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Abstract. Efficient discovery of interesting patterns using parallel algorithms is
an actively studied topic in data mining. A key research issue related to this topic
is data segmentation, which influences the overall computational requirements of
an algorithm. This paper makes an effort to address this issue in correlated pat-
tern mining. Two novel data segmentation techniques, ‘database segmentation’
and ‘transaction segmentation,’ have been introduced to discover the patterns ef-
ficiently. The former technique involves segmenting the database into multiple
sub-databases such that each sub-database can be mined independently. The latter
technique involves segmenting a transaction into multiple sub-transactions such
that each sub-transaction can be processed as an individual transaction. The pro-
posed techniques are algorithm independent, and therefore, can be incorporated
into any parallel algorithm to find correlated patterns effectively. In this paper,
we introduce map-reduce based pattern-growth algorithm by incorporating the
above mentioned techniques. Experimental results demonstrate that the proposed
algorithm is memory and runtime efficient and highly scalable as well.

Keywords: data mining, knowledge discovery in databases, parallel algorithms,
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1 Introduction

Frequent pattern mining is an important model in data mining. Its mining algorithms
discover all patterns in the data that satisfy the user-specified minimum support (minSup)
constraint [1,2]. The popular adoption and successful industrial application of this model
has been hindered by the following obstacle: the frequent pattern model involves ex-
ponential mining space and often generates a huge number of patterns. To confront
this problem, researchers have introduced correlated pattern mining [3]. It is because
the users may be interested in not only the frequent occurrences of sets of items, but
also their possible strong correlations implied by such co-occurrences. The usefulness



of correlated patterns was demonstrated in many applications such as climate studies,
public health and bioinformatics.

In the literature, researchers have discussed several measures to assess the interest-
ingness of a pattern. Examples include all-confidence [4], any-confidence [4], lift [3],
bond [4], h-confidence [5] and relative support [6]. Each measure has a selection bias
that justifies the significance of a knowledge pattern. As a result, there exists no uni-
versally acceptable best measure to judge the interestingness of a pattern for any given
database or application. Researchers are making efforts to suggest a right measure de-
pending upon the user and/or application requirements [7,8].

Recently, all-confidence is emerging as a popular measure to discover correlated
patterns [9,10,11]. It is because this measure satisfies both the anti-monotonic and null-
invariance properties. The former property says that “all non-empty subsets of a cor-
related pattern must also be correlated.” This property plays a key role in reducing the
search space, which in turn decreases the computational cost of mining the patterns.
In other words, this property makes the pattern mining practicable in real-world appli-
cations. The latter property discloses genuine correlation relationships without being
influenced by the object co-absence in a database. In other words, this property facil-
itates the user to discover interesting patterns involving both frequent and rare items
without generating a huge number of uninteresting patterns. In this paper, we focus on
finding correlated patterns using the all-confidence measure.

The basic model of correlated patterns is as follows [9]: Let I = {i1, i2, · · · , in}, n≥ 1,
be a set of items, and T DB be a database that consists of a set of transactions. Each
transaction T contains a set of items such that T ⊆ I. Each transaction is associated
with an identifier, called T ID. Let X ⊆ I be a set of items, referred as an itemset (or
a pattern). A pattern that contains k items is a k-pattern. A transaction T is said to
contain X if and only if X ⊆ T . The support of a pattern X in T DB, denoted as S(X), is
the number of transactions in T DB containing X . The pattern X is a frequent pattern
if S(X) ≥ minSup, where minSup represents the user-specified minimum support. The
all-con f idence of a pattern X , denoted as all-con f (X), can be expressed as the ratio
of its support to the maximum support of an item within it. That is, all-con f (X) =

S(X)
max(S(i j)|∀i j∈X) . A pattern X is said to be all-con f ident or associated or correlated
if S(X) ≥ minSup and all-con f (X) ≥ minAllCon f , where minAllCon f represents the
user-specified minimum all-confidence.

