
Discovering Partial Periodic Itemsets in Temporal Databases

R. Uday Kiran
∗

National Institute of Information and Communications

Technology

Tokyo, Japan

uday_rage@tkl.iis.u-tokyo.ac.jp

Haichuan Shang
†

National Institute of Information and Communications

Technology

Tokyo, Japan

shang@tkl.iis.u-tokyo.ac.jp

Masashi Toyoda

University of Tokyo

Tokyo, Japan

toyoda@tkl.iis.u-tokyo.ac.jp

Masaru Kitsuregawa
‡

University of Tokyo

Tokyo, Japan

kitsure@tkl.iis.u-tokyo.ac.jp

ABSTRACT
A temporal database is a collection of transactions, ordered by

their timestamps. Discovering partial periodic itemsets in temporal

databases has numerous applications. However, to the best of our

knowledge, no work has considered finding these itemsets in tem-

poral databases, despite that this type of data is very common in

real-life. Discovering partial periodic itemsets in temporal databases

is challenging. It requires defining (i) an appropriate measure to as-

sess the periodic interestingness of itemsets, and (ii) an algorithm to

efficiently find all partial periodic itemsets. While a pattern-growth

algorithm can be employed for the second sub-task, the first sub-

task has not been addressed. Moreover, how these two tasks are

combined has significant implications. In this paper, we address this

challenge. We introduce a model to find partial periodic itemsets

in temporal databases. A new measure, called periodic-frequency,
has been proposed to determine the periodic interestingness of

itemsets by taking into account their number of cyclic repetitions

in the entire data. Moreover, the paper introduces a pattern-growth

algorithm to discover all partial periodic itemsets. Experimental

results demonstrate that our model is efficient.

CCS CONCEPTS
• Information systems→ Association rules;

KEYWORDS
data mining, periodic patterns, pattern mining

∗
This author is also affiliated to the University of Tokyo, Tokyo, Japan.

†
This author is also affiliated to the University of Tokyo, Tokyo, Japan.

‡
This author is also affiliated to the National Institute of Informatics, Tokyo, Japan.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5282-6/17/06. . . $15.00

https://doi.org/http://dx.doi.org/10.1145/3085504.3085535

ACM Reference format:
R. Uday Kiran, Haichuan Shang, Masashi Toyoda, and Masaru Kitsuregawa.

2017. Discovering Partial Periodic Itemsets in Temporal Databases. In Pro-
ceedings of SSDBM ’17, Chicago, IL, USA, June 27-29, 2017, 6 pages.
https://doi.org/http://dx.doi.org/10.1145/3085504.3085535

1 INTRODUCTION
A temporal database is a collection of transactions and their times-

tamps. Three key properties of a temporal database are: (i) all trans-
actions are ordered by their timestamps (ii) a time gap can exist

in-between consecutive transactions and (iii) multiple transactions

can share a common timestamp. These three properties differentiate

a temporal database from a widely studied transactional database,

which basically represents a collection of transactions. Temporal

data is naturally produced in industrial and scientific domains. Ex-

amples include market-basket data, Twitter data, accidents data

and sensor networks data.

Partial periodic itemsets
1
are an important class of regularities

that exist in a temporal database. A partial periodic itemset is some-

thing persistent and predictable that appears in the data. Finding

partial periodic itemsets is thus useful to understand data. For ex-

ample, it was revealed in our present study on Twitter data related

to the Great East Japan Earthquake (GEJE)
2
that approximately

44% of the event keywords found by a supervised event detection

algorithm [12] can also be discovered as partial periodic itemsets.

The proposed study thus may be used as an unsupervised learning

technique to generate some prior knowledge about event keywords

and their associations in Twitter data.

The task of finding partial periodic itemsets has two important

sub-tasks: (i) determining the periodic interestingness of itemsets,

and (ii) finding all partial periodic itemsets in a given database.

While a variation of pattern-growth algorithms could be employed

for the second sub-task, the first sub-task is non-trivial because of

the following reasons:

(1) Current partial periodic pattern
3
models [3, 4, 17–19] do

not take into account the information about the temporal

occurrences of items in a dataset.

1
A set of items represent an itemset.

2
GEJE happened on 11

th
March 2011

3
A set of itemsets represent a pattern.

https://doi.org/http://dx.doi.org/10.1145/3085504.3085535
https://doi.org/http://dx.doi.org/10.1145/3085504.3085535

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA Kiran et al.

