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Abstract

The unfairness of a regressor is evaluated by mea-
suring the correlation between the estimator and
the sensitive attribute (e.g., race, gender, age),
and the coefficient of determination (CoD) is a
natural extension of the correlation coefficient
when more than one sensitive attribute exists. As
is well known, there is a trade-off between fair-
ness and accuracy of a regressor, which implies
that a perfectly fair optimizer does not always
yield a useful prediction. Taking this into con-
sideration, we optimize the accuracy of the es-
timation subject to a user-defined level of fair-
ness. However, a fairness level as a constraint
induces a nonconvexity of the feasible region,
which disables the use of an off-the-shelf convex
optimizer. Despite such nonconvexity, we show
that an exact solution is available by using tools
of global optimization theory. Unlike most of ex-
isting fairness-aware machine learning methods,
our method allows us to deal with numeric and
multiple sensitive attributes.

1. Introduction
Algorithmic decision-making process now affects many as-
pects of our lives. Emails are spam-filtered by classifiers,
images are automatically tagged and sorted, and news arti-
cles are clustered and ranked. These days, even decisions
regarding individual people are being made algorithmically.
For example, computer-generated credit scores are popular
in many countries, and job interviewees are sometimes eval-
uated by assessment algorithms. However, a potential loss
of transparency, accountability, and fairness arises when de-
cision making is conducted on the basis of past data. If a
dataset indicates that specific groups based on sensitive at-
tributes (e.g., gender, race, and religion) are of higher risk
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in defaulting on loans, direct application of machine learn-
ing algorithm would highly likely result in loan applicants
on those groups being rejected.

This could be viewed as an algorithmic version of disparate
treatment1, where decisions are made on the basis of these
sensitive attributes. However, removing sensitive attributes
from the dataset is not a sufficient solution as it has a dis-
parate impact: In 1970s, the U.S. Supreme Court ruled that
the hiring decision at the center of the Griggs v. Duke
Power Co. case2 was illegal because it disadvantaged an
application of an applicant of certain race, even though the
decision was not explicitly determined on the basis of race.
Duke Power Co. was subsequently forced to stop using
test scores and diplomas, which are highly correlated with
race, in its hiring decisions. In this paper, we consider fair
machine learning algorithms that remove disparate impact
that arises from the correlation between the sensitive and
non-sensitive attributes.

Most of existing fairness-aware machine learning algo-
rithms are for classification. While such classifiers are
naturally applied in decision making, regressors provide
more useful information in some of the human-related
tasks. For example, in the case of criminal records (Calders
et al., 2013; Angwin et al., 2016), assessing the risk of re-
offending of each criminal is reasonable. In hiring deci-
sions, an employer would naturally consider the productiv-
ity of a job applicant. Moreover, in recommendation tasks,
the preference of items are usually represented as numeric
values.

Taking above into consideration, we study a fair regressor.
By definition, a fair algorithm tries to treat several groups
equally, and thus it sacrifices some accuracy that could be
achieved if it had treated these groups unequally. Therefore,
the challenge lies in balancing the regression accuracy and
fairness. As discussed in Zafar et al. (2017a), depending on
each business necessity, a user of an algorithm can justify
some degree of disparate impact to increase the predictive
power of the algorithm. Such a degree of unfair impact
should be strictly controlled.

A natural interest is how to define fairness of algorithm. In

1The U.S. Civil Rights Act, July 2, 1964.
2Case: 401 U.S. 424, March 8, 1971.
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Figure 1. An illustrative example on the feasible region. A linear
regression is defined as ŷ = s⊤α + u⊤β, where α,β are the
corresponding coefficients of attributes. In this example, let the
feature dimensions of s and u (and the corresponding coefficients
α and β) be 1 and 2, respectively. Moreover, β(l) denotes the
l-th component of β. As detailed in the later section, the upper-
half of feasible region of an optimization with the CoD constraint
is {(α,β) : 0 ≤ α ≤

√
(β(1))2 + (β(2))2} after diagonaliza-

tion and normalization. The region is outside (not inside!) the
“ice-cream cone”, which cannot be divided into a finite union of
convex regions.

this paper, we consider a coefficient of determination (CoD)
of the sensitive attributes as a constraint. Let s be the sen-
sitive attributes, and x be the non-sensitive attributes. In
general, x is highly correlated with s, and we construct u
from x by removing its correlation with s. Let y be the
target variable to predict, and ŷ = ŷ(s,u) be its estimator.
CoD is defined as the proportion of the variance of the esti-
mator ŷ that is predictable from s. In fact, CoD defined in
such a way is a natural extension the correlation coefficient
to multiple sensitive attributes (Section 2.2).