Example 1. Consider the transactional database shown in Table 1. The set of items
I = {a,b,c,d,e, f ,g,h, i, j}. The set of items ‘a’ and ‘b,’ i.e., {a,b} (or ab) is a pat-
tern. This pattern contains 2 items. Therefore, it is a 2-pattern. The pattern ab oc-
curs in 7 transactions. Henceforth, the support of ‘ab,’ i.e., S(ab) = 7. If the user-
specified minSup = 3, then ‘ab’ is a frequent pattern because S(ab) ≥ minSup. The
all-con f idence of ‘ab,’ i.e., all-con f (ab) = S(ab)

max(S(a),S(b)) =
7

max(10,9) = 0.7. If the user-
specified minAllCon f = 0.7, then the frequent pattern ‘ab’ is a correlated pattern be-
cause all-con f (ab)≥ minAllCon f .

Lee et al. [9] discussed a pattern-growth algorithm, called CoMine, to find all corre-
lated patterns in a transactional database. Uday et al. [12] have described an improved
CoMine algorithm based on the property of items’ support intervals. This property says



Table 1: Transactional Database
TID Items

1 abce
2 ace
3 ab f gh
4 ab f

TID Items
5 abcde
6 ab
7 bcdi
8 ad j

TID Items
9 ab f g

10 a j
11 abcd
12 b f gh

that each item in the database can generate correlated patterns of higher order by com-
bining with only those items that have support within a particular interval. Both CoMine
and CoMine++ are sequential algorithms, and do not exploit the availability of multiple
machines or the presence of multiple cores in a machine for computation.

A Map-Reduced framework to exploit the power of thousands of machines is pro-
posed in [13]. Encouraged by the power of Map-Reduce paradigm, researchers are mak-
ing efforts to propose parallel algorithms to find frequent patterns under Map-Reduce
framework [14,15]. These parallel frequent pattern mining algorithms can be extended
to mine correlated patterns. However, it was revealed in our investigation that such
naive algorithms are inefficient because they do not take into account the properties of
all-confidence measure. In this paper, we make an effort to develop an efficient paral-
lel correlated pattern mining algorithm by utilizing the properties of all-confidence and
Map-Reduce framework.

A key research issue in developing an efficient parallel algorithm is the data seg-
ment, which influences the overall computational cost of mining the correlated patterns.
Two novel data segmentation techniques, ‘database segmentation’ and ‘transaction seg-
mentation,’ have been introduced to address this issue. The former technique involves
grouping the items with respect to their supports and splitting the whole database into
multiple sub-databases such that each sub-database can be mined independently without
missing any correlated pattern. This technique enables us to efficiently distribute data
across multiple machines. The second technique involves splitting a transaction into
multiple sub-transactions such that each sub-transaction can be treated and processed as
an independent transaction. Both techniques are based on the concept of items’ support
intervals, and are independent of the mining algorithm. Using the proposed techniques
and Map-Reduce framework, we introduce a parallel algorithm, called Parallel Cor-
related Pattern-growth (PCP-growth), to find correlated patterns. Experimental results
demonstrate that PCP-growth is memory and runtime efficient.

The rest of the paper is organized as follows. Section 2 describes the related work
on parallel algorithms and correlated pattern mining. Section 3 introduces the proposed
data segmentation techniques. Section 4 describes the proposed PCP-growth algorithm.
Experimental results are reported in Section 5. Finally, Section 6 concludes the paper
with future research directions



2 Related Work

2.1 Frequent pattern mining

Since the introduction of frequent patterns, several algorithms have been discussed to
find these patterns efficiently [1,2,14,15]. Two popular frequent pattern mining algo-
rithms are Apriori [1] and Frequent Pattern-growth (FP-growth) [2]. Apriori employs
a candidate-generate-and-test approach to find frequent patterns, while FP-growth em-
ploys pattern-growth approach to find frequent patterns. It has been argued in the litera-
ture that FP-growth is typically better than the Apriori because the latter suffers from the
performance issues such as generating huge number of candidate patterns and requiring
multiple scans on the database. Both Apriori and FP-growth are sequential algorithms
that suffer from memory issues when employed on very large databases.

Pramudiono et al. [16] proposed a distributed FP-Growth algorithm by taking into
account a cluster of machines. Li et al. [14] proposed a Parallel FP-Growth algorithm
(PFP-growth) using Map-Reduce framework. Xun et al. [15] improved the performance
of PFP-growth by compressing the data into FUI-tree rather than the FP-tree. This algo-
rithm is known as FiDoop. It has to be noted that all of the above mentioned algorithms
focuses on finding frequent patterns using minSup. These algorithms can be extended to
find correlated patterns using all-confidence measure. However, such naive algorithms
are inefficient as they do not take into account the properties of all-confidence measure.