(2) Since a temporal database allows time gaps between con-

secutive transactions and transactions to share a com-

mon timestamp, the periodic interestingness of an itemset

has to be determined by taking into account not only its

f requency, but also its inter-arrival times in a database.

Unfortunately, current measures assess the interestingness

of an itemset by only taking its f requency into account

[14]. We need to investigate new measure(s) to assess the

interestingness of itemsets by taking into account both

their f requency and inter-arrival times in the data.

Moreover, how to combine the two aforementioned tasks has sig-

nificant implications.

This paper addresses this challenge. It presents a model to dis-

cover partial periodic itemsets in temporal databases. A new mea-

sure, called periodic-frequency, is proposed to determine the peri-

odic interestingness of an itemset in the data. Unlike the existing

f requency-based measures, the proposed measure assess the inter-

estingness of an itemset by taking its number (or proportion) of

cyclic repetitions into account. An inter-arrival time of an itemset is

considered cyclic (or periodic) if it is no more than a user-specified

period . We also propose a pattern-growth algorithm, called Partial

Periodic Pattern-growth (3P-growth), to discover the complete set

of partial periodic itemsets. Experimental results demonstrate that

the proposed algorithm is efficient.

The rest of paper is organized as follows. Section 2 describes

the related work. Section 3 describes the proposed model of partial

periodic itemsets. Section 4 introduces our algorithm to find all

partial periodic itemsets in a temporal database. Section 5 reports

on experimental results. Finally, Section 6 concludes the paper with

future research directions.

2 REVIEW OF LITERATURE
Agrawal et al. [1] introduced a model to find frequent itemsets

in a transactional database. Han et al. [4] enhanced the frequent

itemset model to discover partial periodic patterns in time series

data. Aref et al. [3] extended the Han’s model to incremental mining

of partial periodic patterns. Yang et al. [18] used information gain
as an alternative interestingness measure for f requency to find

partial periodic patterns. Yang et al. [17] studied the change in

periodic behavior of a pattern due to the influence of noise, and

discussed a model to find a class of partial periodic patterns known

as asynchronous periodic patterns. Zhang et al. [19] enhanced the

basic model to discover periodic patterns in character sequences

like protein data. All of the above mentioned studies consider time

series as a symbolic sequence (or events occurring at a fixed time

interval). As a result, these studies does not take into account the

actual temporal information of events within a sequence [10]. On

the contrary, our study finds partial periodic itemsets by taking into

account the temporal occurrence information of the transactions

in the data. More importantly, since transactions in a temporal

database can share a common timestamp, these databases cannot

be represented as a time series.

Tanbeer et al. [15] described amodel to find full periodic-frequent

itemsets in a transactional database. This model finds all frequent

itemsets that have exhibited complete (or full) cyclic repetitions in

the data. Amphawan et al. [2] investigated the problem of finding

top-k full periodic-frequent itemsets in a transactional database.

We have also studied the problem of finding full periodic-frequent

itemsets in a transactional database [6–9, 13, 16]. This problem of

finding full periodic-frequent itemsets greatly simplifies the design

of the model because there is no need of any measure to determine

the partial periodic interestingness of an itemset. More importantly,

these studies also consider transactional database as a symbolic

sequence of transactions (occurring at fixed time interval) and

ignore the temporal occurrence information of the transactions in a

database. Our study finds (partial) periodic itemsets by taking into

account the temporal occurrence information of the transactions

in a database.

Recently, we have discussed a model to find partial periodic-

frequent itemsets in a transactional database. The partial periodic-

frequent itemsets does not satisfy the anti-monotonic property [1].

As a result, the model is computationally expensive to use in real-

world very large databases. Moreover, this model cannot handle

temporal databases as multiple transactions can share a common

timestamp.

3 PROBLEM DEFINITION
Let I = {i1, i2, · · · , in } be the set of ‘n’ items appearing in a database.

A set of items X ⊆ I is called an itemset. An itemset containing k
items is called a k-itemset. The length of this itemset is k . A transac-

tion tr consists of transaction identifier, timestamp and an itemset.

