is, $CI = \{a, b, c, d, e, f\}$. Next, we create a root node in the prefix-tree of PP-tree, and label it as "null" (line 11 in Algorithm 1).

In the next step, we update the PP-tree by performing another scan on the database. The items in the first transaction, "1: ab," are sorted in CI order and a first branch is constructed with two nodes $\langle a \rangle$ and $\langle b : 1 \rangle$, where 'a' is linked as a child of the root and 'b' is linked as the child node of 'a'. As 'b' represents the leaf node of the first transaction, this node carries the timestamp of 1. Figure 2(a) shows the PP-tree updated after scanning the first transaction. This process is repeated for the remaining transactions in the database and the PP-tree is updated accordingly. Figure 2(b) shows the PP-tree generated after scanning the second transaction. Figure 2(c). shows the PP-tree generated after scanning the entire database (lines 12 and 13 in Algorithm 1).

Recursive Mining of PP-Tree. The PP-tree is mined as follows. Start from length-1 pattern (as an initial suffix pattern). If the RPS value of this pattern satisfies the minRPS, then consider this pattern as a periodic item (or 1-pattern), construct its conditional pattern base (a sub-database, which consists of the set of prefix paths in the PP-tree with the suffix pattern), then construct its conditional PP-tree, and recursively mine that tree. Pattern-growth is achieved by concatening the suffix pattern with the periodic patterns generated from a conditional PP-tree. Next, the initial suffix pattern is pruned from the original PP-tree by moving its ts-lists to the corresponding parent nodes.

Algorithm 2 describes the procedure for finding periodic patterns in a PP-tree. We do not discuss this algorithm in detail as it is straightforward to understand. Mining the PP-tree is summarized in Table 3. It can be observed that conditional pattern bases have not been constructed for the item 'e,' because it is an aperiodic 1-pattern with $RPS(e) \not\geq minRPS$. The above bottom-up mining technique is efficient, because it shrinks the search space dramatically as the mining process progresses. Some of the improvements discussed for FP-growth [10] can be straight forward extended to PP-growth. We are unable to discuss these improvements due to the page limitation.

item	support	MIAT	Conditional pattern base	Conditional PP-tree	Periodic patterns
f	4	4	$\{abe: 3, 10\},\ \{ab: 11\}, \{e: 7\}$	$\langle e:3,7,10\rangle$	$\{ef: 0.66\}$
\overline{e}	5	3	_	_	=
\overline{d}	6	2	$\{abc: 6, 8, 12\},\ \{ac: 3, 14\}, \{c: 4\}$	$\langle c: 3, 4, 6, 8, 12, 14 \rangle$	$\{cd: 0.8\}$
c	7	2	$\{ab: 6, 8, 12\},\$ $\{a: 3, 14\}$	_	_
b	7	2	${a:1,3,6,8,10,11,12}$	$\langle a:1,3,6,8,10,11,12\rangle$	${ab:0.83}$

Table 3. Mining the PP-tree by creating conditional (sub-)pattern bases

5 Experimental Results

Since there exists no algorithm to find periodic patterns in temporal databases, we only evaluate the proposed algorithm and show that our algorithm is memory and runtime efficient. We also show that PP-tree consumes less memory than the FP-tree for many databases. Finally, we discuss the usefulness of the proposed model by demonstrating that over 80% of the event keywords found by a supervised event detection system [1] in Twitter data can also be discovered as periodic patterns. (Similar to FP-growth [9,10], PP-growth also scales linearly with the increase of database size. Unfortunately, we are unable to present these results due to page limitation.)

The algorithms PP-growth and FP-growth are written in GNU C++ and run on a 2.66 GHz machine having 16 GB of memory. Ubuntu 14.04 is the operating system of our machine. The event detection system is written in python and java, and available for download at https://github.com/aritter/twitter_nlp. The experiments have been conducted using both synthetic (T10I4D100K) and real-world (FAA-accidents and Twitter) databases. The synthetic database, T10I4D100K, is generated by using the IBM data generator [11]. This data generator is widely used for evaluating association rule mining algorithms. The **T10I4D100K** database contains 870 items with 100,000 transactions. The **FAA-accidents** database is constructed from the accidents data recorded by the Federal Aviation Authority (FAA) from 1-January-1970 to 31-December-2014. Only categorical attributes have been taken into account while constructing the database. This database contains 9,290 items and 98,864 transactions. The Twitter database constitutes of 2,680,896 tweets collected from 10-march-2011 to 31-march-2011. These tweets are related to GEJE. We have created temporal database by considering top 4000 frequent english words.