2.2 Correlated pattern mining

Brin et al. [3] introduced correlated pattern mining using li f t and χ2 as the interest-
ingness measures. Lee et al. [9] have shown that correlated patterns can be effectively
discovered with all-confidence measure as it satisfies both null-invariance and down-
ward closure properties. An FP-growth-like algorithm, called CoMine, was discussed
to find the patterns. A variant of CoMine, CCMine [10], was proposed to discover
confidence-closed correlated patterns. Kim et al. [11] have made an effort to discover
top-k correlated patterns using the measures that satisfy the null-invariance property.
Since some of the null-invariant measures (e.g. cosine) do not satisfy the anti-monotonic
property, an Apriori-like algorithm was discussed to find the patterns. Uday et al. [12]
discussed CoMine++ based on the concept of items’ support intervals. This concept
will be discussed in latter parts of this paper. All of the above mentioned algorithms
are sequential algorithms. This paper focuses on developing parallel correlated pattern
mining algorithm.

In the next section, we describe novel data segmentation techniques for distributing
data across multiple machines in a network efficiently.

3 Proposed Data Segmentation Techniques

3.1 Items’ Support Intervals

Uday et al. [12] introduced the property of items’ support intervals to find correlated
patterns effectively. This property is based on Apriori property (See Property 1) [1] and
is defined as follows:



Property 1. Apriori Property. If X ⊂ Y , then S(X)≥ S(Y ).

Definition 1. The support interval of an item i j (SI(i j)). An item i j ∈ I can generate
correlated patterns of higher order by combining with only those items that have sup-

port within the interval
[

max
(

S(i j)×minAllCon f ,minSup
)
,max

(
S(i j)

minAllCon f ,minSup
)]

.

Thus, the support interval of i j, denoted as SI(i j)=

[
max

(
S(i j)×minAllCon f ,minSup

)
,

max
(

S(i j)
minAllCon f ,minSup

)]
.

The correctness of this property is given in [12]. Example 2 illustrates this property.

Example 2. In Table 1, the item ‘c’ has support of 5. If the user-specified minSup = 3
and minAllCon f = 0.7, then the support interval of ‘c’ is [4,7] (= [max(3.5,3),max(7,3)]).
It means ‘c’ can generate correlated patterns of higher order by combining with only
those items that have support within the interval [4,7]. If ‘c’ combines with items hav-
ing support not within its support interval, then Apriori property [1] causes the resulting
pattern to have allCon f < minAllCon f or sup < minSup or both. For instance, ‘c’ can-
not generate correlated pattern by combining with ‘b’, whose support of 9 doesn’t lie
within the support interval of ‘c’. The reason is, S(bc)≤minSup (Apriori Property), and
thus allCon f (bc)< minAllCon f . The support intervals of all frequent items in Table 1
are shown in Table 2.

Table 2: The support intervals (SI) and group ids (GI) of all frequent items in Table 1
Item Support SI GI Item Support SI GI

a 10 [7,14] 1 f 4 [3,5] 2
b 9 [7,12] 1 e 3 [3,4] 2
c 5 [4,7] 2 g 3 [3,4] 2
d 4 [3,5] 2

We now introduce data segmentation techniques based on the above mentioned
items’ support intervals. Please note that the proposed techniques are novel to this paper
and have not been used in CoMine++ algorithm [12].

3.2 Data segmentation techniques

Data segmentation plays a key role in parallel algorithms. It influences: (i) overall mem-
ory and runtime requirements of an algorithm and (ii) communication cost across the
machines. We now describe two data segmentation techniques to discover correlated
patterns effectively.

1. Database segmentation. In the database segmentation, we initially group the items
such that items within a group will not generate correlated patterns by combining with
the items in other groups. Next, we split the given database into sub-databases such



that each sub-database contains items of a specific group. This approach of splitting
the database facilitates us to mine each sub-database independently to find correlated
patterns. If there are m groups of items, then there will be m sub-databases as each sub-
database contains items of a particular group. The m value depends on the distribution
of items’ support values and the user-specified minAllCon f and minSup values. We
now describe grouping of items.