That is, tr = (tid, ts,Y) , where tid represents the transactional iden-

tifier, ts ∈ R represents the transaction time (or timestamp) and

Y is an itemset. A temporal database TDB is an ordered collection

of transactions, i.e. TDB = {tr1, tr2, · · · , trm }, wherem = |TDB |
represents the database size (or the total number of transactions).

Let tsmin and tsmax denote the minimum and maximum times-

tamps of all transactions in TDB, respectively. For a transaction
tr = (tid, ts,Y), such that X ⊆ Y , it is said that X occurs in tr and
such a timestamp is denoted as tsX . LetTSX = (tsXa , tsXb , · · · , ts

X
c),

tsmin ≤ tsXa ≤ tsXb ≤ tsXc ≤ tsmax , be the ordered list of
timestamps of transactions in which X appears inTDB. The num-

ber of transactions containing X in TDB (i.e., the size of TSX) is
defined as the f requency of X and denoted as f req(X). That is,
f req(X) = |TSX |.

Example 3.1. Table 1 shows a temporal database with I = {a,b,-
c,d, e, f ,д}. The set of items ‘a’ and ‘b,’ i.e., {a,b} (or ‘ab’) is an item-

set. This itemset contains 2 items. Therefore, it is a 2-itemset. The

length of this itemset is 2. In the first transaction, tr1 = (101, 1,abд),
‘101’ represents the tid of the transaction, ‘1’ represents the times-

tamp of this transaction and ‘abд’ represents the items occurring in

this transaction. Other transactions in this database follow the same

representation. This database contains 14 transactions. Therefore,

m = 14. The minimum and maximum timestamps in this database

are 1 and 12, respectively. Therefore, tsmin = 1 and tsmax = 12.

The itemset ‘ab’ appears in the transactions whose timestamps are

1, 3, 5, 9, 11, 12 and 12. Therefore,TSab = {1, 3, 5, 9, 11, 12, 12}. The
f requency of ‘ab,’ i.e., f req(ab) = |TSab | = 7.

Definition 3.2. (Periodic appearance of itemsetX .) Let tsXj , ts
X
k

∈ TSX , tsmin ≤ tsXj ≤ tsXk ≤ tsmax , denote any two consecutive

timestamps in TSX . The time difference between tsXk and tsXj is

Discovering Partial Periodic Itemsets in Temporal Databases SSDBM ’17, June 27-29, 2017, Chicago, IL, USA

Table 1: Temporal database

tid ts items tid ts items
101 1 abд 108 8 cde f
102 1 acd 109 9 abe f
103 3 ab 110 9 ade
104 4 ae f 111 10 cdд
105 5 abд 112 11 abe f
106 6 cd 113 12 abcd
107 7 bд 114 12 abcd

referred as an inter-arrival time of X , and denoted as iatXp , p ≥ 1.

That is, iatXp = tsXk −tsXj . Let IATX = {iatX
1
, iatX

2
, · · · , iatXf req(X)−1},

be the list of all inter-arrival times of X in TDB. An inter-arrival

time of X is said to be periodic (or interesting) if it is no more than

the user-specified period (per). That is, an iatXi ∈ IATX
is said to

be periodic if iatXi ≤ per .

Example 3.3. The itemset ‘ab’ has initially appeared at the times-

tamps of 1 and 3. The time gap in-between these two timestamps

gives an inter-arrival time of ‘ab.’ That is, iatab
1
= 2 (= 3 − 1).

Similarly, other inter-arrival times of ‘ab’ are iatab
2
= 2 (= 5 − 3),

iatab
3
= 4 (= 9 − 5), iatab

4
= 2 (= 11 − 9), iatab

5
= 1 (= 12 − 11)

and iatab
6
= 0 (= 12 − 12). Therefore, the resultant IAT ab =

{2, 2, 4, 2, 1, 0}. If the user-specifiedper = 2, then iatab
1

, iatab
2

, iatab
4

,

iatab
5

and iatab
6

are considered as the periodic occurrences of ‘ab’

in the data. The iatab
3

is considered as an aperiodic occurrence of

‘ab’ because iatab
3

≰ per .

Definition 3.4. (Periodic-frequency of itemset X .) Let �IATX

be the set of all inter-arrival times in IATX
that are no more than

per . That is, �IATX ⊆ IATX
such that if ∃iatXk ∈ IATX

: iatXk ≤
per , then iatXk ∈ �IATX

. The periodic-frequency of X , denoted as

PF (X) = | �IATX |.