Figure 3(a)–(c) present scatter plots about the inter-arrival times of items in the T10I4D100K, FAA-accidents and Twitter databases, respectively. The X-axis represents the items ranked in descending order of their support and

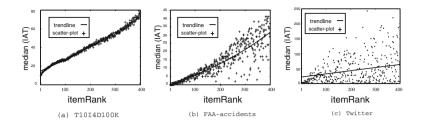


Fig. 3. The median of inter-arrival times of items in a database

Y-axis represents the median of inter-arrival times of an item in a database. The thick line in these figures denote the trend line. The equations of these trend lines and R^2 values are shown in Table 4. It can be observed from the trend lines that rare items not only have low support, but also have high inter-arrival times as compared against the frequent items. This experiment clearly demonstrates the importance of enabling every pattern to satisfy a different period and minimum number of cyclic repetitions to be a periodic pattern.

The performance of PP-growth has to be evaluated by varying the items' MIAT values. Unfortunately, popular period identification functions (e.g. FFTs and auto-correlation) do not help us vary items' MIAT values. In this context, we employ the following methodology to specify the items' MIAT values. For each database, we use the equation of trend line as a reference, and specify the items' MIAT values by multiplying the equation of the trend line with a constant β . That is, $MIAT(i_j) = \beta \times f(x)$, where $\beta \geq 1$ is a user-specified constant and f(x) is the equation of trend line in which x denotes the rank of an item in support descending order.

14510 11 110	ind into equations for various datas	Jases
Database	Equation of trend line $(f(x))$	R^2
T10I4D100K	$y = 7.06E - 05x^2 + 0.12x + 14.70$	0.9892
FAA-Accidents	$y = -9.67E - 05x^2 + 0.04x + 1$	0.9122
Twitter	$y = 3.32E - 06x^2 + 0.11x + 21.39$	0.0777

Table 4. Trend line equations for various databases

Figure 4(a)–(c) shows the number of periodic patterns generated for different minRPS and β values in T10I4D100K, FAA-accidents and Twitter databases, respectively. The following two observations can be drawn from these figures: (i) Increase in β value may increase the number of periodic patterns. The reason is that higher β values tend to increase MIAT values of items. (ii) Increase in minRPS may decrease the number of periodic patterns. The reason is that increasing minRPS increases the minimum number of cyclic repetitions necessary for a pattern to be a periodic pattern.

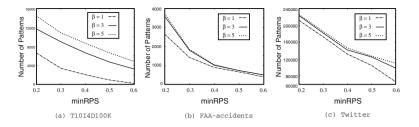


Fig. 4. The periodic patterns generated at different minRPS and β values

Figure 5(a)–(c) show the runtime requirements of PP-growth at different minRPS and β values in T10I4D100K, FAA-accidents and Twitter databases, respectively. It can be observed that varying the β and minRPS values has similar influence on runtime than on the generation of periodic patterns.

Table 5 lists the maximum memory usage of PP-tree and FP-tree on T10I4100K, FAA-accidents and Twitter databases, respectively. Both trees are constructed with every item in the database. It can be observed from the results that PP-tree consumes less memory than FP-tree if number of nodes in a *tree* exceed the database size, otherwise, PP-tree consumes more memory than FP-tree.

5.1 A Case Study: Evaluation of Periodic Patterns Discovered from Twitter Data

While investigating the usefulness of periodic patterns discovered from Twitter data, we have observed that many generated periodic 1-patterns (and their asso-

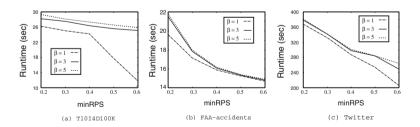


Fig. 5. Runtime requirements of PP-growth at different minRPS and β values

Table 5. Memory comparison of FP-tree and PP-tree

Data set	FP-tree (in MB)	PP-tree (in MB)	No. of nodes
T10I4D100K	10.906	8.561	714,739
FAA-accidents	5.898	4.801	316,935
Twitter	7.172	15.606	470,040