Algorithm 1 DatabaseSegmentation(T DB, minSup, minAllCon f )
1: Scan the database to determine the support and support interval of items. Next, sort all items

in descending order of their support. Let I denote the sorted list of items. Let S(ip) denote
the support of an item i and p representing its position (or rank) in the list. SIip [a,b], a,b∈ R,
denote the support interval of item ip. Let G(ip) denote the group id of item ip.

2: Set group id = 1 and G(i0) = 1.
3: for p = 0; p < I.size()−1; ++ p do
4: if S(ip)< SIip+1 .b then
5: set G(ip+1) = group id.
6: else
7: ++group id;
8: G(ip+1) = group id.

9: Split the database with respect to items’ group.

Definition 2. Group of items (GI). Let I = {i1, i2, · · · , in}, n ≥ 1, be the set of sorted
items such that S(i1)≥ S(i2)≥ ·· · ≥ S(in). Let GI⊆ I be a maximal set of items such that
the support of an item ip ∈ GI lies within the support interval of its subsequent item in
GI. That is, GI ⊆ I, such that if ip, ip+1 ∈GI, then S(ip) ∈ SI(ip+1), 1≤ p < (|GI|−1).

Example 3. In Table 2, it can be observed that the support of ‘a’ lies within the support
interval of ‘b’, whereas b’s support does not lie within the support interval of c. So we
consider ‘a’ and ‘b’ as one group of items. Similarly, we consider ‘c’, ‘d’,‘e’,‘ f ’ and ‘g’
as another group of items. Thus, the set of frequent items in Table 1 can be divided into
two disjoint groups, i.e., GI1 = {a,b} and GI2 = {c,d,e, f ,g}. (For brevity, we have not
considered infrequent items in Table 1.)

Definition 3. Sub-database (SDB). Let GI1,GI2, · · · ,GIm be the set of disjoint group of
items such that GI1∪GI2∪·· ·∪GIm = I and GIp∩GIq = /0, p 6= q and p,q ∈ [1,m]. Let
SDBi ⊆ T DB, 1 ≤ i ≤ m, be the sub-database such that all items in SDBi belong to a
particular group GIi.

Example 4. Continuing with the previous example, the items’ groups provide useful
information that ‘a’ and ‘b’ will generate correlated patterns by combining between
themselves only. The same can be said about the remaining items. Thus, the given
database can be divided into two sub-databases as shown in Table 3 and Table 4. Each
of these sub-databases can be mined independently to discover correlated patterns.



The two main advantages of database segmentation are: (i) we can eliminate mining
of correlated patterns in sub-databases containing a single item and (ii) If a sub-database
contains two items, a single scan on the entire database finds all correlated patterns.
The algorithm for database segmentation is given in Algorithm 1. As the algorithm is
straight forward to understand, we are not describing the algorithm.

Table 3: Sub-database 1
id transaction id transaction id transaction
1 ab 5 ab 9 ab
2 a 6 ab 10 a
3 ab 7 b 11 ab
4 ab 8 a 12 b

Table 4: Sub-database 2
id transaction id transaction id transaction
1 ce 5 cde 9 f g
2 ce 6 − 10 −
3 f g 7 cd 11 cd
4 f 8 d 12 f g

2. Transaction segmentation After performing database segmentation, we have dis-
tributed sub-databases to various machines to discover correlated patterns. (We used a
variant of PFP-growth algorithm [14] to find correlated patterns in various machines.)
During this process, we have observed that some machines were taking more time to
output correlated patterns. Our investigation on the cause has revealed that the sub-
databases being executed in these machines actually contained long transactions, and
processing these long transactions increased the runtime. Therefore, we introduced
transaction segmentation to reduce the runtime requirements of a parallel algorithm.

Definition 4. Transaction segmentation. Let T = {i1, i2, · · · , im} ⊆ I, 1 ≤ m ≤ n, be a
transaction in a (sub-)database such that S(i1)≥ S(i2)≥ ·· · ≥ S(im). A sub-transaction
T1 = {ia, ia+1, · · · , ib} ⊆ T , 1 ≤ a ≤ b ≤ m is a maximal set of items such that S(ia) ∈
SI(ia+1). Thus, T = T1∪T2∪·· ·∪Tp, p≥ 1 and Tx∩Ty = /0, x,y ∈ [1, p] and x 6= y.