Example 3.5. Continuing with the previous example,
�IAT ab =

{2, 2, 2, 1, 0}. Therefore, the periodic-frequency of ‘ab,’ i.e. PF (ab) =
|âb | = |{2, 2, 2, 1, 0}| = 5.

The periodic-frequency, as defined above, determines the number

of periodic occurrences of an itemset in the database. It can be

observed that this measure determines the interestingness of an

itemset by taking into account both its f requency and inter-arrival
times in the data. The inter-arrival times of an itemset and the

period can be expressed in percentage of (tsmax − tsmin). The
periodic-frequency of an itemset can also be expressed in percentage

of |TDB | − 1, where |TDB | − 1 represent the maximum periodic-
frequency an itemset can have in the database. In this paper, we

use the above definitions of inter-arrival times, period and periodic-
frequency for brevity.

Definition 3.6. (Partial periodic itemset X .) An itemset X is a

partial periodic itemset if PF (X) ≥ minPF , whereminPF represents

the user-specified minimum periodic-frequency.

Example 3.7. Continuing with the previous example, if the user-

specifiedminPF = 2, then ‘ab’ is a partial periodic itemset because

PF (ab) ≥ minPF .

(Problem definition.) Given a temporal database (TDB), a set of
items (I),period (per) andminimum periodic-frequency (minPF), the
problem of finding partial periodic itemsets involve discovering all

itemsets in TDB that have periodic-frequency no less thanminPF .
The partial periodic itemsets discovered by the proposed model

satisfy the downward closure property [1]. The correctness of our

statement is straight forward to prove from Property 1.

Property 1. If X ⊆ Y , then TSX ⊇ TSY . Therefore, PF (X) ≥
PF (Y).

4 3P-GROWTH
The proposed 3P-growth algorithm involves the following two

steps: (i) compress the database into partial periodic pattern tree

(3P-tree) and (ii) recursively mine the 3P-tree to find all partial

periodic itemsets.

4.1 Construction of 3P-tree
A 3P-tree has two components: a 3P-list and a prefix-tree. The

3P-list consists of each distinct item (i), periodic-frequency (p f)
and a pointer pointing to the first node in the prefix-tree carrying

the item. The structure of prefix-tree is same as the prefix-tree in

Periodic-Frequent tree (PF-tree) [15].

Since partial periodic itemsets satisfy the anti-monotonic prop-

erty, partial periodic items (or 1-itemsets) will play an important

role in effective mining of these itemsets. Algorithm 1 describes

the steps for finding partial periodic items in a temporal database.

Figure 1(a)-(c) show the construction of 3P-list after scanning the

first, second and every transaction in the database, respectively.

Figure 1(d) shows the 3P-list containing partial periodic items in

descending order of their p f value. The period andminPF values

used to find these items are 2 and 2, respectively. LetCI denote this
sorted list of partial periodic items.

i pf tsl

a 0 1

b 0 1

g 0 1

i pf tsl

a 1 2

b 0 1

g 0 1

c 0 1

d 0 1

i pf tsl

a 8 12

b 7 12

g 1 10

c 4 12

d 5 12

e 3 11

f 2 11

i pf

a 8

b 7

c 4

d 5

e 3

f 2

(a) (b) (c) (d)

frq

1

1

1

frq

2

1

1

1

1

frq

10

8

4

6

7

5

4

Figure 1: Construction of 3P-List. (a) After scanning the first
transaction (b) After scanning the second transaction (c) Af-
ter scanning the entire database (d) Final 3P-list containing
the sorted list of items

After finding partial periodic items, we conduct another scan

on the database and construct the prefix-tree of 3P-tree as in Algo-

rithms 2 and 3. These algorithms are the same as those for construct-

ing an FP-tree [5]. However, the major difference is that no node in

3P-tree maintains the f requency as in an FP-tree. Figures 2 (a), (b)

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA Kiran et al.

Algorithm 1 Construction of 3P-List(TDB: temporal database, I :
set of items,minPF : minimum periodic-frequency, per : period)

1: The timestamps of the last occurring transactions of all items

in the 3P-list are explicitly recorded for each item in a tempo-

rary array, called tsl . Similarly, the f requency of all items in

the 3P-list are explicitly recorded in another temporary array,

called f rq. These two arrays can be ignored after finding partial
periodic items (or 1-itemsets).