While CoD is a natural measure of the predictive power, no
literature on a fair estimator with CoD as a constraint ex-
ists presumably due to its inherent nonconvexity: Figure 1
shows that the feasible region of linear regressors is noncon-
vex even in the case of single s. As a result, off-the-shelf
tools for convex optimization, such as gradient methods, do
not give a global solution.

In the context of fairness-aware machine learning, strictly
complying with the fairness constraint is of primal impor-
tance. However, obtaining an exact solution in nonconvex
optimizations is generally hard: For example, even one neg-
ative eigenvalue makes a quadratic programming NP-hard
(Pardalos & Vavasis, 1991). Fortunately, the optimization
under CoD constraint can be solved exactly unlike most of
these nonconvex optimizations: We propose two optimiza-
tion methods by utilizing tools of global optimization the-
ory. The first one is based on a Lagrangian dual that boils
down the problem into a semidefinite programming (SDP).
Although the Lagrangian dual is efficiently computed and
yields an exact optimal value in the optimization, recover-

ing an optimal solution in this problem is not always pos-
sible due to a relaxed solution space. To address this is-
sue, we show another optimization method that converts
the original nonconvex quadratically constrained quadratic
program (QCQP) into a convex QCQP, which yields an ex-
act solution of the problem.

Furthermore, we show that our optimization framework is
extended to capture non-linearity by proposing the kernel
extension of our framework that is also exactly solvable.
As a result, our framework allows us to remove disparate
impact that is non-linear to a numeric sensitive attribute
(e.g., an unfair deal for young and old people that favors
the people in between).

The proposed method is empirically evaluated by four real-
world datasets. Unlike most methods, our method is ca-
pable of considering the possibly non-linear interaction of
numeric sensitive attributes with the target variable. As we
consider nonconvexity that naturally arises in measuring a
correlation between s and y, we think this result is a first
step that ties the study of nonconvex optimization in the
context of fairness-aware machine learning.

1.1. Related Work

Most of the tasks in fairness-aware machine learning and
data mining fields are divided into two categories (Ruggieri
et al., 2010): The former is to discover unfairness (Adebayo
& Kagal, 2016; Adler et al., 2018), whereas the latter is to
prevent unfair treatments. Classification, regression, and
other tasks such as recommendations (Kamishima et al.,
2012b; 2016), voting (Bredereck et al., 2018), data summa-
rization(Celis et al., 2018), dimensional reduction (Pérez-
Suay et al., 2017), and representational learning (Bolukbasi
et al., 2016) are categorized into the latter one. As the goal
of this paper is to build a fair regressor, this paper is also
categorized into the latter.

Most of the existing papers in the latter category (Kami-
ran & Calders, 2010; Zliobaite et al., 2011; Kamishima
et al., 2012a; Ristanoski et al., 2013; Fish et al., 2015; Hardt
et al., 2016; Goh et al., 2016; Zafar et al., 2017a) deal with
classification tasks, and thus cannot directly deal with re-
gression tasks. Note that there are several papers that take
pre-processing strategy, which makes the data into fair rep-
resentation so that we can put them into off-the-shelf ma-
chine learning algorithms. Among this approach, Zemel
et al. (2013) segregated the data by mapping them into fi-
nite sets. Feldman et al. (2015) merged distribution of dat-
apoints with binary sensitive attribute s = 1 and s = 0
into a single distribution. Calmon et al. (2017) character-
ized a class of convex data preprocessing related to non-
discrimination. While the methods in these papers are gen-
eral enough to deal with regression tasks, this approach
treats the algorithm as a black box and could potentially
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reduce the predictive power the algorithm by excessively
reducing the information in the original dataset.

A few papers considered fairness in regression problems.
Fukuchi et al. (2013) considered a generative model that is
neutral to a finite set of viewpoints. Calders et al. (2013) in-
troduced a propensity score based approach that enables us
to divide people into several clusters on the basis of explain-
able attributes. Kamishima et al. (2012a) introduced a reg-
ularizer that encourages fairness. Berk et al. (2017) consid-
ered a convex framework where fairness is imposed by the
regularizer, and Pérez-Suay et al. (2017) introduced a regu-
ralizer inspired by the Hilbert-Schmidt Independence Cri-
teria (Gretton et al., 2005). Unlike the existing approaches,
our method (i) is capable of not only discrete sensitive at-
tributes (e.g., gender, races) but also numeric sensitive at-
tributes such as ages and (ii) enables strict control of fair-
ness by posing the fairness as an explicit constraint.