RPS Tweets Pattern still.death.alive.-0.83 S Yuko Yamaguchi (Hello Kitty) & Satoshi Tajiri (Pokemon) are still rumors, celeb alive. Please stop spreading J-celeb death rumors. #earthquake 0.86 twitter社より。統一のハッシュタグなどが発表になりました。 jishin,helpme,anpi,hinan,nosg 情報の統合に協力しましょう。 #jishin: 地震一般に関する情報 #j_j_helpme :救助要請 #hinan :避難 #anpi :安否確認 #311care: 医療系被災者支援情報" #NOSG (summary: users were tweeting the list of hashtags provided by Twitter for GEJE) tsunami, earthquake, - 0.83 RT @bbcbreaking: #Tsunami warning is widened to incl warning, massive,rest of Pacific coast, incl #Australia and #South America widened massive #earthquake in #Japan

Table 6. Some of the interesting periodic patterns and tweets containing the patterns

ciations) were interesting as they were referring to the event GEJE. This motivated us to study the following: (i) Do event keywords in Twitter exhibit periodic behavior? and (ii) If event keywords exhibit periodic behavior, then what would be their percentage? The significance of this study is that if we find many event keywords exhibiting periodic behavior, then one can use the proposed model as an unsupervised learning technique to derive some prior knowledge about event keywords and their associations in Twitter data.

Ritter et al. [1] discussed a supervised learning model to discover event keywords from tweets. We use this model for our experiment. This model annotates tweets using natural language processing techniques, generates a model from the training set of tweets and uses the model to extract event keywords from the test set of tweets. As the authors have already trained their model to identify event keywords in tweets, we have simply provided our Twitter data as the test set and extracted event keywords. A total of 325 event keywords have been extracted from the Twitter data. (We found that only 106 event keywords have appeared in top 500 frequent words. This clearly demonstrates that frequencyhas less influence in determining a word as an event keyword.) When we compared these event keywords against the periodic 1-patterns generated at $\beta = 3$ and minRPS = 0.6, we found that 267 event keywords have been generated as periodic 1-patterns. In other words, 82.15% ($=\frac{267\times100}{325}$) of keywords have exhibited periodic behavior in Twitter data. This clearly demonstrates that periodic pattern mining can be used to find prior knowledge about event keywords and their associations in Twitter data. Table 6 lists some of the generated periodic patterns and their associated tweets.

6 Conclusions and Future Work

We have proposed a model to find periodic patterns in temporal databases. It enables every pattern to satisfy different *period* and minimum number of cyclic repetitions depending on its items. A null-invariant measure, *relative periodic-support*, was discussed to determine the periodic interestingness of a pattern in

a database. A pattern-growth algorithm has also been presented to find periodic patterns. Experimental results show that the proposed model can find useful information and that the algorithm is efficient.

Our study has been confined to mining periodic patterns in a static temporal database. The method developed here can be extended to incremental mining of temporal databases.

References

- Ritter, A., Mausam, Etzioni, O., Clark, S.: Open domain event extraction from twitter. In: KDD, pp. 1104–1112 (2012)
- Han, J., Gong, W., Yin, Y.: Mining segment-wise periodic patterns in time-related databases. In: KDD, pp. 214–218 (1998)
- Aref, W.G., Elfeky, M.G., Elmagarmid, A.K.: Incremental, online, and merge mining of partial periodic patterns in time-series databases. IEEE TKDE 16(3), 332–342 (2004)
- Chen, S.-S., Huang, T.C.-K., Lin, Z.-M.: New and efficient knowledge discovery of partial periodic patterns with multiple minimum supports. J. Syst. Softw. 84(10), 1638–1651 (2011)
- Tan, P.-N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure for association patterns. In: Knowledge Discovery and Data Mining, pp. 32–41 (2002)
- Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S., Lee, Y.-K.: Discovering periodic-frequent patterns in transactional databases. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 242–253. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01307-2-24
- Uday Kiran, R., Krishna Reddy, P.: Towards efficient mining of periodic-frequent patterns in transactional databases. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010. LNCS, vol. 6262, pp. 194–208. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15251-1_16
- Venkatesh, J.N., Uday Kiran, R., Krishna Reddy, P., Kitsuregawa, M.: Discovering periodic-frequent patterns in transactional databases using all-confidence and periodic-all-confidence. In: Hartmann, S., Ma, H. (eds.) DEXA 2016. LNCS, vol. 9827, pp. 55–70. Springer, Cham (2016). doi:10.1007/978-3-319-44403-1_4
- 9. Pei, J., Han, J., Lakshmanan, L.V.: Pushing convertible constraints in frequent itemset mining. DMKD 8, 227–252 (2004)
- 10. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and future directions. DMKD **14**(1), 55–86 (2007)
- 11. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: SIGMOD, pp. 207–216 (1993)