2: Let t = {tid, tscur ,X } denote the current transactionwith tscur
and X representing the timestamp and an itemset, respectively.

3: for each transaction t ∈ TDB do
4: for each item i ∈ X do
5: if i does not exist in 3P-list then
6: Add i to the 3P-list and set p f (i) = 0, f rq(i) = 1 and

tsl (i) = tscur .
7: else
8: if tscur − tsl (i) ≤ per then
9: Set p f (i) + +.
10: Set tsl (i) = tscur and f rq(i) + +.
11: Prune all aperiodic-items from the 3P-list that have p f less

than minPF . Consider the remaining items in 3P-list as par-

tial periodic items and sort them in descending order of their

f requency. Let CI denote this sorted list of items.

Algorithm 2 3P-Tree(TDB, 3P-list)

1: Create the root of 3P-tree, T , and label it “null”.
2: for each transaction t ∈ TDB do
3: Set the timestamp of the corresponding transaction as tscur .

4: Select and sort the partial periodic items in t according to the
order of CI . Let the sorted candidate item list in t be [p |P],
where p is the first item and P is the remaining list.

5: Call insert_tree([p |P], tscur ,T).

Algorithm 3 insert_tree([p |P], tscur , T)
1: while P is non-empty do
2: if T has a child N such that p.itemName , N .itemName

then
3: Create a new node N . Let its parent link be linked toT . Let

its node-link be linked to nodes with the same itemName

via the node-link structure. Remove p from P .
4: Add tscur to the leaf node.

and (c) show the 3P-tree constructed after scanning first, second

and every transaction in the database, respectively. For simplicity,

we do not show the node traversal pointers in trees; however, they

are maintained like an FP-tree does.

4.2 Recursive Mining of 3P-tree
The 3P-tree is mined as follows. Start from each partial periodic

item (as an initial suffix itemset), construct its conditional pattern

base (a subdatabase, which consists of the set of prefix paths in

the 3P-tree co-occurring with the suffix itemset), then construct

Algorithm 4 3P-growth(Tree , α)

1: for each ai in the header of Tree do
2: Generate pattern β = ai ∪ α . Collect all of the a′is ts-lists

into a temporary array, TSβ , and calculate PF (β) by calling

calculatePeriodicFrequency(TSβ).
3: if PFβ ≥ minPF then
4: Construct β ’s conditional pattern base then β ’s conditional

3P-tree Treeβ .
5: if Treeβ , ∅ then
6: call 3P-growth(Treeβ , β);
7: Remove ai from theTree and push the ai ’s ts-list to its parent

nodes.

Algorithm 5 calculatePeriodicFrequency(TSβ : list of timestamps

containing β in TDB)

1: Set PF (β) = 0.

2: for int i = 0; i < TSβ .lenдth − 1;+ + i do
3: if TSβ [i + 1] −TSβ [i] ≥ per then
4: + + PF (β) .
5: return PF (β).

{}

a

b:1

{}

a

b:1 d

c:1

a

b:1,3,5 d

c:1e

f:9,11

d

c:12,12

e:9

e

f:4

d

c:6,10

e

f:8

b:7

{}

i pf

a 8

b 7

c 4

d 5

e 3

f 2

(a) (b) (c)

null null null

Figure 2: Construction of 3P-tree. (a) After scanning the first
transaction (b) After scanning the second transaction and (c)
Final 3P-tree generated after scanning the entire database

its (conditional) 3P-tree, and perform mining recursively on such a

tree. The pattern growth is achieved by the concatenation of the

suffix itemset with the partial periodic itemsets generated from

a conditional 3P-tree. The procedure to discover partial periodic

itemsets from 3P-tree is shown in Algorithms 4 and 5. Mining of

3P-tree in Figure 2(c) is shown in Table 2.

5 EXPERIMENTAL RESULTS
Since there exists no algorithm to find partial periodic itemsets in

temporal databases, we only evaluate the proposed algorithm and

show that our algorithm is memory and runtime efficient. Finally,

we discuss the usefulness of the proposed model by demonstrat-

ing that approximately 44% of the event keywords found by a

supervised event detection system [12] in Twitter data can also be

discovered as partial periodic itemsets.