2. Problem Setup
Each d-dimensional vector in this paper is a column vector
and is identified as a d × 1 matrix. Let n be the number
of datapoints. The i-th datapoint is comprised of a tuple
(si,xi, yi), where si ∈ Rds is the sensitive attributes of ds
dimensions that require special care (e.g., gender, race, and
age), xi ∈ Rdx is the normal (non-sensitive) attributes of
dx dimensions, and yi ∈ R is the target attribute to predict.
Given a training dataset of {(si,xi, yi)}ni=1, a fairness-
aware algorithm outputs ŷ(s,x), which is an estimator of y
that complies with the fairness criteria. We also denote y =
(y1, y2, . . . , yn)

⊤ ∈ Rn×1,X = (x1,x2, . . . ,xn)
⊤ ∈

Rn×dx ,S = (s1, s2, . . . , sn)
⊤ ∈ Rn×ds to denote a se-

quence of n datapoints. We assume that each feature in s
and x, and y is zero-mean. If not, we can always remove
their (empirical) means.

2.1. Preprocessing and An Asymptotically Fair
Regressor

In practice, s has a strong predictive power and highly cor-
related with x (e.g., gender is highly correlated with occu-
pation), and thus using x in estimating y leads to a disparate
impact. Such a correlation is removed by conducting a re-
gression as follows: Namely,

B̂ = (S⊤S)−1S⊤X ∈ Rds×dx

U = X− B̂⊤S ∈ Rn×dx (2.1)

and we define ui as the i-th datapoint of U. The value B̂⊤S
is a part of x that is explainable by s. The following theo-
rem states the learnability of the linear relation between x
and s.

Theorem 1. (Asymptotic fairness of a preprocesssed re-
gressor) Assume a linear relation between s and x such

that
xi = B⊤si + ϵi,

where ϵi is a zero mean noise E[ϵi|X] = 0. Then, B̂ → B
in probability.

The proof of Theorem 1 directly follows from the fact that
each of l-th column of B is an ordinary linear regression
(OLS) from s to the l-th column of x and standard asymp-
totic normality of OLS (e.g., Theorem 5.1 in Wooldridge,
2013). Note that, since the linear regression is a paramet-
ric model, one can easily see that the correlation between s
and u is O(1/

√
n) while (s,u) has the same information

as (s,x).

The discussion above implies that, if we devise a linear re-
gressor ŷ = ŷ(u), the regressor is asymptotically fair in
the sense that Cov(ŷ, s) approaches zero as n → ∞. Al-
though such a regressor maximizes fairness, it sacrifices the
predictive power that stems from s. Instead, the rest of this
paper maximizes the predictive power of ŷ subject to a user-
defined level of fairness. Given asymptotically fair features
u, the next section defines the coefficient of determination,
which measures the explainable power of s over ŷ.

2.2. Coefficient of Determination

The coefficient of determination (CoD) is widely used to
measure the predictive power of features to a target variable.
Here, our interest lies in measuring the contribution of s to
the estimator ŷ of the target variable y. Namely, let

ŷ = s⊤α+ u⊤β

be the estimator of y. Given s and u are zero-mean and
not correlated to each other, the best estimator of ŷ by us-
ing only non-sensitive features u is ȳ = u⊤β in view of
the mean squared error. The variance of ŷ is α⊤Vsα +
β⊤Vuβ, where Vs ∈ Rds×ds and Vu ∈ Rdx×dx are the
covariances of s and u, respectively. Morevoer, the vari-
ance of ŷ − ȳ is α⊤Vsα. The CoD (or the R-squared) of
sensitive attribute s over ŷ is defined as

R2 =
Var(ŷ − ȳ)

Var(ŷ)
=

α⊤Vsα

α⊤Vsα+ β⊤Vuβ
.

CoD and the correlation coefficient: Let there be only
one sensitive attribute (i.e. s, α ∈ R and Vs = Var(s)).
In this case, CoD matches the correlation coefficient: The
correlation coefficient ρ(ŷ, s) is transformed as

ρ(ŷ, s) =
Cov(ŷ, s)√
Var(ŷ)Var(s)

=
αVar(s)√

α⊤Vsα+ β⊤Vuβ
√
Var(s)

=
α
√
Vs√

α⊤Vsα+ β⊤Vuβ
= R. (2.2)
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Note also that, the mean difference (MD) (Calders et al.,
2013) is very similar to the correlation coefficient with bi-
nary s (See Appendix D). In summary, CoD is a multi-
attribute generalization of the correlation coefficient for
vector s in the least square regression.