Example 5. Consider the first transaction ‘ce’ in Table 4. In this transaction, the support
of ‘c’ does not lie within the support interval of its neighboring item ‘e’. Henceforth,
this transaction can be further segmented though the items in this transaction belong to
the same group. In other words, the transaction ‘ce’ can be split into two independent
sub-transactions, ‘c’ and ‘e’. Please note that the fifth transaction ‘cde’ in Table 4 will
not be segmented because c’s support lies within the support interval of its neighboring
item ‘d’, and d’s support lies within the support interval of its neighboring item ‘e’.

The procedure for transaction segmentation is given in Algorithm 2. Since the algo-
rithm is straight forward to understand, we are not describing the algorithm.

Both techniques are algorithm independent, and therefore, can be used in any par-
allel algorithm (such as Apriori and FP-growth). More importantly, the proposed tech-
niques are network independent and therefore can be used in cluster computing, grid
computing and Map-Reduce framework. In this paper, we extend the proposed tech-
niques to develop efficient algorithm for Map-Reduce framework.

4 Proposed Algorithm: PCP-growth

The PCP-growth algorithm employs Map-Reduce framework to discover correlated pat-
terns effectively. The algorithm involves the following two steps: (i) finding frequent



Algorithm 2 TransactionSegmentation(SDB: sub-database, SI: support intervals of
items)
1: Output: ST=[] be the list of all sub-transactions
2: Let p = NULL
3: for each transaction t in SDB do
4: Sort the items in the transaction in descending order of supports.
5: for q=0; q < t.size()-1; ++q do
6: p += iq
7: if S(iq)> SIiq+1 .b then
8: ST.append(p) //Transaction t is split here and the sub-transaction p is added to ST
9: p = NULL

10: p += iq+1
11: ST.append(p)

items and their support intervals and (ii) mining all correlated patterns by constructing
FP-trees. We now discuss each of these steps.

Finding frequent items and their support intervals: First, the transactional database
is divided into multiple shards (partitions) and provided to worker machines. The num-
ber of shards generally depend on the available number of machines. In the map phase,
each worker machine scans the transactions one after another. For each transaction,
worker machine outputs key-value pairs with key as the item and value as 1 (format is
< item,1 >). In the reduce phase, all the pairs with the same key obtained from all the
worker machines are aggregated. Thus, supports for all the items present in the database
are calculated. The final list of frequent items, called FP-list, is obtained by filtering out
the items which do not satisfy the minSup threshold. After the master machine obtains
the FP-list, the items are sorted in decreasing order of their support values and assigned
ranks. The most frequent item is assigned a rank of 0, the second most frequent item
is assigned a rank of 1 and so on. Next, the support intervals for the frequent items
is calculated according to Definition 1. Next, items are assigned group ids such that
items within a group have support within the support interval of the subsequent item.
These group ids are later used for database segmentation. After this step, the master
node broadcasts the items’ support interval information to all the worker nodes in order
to facilitate transaction segmentation in the next step.
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Fig. 1: Stages of PCP-Growth algorithm. (a) Assigning group ids to the items and (b)
mining the patterns



Algorithm 3 Parallel FP-list Construction(T DB, minSup)
1: Procedure: Map(key = null,value = T DBi)
2: for each transaction tcur ∈ T DBi do
3: for each item it in tcur do
4: Output (it, 1)

1: Procedure: Reduce(key = it,value = 1)
2: sup = 0
3: for each it do
4: sup++
5: Output (it, sup)
6: if sup≥ minSup then
7: Add (it, sup) to FP-list

Example 6. The transactional database shown in Table 1 is divided into 3 partitions
and provided to worker machines. These worker machines determine the support val-
ues for all items using Map-Reduce framework. Next, frequent items are generated by
removing all items whose support is less than the user-specified minSup. The remaining
frequent items are sorted in descending order of their supports. Next, the support inter-
vals are calculated using the Definition 1. The items are now divided into groups using
items’ support intervals (Database Segmentation). The support intervals and group ids
for all the frequent items are shown in Table 2.