The 3P-growth algorithm was written in GNU C++ and run

on a 2.66 GHz machine having 16 GB of memory. Ubuntu 14.04

is the operating system of our machine. The event detection sys-

tem is written in python and java, and available for download at

[11]. The experiments have been conducted using both synthetic

Discovering Partial Periodic Itemsets in Temporal Databases SSDBM ’17, June 27-29, 2017, Chicago, IL, USA

Table 2: Mining the 3P-tree by creating conditional (sub-)pattern bases

item Conditional Pattern Base Conditional 3P-tree Partial periodic itemsets

f {abe : 9, 11}, {ae : 4}, {dce : 8} ⟨e : 4, 8, 9, 11⟩ {f e : 2}

e {ab : 9, 11}, {a : 4}, {ad : 9}{dc : 8} {a:9,9,11} {ea : 2}
c {abd : 12, 12}, {ad : 1}, {d : 6, 8, 10} ⟨d : 1, 6, 8, 10, 12, 12⟩ {cd : 4}

d {ab : 12, 12}, {a : 1, 9} − −
b {a : 1, 3, 5, 9, 11, 12, 12} ⟨a : 1, 3, 5, 9, 11, 12, 12⟩ {ab : 5}

 2

 4

 6

 8

 10

 12

 14

 16

 18

 100 200 300 400 500 600 700 800 900 1000

N
u
m

b
e
r

o
f
tw

e
e
ts

Rank

Figure 3: Number of tweets occurring at particular times-
tamp in Twitter database

(T10I4D100K) and real-world (Twitter) databases. The synthetic
database, T10I4D100K, is generated by using the IBM data genera-

tor [1]. This database contains 870 items with 100,000 transactions.

The Twitter database constitutes of 2,649,438 tweets collected from

10-march-2011 to 31-march-2011. These tweets are related to GEJE.

The stop words have been removed from the tweets for compu-

tational reasons. As Twitter data is noisy, we have also removed

highly infrequent words having f requency less than 0.01%.

The transactions in T10I4D100K database do not have times-

tamps. Therefore, by considering that all transactions in this data-

base are occurring at a fixed time interval, we have assigned times-

tamps for each transaction as increments of 1. That is, first trans-

action was assigned with the timestamp 1, the second transaction

was assigned with the timestamp 2, and so on.

Figure 3 shows the number of tweets occurring at a particular

timestamp in Twitter database. The X -axis represents the ranking

of timestamps in ascending order, while the Y -axis represents the
number of tweets occurring at a particular timestamp. For brevity,

we have presented the results only for the first 1000 tweets in our

Twitter database. It can be observed from this figure that many

transactions share a common timestamp. Thus, twitter data repre-

sents a temporal database.

Figures 4(a) and (b) show the number of partial periodic itemsets

generated at different per andminPF values in T10I4D100K and

Twitter databases, respectively. The following two observations can

be drawn from these figures: (i) Increase in per value may increase

the number of partial periodic itemsets. The reason is that as per
increases, the period threshold value of an itemset increases. (ii)
Increase in minPF may decrease the number of partial periodic

itemsets. The reason is increase inminPF increases the minimum

number of cyclic repetitions necessary for a itemset to be a partial

periodic itemset.

 0

 4000

 8000

 12000

 16000

 20000

 0

 500

 1500

 2500

 3500

 0.1 0.2 0.3 0.4 0.5

N
u

m
b

e
r

o
f

P
a

tt
e

rn
s

minPF (%)

per=0.00%

per=0.01%

per=0.02%

N
u

m
b

e
r

o
f

P
a

tt
e

rn
s

 0.1 0.2 0.3 0.4 0.5

minPF (%)

per=0.25%

per=0.50%

per=0.75%

(a) T10I4D100K (b) Twitter

Figure 4: The number of partial periodic itemsets generated
at different per andminPF values

 4.99

 5.01

 5.03

 5.05

 5.07
per=0.25%

per=0.50%

per=0.75%

 0.1 0.2 0.3 0.4 0.5

minPF (%)

(a) T10I4D100K

R
u
n
ti
m

e
 (

s
e
c
)

 34

 35

 36

 37

 38

 39

 0.1 0.2 0.3 0.4 0.5

minPF (%)

(b) Twitter

per=0.00%

per=0.01%

per=0.02%

R
u
n
ti
m

e
 (

s
e
c
)

Figure 5: The runtime requirements of 3P-growth at differ-
ent per andminPF values

Figure 5(a) and (b) show the runtime requirements of 3P-growth

at differentper andminPF values in T10I4D100K and Twitter databases,

respectively. It can be observed that changes in per andminPF val-

ues show the similar effect on runtime as of the generation of partial

periodic itemsets. It is clear from these figures that 3P-growth al-

gorithm can efficiently find partial periodic itemsets in very large

databases even at lowminPF and per values.