2.3. Least Square Regression with Coefficient of
Determination Constraints

In this paper, we consider the least square regression with
CoD constraint. Namely,

min E[(y − ŷ)2]

s.t. R2 ≤ ϵ, (2.3)

where ϵ ∈ [0, 1] is a user-defined value that determines how
fair the estimator is. The value ϵ = 0 corresponds to a fully
fair regressor, whereas ϵ = 1 corresponds to a completely
fairness-ignorant regressor that solely maximizes the pre-
dictive power.

3. Optimization
The optimization problem in Eqn. (2.3) is equivalently writ-
ten as:

min α⊤Vsα+ β⊤Vuβ − 2(E[ys⊤α] + E[yu⊤β])

s.t. (1− ϵ)α⊤Vsα− ϵβ⊤Vuβ ≤ 0, (3.1)

where Vs,Vu, and the expectations are taken with the
true data generating distribution. Given limited num-
ber of training datapoints, we replace them with the em-
pirical analogues. That is, the (l,m)-entry of Vs is
(1/n)

∑n
i=1 s

(l)
i s

(m)
i , where we assume that s is normal-

ized to be zero-mean. Let qs = En[ys] ∈ Rds , and
qu = En[yu] ∈ Rdx , where En is a sample mean such as
En[ys] = (1/n)

∑n
i=1 yisi. Then, the optimization prob-

lem (3.1) is explicitly written as:

min
α,β

[
α⊤β⊤] [Vs 0

0 Vu

] [
α
β

]
− 2

[
q⊤
s q⊤

u

] [α
β

]
s.t.

[
α⊤β⊤] [(1− ϵ)Vs 0

0 −ϵVu

] [
α
β

]
≤ 0,

(3.2)

where we use 0 to denote a matrix block of zeros.

For ease of discussion, we assume the following condition:

Assumption 1. (Regularity condition) Covariance matri-
ces Vs and Vu are full rank.

We may expect that Assumption 1 always holds because we
may remove some of the redundant features if the assump-
tion is violated. Note that Assumption 1 implies the exis-
tence of an interior solution: {(α,β) : (1 − ϵ)α⊤Vsα −

ϵβ⊤Vuβ < 0} ̸= ∅. The optimization problem (3.2) is
nonconvex due to the negative definiteness of the lower
right block −ϵVu of the quadratic constraints. In the rest
of this section, we propose two methods for solving this
problem. The first one solves the Lagrangian dual problem,
which boils down to a semidefinite programming (SDP).
Unfortunately, solving SDP does not always give the so-
lution of the original problem. The second method exploits
the structure of the quadratically constrained quadratic pro-
grams (QCQP) and makes it convex. From this optimiza-
tion we can recover the solution of the original problem un-
like the SDP-based method. Note that, both methods give
the exact optimal objective value to the target optimization
problem as shown later in Sections 3.1 and 3.2.

3.1. Lagrangian Dual and SDP-based Optimization

The Lagrangian dual problem of (3.1) is written as

max
ξ≥0

ϕ(ξ), (3.3)

where ϕ(ξ) is the optimal function defined as

ϕ(ξ)=min
α,β

[
α⊤β⊤] [Vs 0

0 Vu

] [
α
β

]
− 2

[
q⊤
s q⊤

u

] [α
β

]
+ ξ

[
α⊤β⊤] [Vs 0

0 −ϵVu

] [
α
β

]
.

The biggest advantage in considering the Lagrangian dual
lies in the convexity of the optimal value function ϕ(ξ) even
though the original problem is nonconvex. Although a La-
grangian dual has a duality gap in general, the following
theorem, which is well-known in the context of the control
theory, assures the inexistence of the duality gap.

Theorem 2. (No duality gap, Theorem 1 in Sturm & Zhang
2003) Under Assumption 1, the original optimization (3.2)
and its Lagrangian dual (3.3) gives the same optimal value.

Moreover, a standard discussion on the Schur complement
(details are in Appendix A) boils the problem down to the
following equivalent optimization

max
γ,ξ

γ

s.t.