5.1 A case study: evaluation of partial periodic
itemsets discovered in Twitter data

While investigating the usefulness of partial periodic itemsets dis-

covered in Twitter data, we have observed that many generated

partial periodic 1-itemsets (and their associations) were interesting

as they were referring to the event GEJE. This motivated us to study

the following: (i) Do event keywords in Twitter exhibit periodic

behavior? and (ii) If event keywords exhibit periodic behavior, then
what would be their percentage? The significance of this study is

that if we find many event keywords exhibiting periodic behavior,

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA Kiran et al.

Table 3: Some of the interesting partial periodic itemsets and tweets containing the itemsets

Itemset PF Sample tweet

{jishin,helpme,anpi,- 15,767 twitter社より。統一のハッシュタグなどが発表になりました。
hinan,tsunami,- 情報の統合に協力しましょう。 #jishin:地震一般に関する情報
earthquake} #j_j_helpme :救助要請 #hinan :避難 #anpi :安否確認 #311care:

医療系被災者支援情報” #NOSG (summary: users were
tweeting the list of hashtags provided by Twitter for GEJE)

{fukushima, tsunami,- 421 Fukushima nuke plant out of control? RT talks to nuclear expert

control} from Hiroshima, Japan http://bit.ly/fzwDpi #news #japan #fukushima #tsunami

{austraila, america,- 279 RT @bbcbreaking: #Tsunami warning is widened to incl

warning,massive,- rest of Pacific coast, incl #Australia and #South America

pacific, coast} massive #earthquake in #Japan

then one can use the proposed model as an unsupervised learning

technique to derive some prior knowledge about event keywords

and their associations in Twitter data.

Ritter et al. [12] discussed a supervised learning model to dis-

cover event keywords from tweets. We use this model for our

experiment. This model annotates tweets using natural language

processing techniques, generates a model from the training set of

tweets and uses the model to extract event keywords from the test

set of tweets. As the authors have already trained their model to

identify event keywords in tweets, we have simply provided our

Twitter data as the test set and extracted event keywords. A to-

tal of 330 event keywords have been extracted from the Twitter

data. When we compared these event keywords against the partial

periodic 1-itemsets generated at per = 10% andminPF = 0.04%,

we found that 145 event keywords have been generated as par-

tial periodic 1-itemsets. In other words, 43.93% (=
145×100

330
) of key-

words have exhibited periodic behavior in Twitter data. This clearly

demonstrates that periodic itemset mining can be used to find prior

knowledge about event keywords and their associations in Twit-

ter data. We have also carried out similar experiments on other

Twitter databases and found that over 40% of event keywords were

being generated as partial periodic 1-itemsets. Unfortunately, we

are unable to present all of these results due to page limitation.

Table 3 lists some of the generated partial periodic itemsets and

their associated tweets.

6 CONCLUSIONS AND FUTUREWORK
We have proposed a model to find partial periodic itemsets in tem-

poral databases. A new measure, periodic-frequency, has been dis-

cussed to determine the periodic interestingness of an itemset in a

database. The partial periodic itemsets satisfy the anti-monotonic

property. A pattern-growth algorithm based on this property has

also been presented to find partial periodic itemsets. Experimental

results show that the proposed model can find useful information

and that the algorithm is efficient.

Our study has been confined to mining partial periodic itemsets

in a static temporal database. The method developed here can be

extended to incremental mining of partial periodic itemsets in tem-

poral databases. As part of future work, we would like to investigate

alternative measures of periodic-frequency to satisfy user and/or

application requirements.

ACKNOWLEDGMENTS
The authors would like to thank J.N. Venkatesh and Prof. P. Krishna

Reddy for sharing their domain expertise in periodic pattern mining

and providing very useful information regarding TWICAL software.