 0 −q⊤
s −q⊤

u

−qs Vs 0
−qu 0 Vu

− γ

1 0 0
0 0 0
0 0 0


+ ξ

0 0 0
0 (1− ϵ)Vs 0
0 0 −ϵVu

 ⪰ 0, ξ ≥ 0, (3.4)

where ⪰ 0 denotes the positive-definiteness of a matrix.
Solving (3.4) only yields the Lagrange coefficient that is



Nonconvex Optimization for Regression with Fairness Constraints

not very useful. Instead, we solve the following dual prob-
lem of (3.4) defined as the optimization over a matrix
A ∈ R(1+ds+dx)×(1+ds+dx):

max
A⪰0

 0 −q⊤
s −q⊤

u

−qs Vs 0
−qu 0 Vu

 ·A

s.t. λ

0 0 0
0 (1− ϵ)Vs 0
0 0 −ϵVu

 ·A ≤ 0,

1 0 0
0 0 0
0 0 0

 ·A = 1, (3.5)

where A · B :=
∑

i,j Ai,jBi,j is the element-wise inner
product between matrices. Note that Assumption 1 implies
the existence of the interior of the feasible region, which
leads to the Slater condition of (3.4). As is well-known, the
Slater condition suffices for a large class of (possibly non-
convex) optimizations including our ones to have no duality
gap, thus leads the following theorem.

Theorem 3. Under Assumption 1, optimization (3.4) and
its dual (3.5) gives the same objective value.

In summary, the original optimization problem (2.3) boils
down to solving (3.5), which is a semidefinite optimization
that off-the-shelf solvers can deal with.

3.2. Convex QCQP Optimization

Although solving the dual of SDP in (3.5) yields the exact
objective value, it does not always yield an exact solution of
the original problem. If the solution is rank-one, decompos-
ing the solution of SDP into A = θθ⊤ recovers the desired
solution of α,β. Moreover, how A is close to rank-one can
be verified by conducting the singular value decomposition
(SVD) to A and checking whether or not the second and
subsequent eigenvalues are sufficiently small or not. Even
if the solution is not exactly rank-one, one can still consider
the first eigenvalue and the corresponding eigenvector as
an approximated solution by using SVD3. However, such
a solution possibly violates the constraint of the original
problem, and recovering a solution that complies with the
constraint is hard when A is not rank-one. Note that the
interior-point method, which is used in solving SDP, tends
to find an interior point that is not rank-one solution. Tak-
ing the above discussion into consideration, we also pro-
pose another optimization method.

The original problem (3.2) is nonconvex QCQP and easily
converted into the following equivalent optimization:

3Conducting SVD yields a primal eigenvalue λ and the corre-
sponding eigenvector v ∈ R1+ds+dx . The solution (α,β) is the
last ds + dx dimension of −

√
λv.

min
α,β,γ

γ

s.t.
[
α⊤β⊤] [Vs 0

0 Vu

] [
α
β

]
− 2

[
q⊤
s q⊤

u

] [α
β

]
− γ ≤ 0,

[
α⊤β⊤] [(1− ϵ)Vs 0

0 −ϵVu

] [
α
β

]
≤ 0. (3.6)

The following theorem, which is derived in the context of
global optimization (Yamada & Takeda, 2018), converts the
nonconvex QCQP into a convex QCQP:

Theorem 4. (Reduction to a convex problem) Assume that
there exist at least one (α,β) such that (1− ϵ)α⊤Vsα−
ϵβ⊤Vuβ < 0. Then, the feasible region of the following
relaxed problem is the convex hull of the feasible region of
(3.6):

min
α,β,γ

γ

s.t.
[
α⊤β⊤] [Vs 0

0 Vu

] [
α
β

]
− 2

[
q⊤
s q⊤

u

] [α
β

]
− γ ≤ 0,

[
α⊤β⊤] [ 1

ϵVs 0
0 0

] [
α
β

]
− 2

[
q⊤
s q⊤

u

] [α
β

]
− γ ≤ 0.

(3.7)

Proof sketch of Theorem 4. Note that the second constraint
in (3.7) is a linear combination of the two constraints of
(3.6), which implies that the feasible region of (3.7) in-
cludes the feasible region of (3.6). For each feasible point
(α0,β0, γ0) of (3.7) that is infeasible in (3.6), we explic-
itly construct two points that lie in the feasible region of
(3.6) such that (α0,β0, γ0) is a linear combination of the
two points. The formal proof follows directly from Theo-
rem 2 in Yamada & Takeda (2018) by putting t = γ, x =
(α,β), σ = 0, σ = 1/ϵ.

Note that that Assumption 1 implies the conditions required
in Theorem 4. The linearity of the objective, combined
with Theorem 4 states that solving (3.7) yields an optimal
solution of (3.6).