REFERENCES
[1] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining association

rules between sets of items in large databases. In SIGMOD. 207–216.
[2] Komate Amphawan, Philippe Lenca, and Athasit Surarerks. 2009. Mining Top-

K Periodic-Frequent Pattern from Transactional Databases without Support

Threshold. In Advances in Information Technology. 18–29.
[3] Walid G. Aref, Mohamed G. Elfeky, and Ahmed K. Elmagarmid. 2004. Incremental,

Online, and Merge Mining of Partial Periodic Patterns in Time-Series Databases.

IEEE TKDE 16, 3 (2004), 332–342.

[4] Jiawei Han, Wan Gong, and Yiwen Yin. 1998. Mining Segment-Wise Periodic

Patterns in Time-Related Databases.. In KDD. 214–218.
[5] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. 2004. Mining Frequent

Patterns without Candidate Generation: A Frequent-Pattern Tree Approach.

Data Min. Knowl. Discov. 8, 1 (Jan. 2004), 53–87.
[6] R. Uday Kiran and Masaru Kitsuregawa. 2014. Novel Techniques to Reduce

Search Space in Periodic-Frequent Pattern Mining. In DASFAA (2). 377–391.
[7] R. Uday Kiran, Masaru Kitsuregawa, and P. Krishna Reddy. 2016. Efficient

discovery of periodic-frequent patterns in very large databases. Journal of
Systems and Software 112 (2016), 110–121.

[8] R. Uday Kiran and P. Krishna Reddy. 2010. Towards Efficient Mining of Periodic-

Frequent Patterns in Transactional Databases. In DEXA (2). 194–208.
[9] R. Uday Kiran and P. Krishna Reddy. 2011. An Alternative Interestingness

Measure for Mining Periodic-Frequent Patterns. In DASFAA (1). 183–192.
[10] S. Ma and J.L. Hellerstein. 2001. Mining partially periodic event patterns with

unknown periods. In ICDE. 205–214.
[11] Alan Ritter. 2012. TWICAL software. http://github.com/aritter/twitter_nlp.

(2012). [Online; accessed 16-May-2017].

[12] Alan Ritter, Mausam, Oren Etzioni, and Sam Clark. 2012. Open Domain Event

Extraction from Twitter. In KDD. 1104–1112.
[13] Akshat Surana, R. Uday Kiran, and P. Krishna Reddy. 2011. An Efficient Ap-

proach toMine Periodic-Frequent Patterns in Transactional Databases. In PAKDD
Workshops. 254–266.

[14] Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava. 2002. Selecting the Right

Interestingness Measure for Association Patterns. In Knowledge Discovery and
Data Mining. 32–41.

[15] Syed Khairuzzaman Tanbeer, Chowdhury Farhan Ahmed, Byeong Soo Jeong, and

Young Koo Lee. 2009. Discovering Periodic-Frequent Patterns in Transactional

Databases. In PAKDD. 242–253.
[16] J. N. Venkatesh, R. Uday Kiran, P. Krishna Reddy, and Masaru Kitsuregawa.

2016. Discovering Periodic-Frequent Patterns in Transactional Databases Using

All-Confidence and Periodic-All-Confidence. In DEXA. 55–70.
[17] Jiong Yang, Wei Wang, and Philip S. Yu. 2003. Mining Asynchronous Periodic

Patterns in Time Series Data. IEEE Trans. Knowl. Data Eng. (2003), 613–628.
[18] R. Yang, W.Wang, and P.S. Yu. 2002. InfoMiner+: mining partial periodic patterns

with gap penalties. In ICDM. 725–728.

[19] Minghua Zhang, Ben Kao, David W. Cheung, and Kevin Y. Yip. 2007. Mining

periodic patterns with gap requirement from sequences. ACM Trans. Knowl.
Discov. Data 1, 2 (Aug. 2007).

http://github.com/aritter/twitter_nlp

	Abstract
	1 Introduction
	2 Review of Literature
	3 Problem Definition
	4 3P-growth
	4.1 Construction of 3P-tree
	4.2 Recursive Mining of 3P-tree

	5 Experimental Results
	5.1 A case study: evaluation of partial periodic itemsets discovered in Twitter data

	6 Conclusions and Future Work
	Acknowledgments
	References