In summary, Theorem 4 allows us to relax the constraint so
that the new feasible region is convex without compromis-
ing its objective value. As a result, (3.7), which is a convex
QCQP, is computed efficiently by off-the-shelf optimizers.

3.3. Computational Complexity

The proposed optimization runs in time O(n): Building U
requires O((d2sn + d3s)dx) time because for each feature
in x we train a linear regressor from s to x that yields
each feature of u. Moreover, optimization in SDP and
convex QCQP requires empirical variance Vs and Vu that
are computed in O((d2x + d2s)n). The sizes of matrices in
SDP and QCQP are O((dx + ds) × (dx + ds)), which is
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constant to n. One can check that the required memory is
O((dx + ds)

2 + (dx + ds)n).

Note that, the interior point method is known as a
polynomial-time method for finding solutions for SDPs
and convex QCQPs with arbitrary precision. The complex-
ity of SDP and convex 2-QCQP are O((ds + dx)

3.5) and
O((ds + dx)

3), respectively (see Section 6.6.1 in Ben-Tal
& Nemirovskiaei 2001). In practice, our simulation in Ap-
pendix B shows SDP and convex QCQP appear to scale
more similarly to O((ds + dx)

2) around 10 ≤ ds + dx ≤
3, 000, which is not very surprising because many instances
scale better than the worst-case.

3.4. Regularization

It is straightforward to add a regularizer into our optimiza-
tion problem described in Section 3: That is, we can in-
corporate regularization term (λ/n)(αTα+ β⊤β), where
a larger λ > 0 induces a stronger regularization toward
smaller parameters. The regularizer increases the diagonal
entries as Vs + (λ/n)Is and Vu + (λ/n)Iu, and does not
change positive definite property of Vs and Vu.

3.5. Approximated Kernelization

The kernelized least squared regression with fairness con-
straint is formalized as follows. Let Zs(s) (resp. Zu(u))
be the functions that map s (resp. u) into high-dimensional
spaces, and Ks(si, sj) = Z⊤

s (si)Zs(sj) ∈ R (resp.
Ku(ui,uj) = Z⊤

u (ui)Zu(uj) ∈ R) be the corresponding
positive-definite kernel functions. The representer theorem
implies that the estimator ŷi of datapoint i is written as a
linear combination of the kernel functions as

ŷi =

n∑
j=1

cj,sKs(si, sj) + cj,uKu(ui,uj),

where cj,s, cj,u ∈ R are the weight parameters associated
with each datapoint j. With an abuse of notation, let Ks

and Ku be the corresponding n×n matrices, and cs, cu be
corresponding size-n vectors. Let

Ss = c⊤s K
2
scs,

Su = c⊤uK
2
ucu,

ss = c⊤s Ksy,

su = c⊤uKuy, (3.8)

then the corresponding optimization is:

min Ss + Su − 2ss − 2su

s.t. (1− ϵ)Ss − ϵSu ≤ 0. (3.9)

Unfortunately, the following two issues make the optimiza-
tion in (3.9) impractical: (i) As is customary with kernel

Table 1. Statistics of the datasets. The value d = ds + dx is the
number of attributes (after expanding categorical attributes into
dummies), and n is the number of datapoints. s(1) and s(2) are the
first and second sensitive attributes of each dataset, respectively.
We consider the C&C datasets, which is a classification dataset,
as a regression with y ∈ {−1, 1}.

datasets d n s(1) s(2)

C&C 102 1,994 race origin
Compas 12 5,855 gender race
NLSY 22 7,244 gender age
LSAC 19 20,798 race age

learning, solving (3.9) is computationally prohibiting with
large n because the corresponding optimizations involve
O(n × n) matrices. Moreover, (ii) removing the correla-
tion between s and u on the (possibly infinite) representa-
tion space Zs(s) and Zu(u) is highly non-trivial.

To address the issues above, an approximated kernel
representation methods apply: Nyström methods (Ras-
mussen & Williams, 2006) and the random Fourier fea-
tures (Rahimi & Recht, 2008) provide us a finite represen-
tation of Ks(si, sj) = Z⊤

s (si)Zs(sj) and Ku(ui,uj) =
Z⊤
u (ui)Zu(uj). With these representation we no longer

use the gram matrices Ks and Ku: We solve the origi-
nal optimization (3.2) with converted features Z⊤

s (si) and
Z⊤
u (ui). Moreover, to remove the correlation between s

and u, we first map x into the representation space Zu(x),
and then remove correlation between Zs(s) and Zu(x)
by applying linear regression on the finite representation
space. Assuming that the dimension of Zs (resp. Zu) is
ps (resp. pu), the new optimization involves matrices of
O((ps + pu)× (ps + pu)). Therefore, if we choose ps, pu
as constants with respect to n, the optimizations scale with
a large dataset.

4. Experiment
This section verifies the performance of the proposed
method in four real-world datasets.

Computation environment: The simulation here was con-
ducted by using modern Xeon-core PC servers4. Prelim-
inary experiment (Appendix B) revealed that the running
times of SDP and convex QCQP optimization are more or
less the same. Taking the fact that the convex QCQP always
yields an exact solution into consideration, we adapted it in
the subsequent simulations. We solved the convex QCQP
optimization by using the Gurobi optimizer5.

4The source code used in the simulation is available at
https://github.com/jkomiyama/fairregresion.

5http://www.gurobi.com/



Nonconvex Optimization for Regression with Fairness Constraints

(a) C&C (ϵ-RMSE) (b) C&C (Corr. Race dist.-RMSE) (c) C&C (Corr. Origin dist.-RMSE)

(d) COMPAS (ϵ-RMSE) (e) COMPAS (Corr. Gender-RMSE) (f) COMPAS (Corr. Race-RMSE)

(g) NLSY (ϵ-RMSE) (h) NLSY (Corr. Gender-RMSE) (i) NLSY (Corr. Age-RMSE)

(j) LSAC (ϵ-RMSE) (k) LSAC (Corr. Race-RMSE) (l) LSAC (Corr. Age-RMSE)

Figure 2. Figures in the left column show the relation between RMSE as a function of the user-defined fairness level ϵ (smaller is more
fair), whereas the figures in the center (resp. the right) columns show RMSE as a function of the correlation coefficient between s(1) (resp.
s(2)) and ŷ. “Linear” is the optimization of Eqn. (3.1) solved by the QCQP method. “Kernel-rff-full” is the the kernelized optimization
where the representations Zs(s) and Zu(u) were approximated by using the random Fourier features. We made the dimensions of Zs(s)
and Zu(u) ten times larger than that of the original dimension. “Kernel-rff-half” is a midway between “Linear” and “Kernel-rff-full” in
which only u was kernelized (i.e., we used s and Zu(u)). We also show RMSE as a function of the mean difference (MD) and the area
under the curve (AUC) (Calders et al., 2013) in Appendix D, which behaved similarly to the correlation coefficients.
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Datasets: The Communities and Crime (C&C) dataset
combines socio-economic data and crime rate data on com-
munities in the United States where each datapoint corre-
sponds to a community. The target y is the normalized vi-
olent crime rate of each community and s(1), s(2) are the
ratio of African American people and foreign-born people,
respectively. The COMPAS dataset (Angwin et al., 2016) is
a collection of criminal offenders screened in Florida U.S.
during 2013–2014, where x is a demographic and criminal
records of offenders and y is whether or not a person recidi-
vated within two years after the screening, and s(1), s(2)

are the gender and race, respectively. The National Lon-
gitudinal Survey of Youth (NLSY) dataset6 involves sur-
vey results of the U.S. Bureau of Labor Statistics that is
intended to gather information on the labor market activi-
ties and other life events of several groups, where y is the
income of each person in 1990 and s(1), s(2) are the gender
and age, respectively. The Law School Admissions Coun-
cil (LSAC) dataset7 is a survey among students attending
law schools in the U.S. in 1991, where y indicates the GPA
score of each student, and s(1), s(2) are the race and the
age, respectively. Statistics of the datasets are in Table 1,
and further details of the datasets are in Appendix C.

Evaluation settings: We split the data into 5-folds: One
was for validation dataset that was used to optimize the hy-
perparameters, and another was for the test dataset. The
resting three folds were the training dataset. All the re-
ported results are the ones of the test dataset averaged over
the 5 runs with different choices of the folds. The fea-
tures u were built from x by de-correlating it from s by
using regularized least square regression. The hyperparam-
eters were optimized in validation datasets among λ =
{1.0, 10.0, 100.0} and γ = {0.1, 1.0, 10.0, 100.0}, where
γ was the hyper-parameter of the RBF kernel K(x,y) =
exp(−γ(x− y)2).

4.1. Results

Figure 2 shows the results of our simulations. The fol-
lowing summarizes our observation: (i) In all datasets,
there was a clear tradeoff between the predictive power
(i.e., RMSE) and the degree of fairness measured by ϵ.
(ii) The advantage of non-linear representation varied: In
C&C and NLSY, the linear method performs as good as the
two kernelized methods, whereas in COMPAS and LSAC
the kernel methods significantly outperformed the linear.
(iii) The correlation coefficient was saturated at some point
to which the predictive power of s is fully utilized. (iv)
While two kernel methods performed similarily in the first
three datasets, “Kernel-rff-full” significantly outperformed
“Kernel-rff-half” in the LSAC dataset. In other words, the

6https://www.bls.gov/nls/
7http://www2.law.ucla.edu/sander/Systemic/Data.htm

advantage of the non-linear sensitive attributes s was ob-
served in LSAC: This dataset involved a numeric sensitive
attribute (i.e., age) from which the method exploited the
non-linear relationship between s and y. (v) The corre-
lation between s(l) and y varied among sensitive features
{s(1), s(2)}: For example, in the NLSY dataset, gender was
more predictive than age, and thus the regressor exploited
more on the former attribute than the latter.

5. Conclusion
We have focused on the optimization perspective of fair re-
gression. We considered CoD that is a natural extension of
the correlation coefficient into multiple sensitive attributes
as a fairness criterion. Although the least square regressor
subject to a CoD constraint involves a nonconvex feasible
region, it boils down to exactly-solvable convex optimiza-
tions. The proposed method has the following aspects: (i)
The exact control on the fairness level as a constraint, (ii) a
capability of dealing with numeric and multiple s and (iii)
an extension that captures non-linear interaction between
sensitive and non-sensitive attributes. We consider this re-
sult as a first step that controls the nonconvexity that natu-
rally appears in considering fairness related constraints.

While the prevention of disparate impact is justified by the
legal contexts, some alternative criteria of fairness, such
as the equality odds condition (Hardt et al., 2016; Zafar
et al., 2017b), have been proposed. Considering them as a
constraint would be interesting.
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Fair boosting: a case study. In Workshop on Fairness,
Accountability, and Transparency in Machine Learning
(FATML), 2015.

Fukuchi, Kazuto, Sakuma, Jun, and Kamishima, Toshi-
hiro. Prediction with model-based neutrality. In Machine
Learning and Knowledge Discovery in Databases - Eu-
ropean Conference, ECML PKDD, pp. 499–514, 2013.

Goh, Gabriel, Cotter, Andrew, Gupta, Maya R., and Fried-
lander, Michael P. Satisfying real-world goals with
dataset constraints. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neural
Information Processing Systems, pp. 2415–2423, 2016.

Gretton, Arthur, Bousquet, Olivier, Smola, Alexander J.,
and Schölkopf, Bernhard. Measuring statistical depen-
dence with hilbert-schmidt norms. In Algorithmic Learn-
ing Theory, 16th International Conference, ALT 2005,
Singapore, October 8-11, 2005, Proceedings, pp. 63–77,
2005.

Hardt, Moritz, Price, Eric, and Srebro, Nati. Equality of op-
portunity in supervised learning. In Advances in Neural
Information Processing Systems 29: Annual Conference
on Neural Information Processing Systems, pp. 3315–
3323, 2016.

Kamiran, Faisal and Calders, T. Classification with no dis-
crimination by preferential sampling. In The annual ma-
chine learning conference of Belgium and The Nether-
lands (BENELEARN), 01 2010.

Kamishima, Toshihiro, Akaho, Shotaro, Asoh, Hideki, and
Sakuma, Jun. Fairness-aware classifier with prejudice re-
mover regularizer. In Machine Learning and Knowledge

https://www.propublica.org/
https://www.propublica.org/


Nonconvex Optimization for Regression with Fairness Constraints

Discovery in Databases - European Conference, ECML
PKDD, pp. 35–50, 2012a.

Kamishima, Toshihiro, Akaho, Shotaro, Asoh, Hideki, and
Sakuma, Jun. Enhancement of the neutrality in recom-
mendation. In Proceedings of the 2nd Workshop on Hu-
man Decision Making in Recommender Systems, pp. 8–
14, 2012b.

Kamishima, Toshihiro, Akaho, Shotaro, Asoh, Hideki, and
Sato, Issei. Model-based approaches for independence-
enhanced recommendation. In IEEE International Con-
ference on Data Mining Workshops, pp. 860–867, 2016.

Pardalos, Panos M. and Vavasis, Stephen A. Quadratic pro-
gramming with one negative eigenvalue is np-hard. J.
Global Optimization, 1(1):15–22, 1991.
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