Construction and Mining of FP-trees: The number of machines available in the dis-
tributed network are divided according to the ratio of number of items present in the
groups. In the second database scan, for each transaction the items which are not present
in the FP-list are filtered and the remaining items are sorted in descending order of sup-
ports. Now, using the transaction segmentation technique discussed in Section 3.2, we
split the transaction into smaller transactions. The mining task of each item present
in an item group is assigned to one of the machines assigned to that group. The sub-
patterns (conditional transactions) for each sub-transaction are extracted and assigned
to a machine based on a hash function. Here, item is the last item in a sub-pattern.
Here, the assigned machine is stored in a hash-table for future look-up. The hash func-
tion gives a machine-id for which the pattern is responsible for further computation.
The sub-patterns for every sub transaction are generated and sent to the corresponding
machine. Each sub-pattern is emitted as a key-value pair, with key as the machine-id
and value as sub-pattern. If a machine is responsible for many sub-patterns of the same
transaction, only the longest sub-pattern is sent because the others can be derived from
it. Now, the reduce function is implemented with machine-id as key, hence all the con-
ditional transactions with same partition-id are processed at one machine. Independent
local FP-trees are constructed by inserting all the sub-patterns into the tree in the same
order as FP-list. The process of tree construction is same as FP-tree construction in [2].
Trees constructed on three different machines are shown in Figure 2. Since the trees are
constructed from the sub-patterns itself, during conditional pattern building, communi-
cation is not required between the machines.



Algorithm 4 PCP-Growth Algorithm(TDB, FP-list, SI)
1: Allocate machines in the distributed network to the Item Groups.
2: Procedure: Map(key = null,value = T DBi)
3: for each transaction tcur ∈ T DBi do
4: Filter the items that are not in FP-list and sort them.
5: Segment the transaction based on SI values. Let T ′ be the set of sub-transactions

obtained from tcur.
6: for each sub-transaction t ′ in T ′ do
7: for each item i′ in t ′ do
8: machine-id = getMachineId(i′)

1: Procedure: Reduce(key = machine-id,value = transactions)
2: Initialize FP-Tree, T
3: for tcur in transactions do
4: for item in tcur do
5: if T does not have child item then
6: Create a new node and link it to the parent node
7: Traverse to the child item
1: Procedure: Map(key = machine-id,value = FP-Tree)
2: for each suffix item i in FP-Tree do
3: if current machine-id is responsible for item i then
4: Generate prefix tree and conditional tree of i and mine recursively.

Example 7. The frequent items generated in the previous step (see Table 2) are as-
signed ranks in descending order of their support. That is, the most frequent item ‘a’
is assigned with rank 0, ‘b’ is assigned with rank 1 and so on. Consider the first trans-
action ‘abce’ in the first partition. Upon removing the infrequent items and sorting the
remaining items in decreasing order of their supports, the transaction is converted into
‘abce’. First, we perform database segmentation and split this transaction into two sub-
transactions ‘ab’ and ‘ce’ such that each sub-transaction belongs to a sub-database. In
the sub-transaction ‘ab’ the support of ‘a’ lies in the support interval of ‘b’. Therefore,
without performing transaction segmentation on this transaction, conditional patterns
are generated and sent to the machine(s) responsible for GI1. Now, let us consider the
sub-transaction ‘ce’. In this sub-transaction although the items ‘c’ and ‘e’ belong to
the same group, the support of ‘c’ does not lie in the support interval of ‘e’(or vice
versa). Therefore, we perform transaction segmentation and further split ‘ce’ into sub-
transactions ‘c’ and ‘e’.

Let the 3 machines in the distributed network be m0, m1 and m2. These machines
are distributed among the item groups GI1 and GI2. Assume m0 is allocated to GI1
and m1 and m2 are allocated to GI2. The sub-transactions for the transaction ‘abce’
are ‘ab’, ‘c’ and ′e′. Upon translating the items in the sub-transactions into their ranks,
they are converted into ‘01’, ‘2’ and ‘5’. Now, for each sub-transaction, sub-patterns
(conditional patterns) are generated and assigned to the machine responsible for it
using a hash function. Two sub-patterns are generated for the sub-transaction ‘01’,
which are ‘0’ and ‘01’. As GI1 has only one machine allocated to it, all the sub-



patterns ending with ‘0’ or ‘1’ are hashed to m0. So, the key-value pairs outputted
are {0:‘0’, 0:‘01’}. Both the sub-patterns are assigned to the same machine, so only the
longest sub-pattern ‘01’ is sent as ‘0’ can be derives from it. For the sub-transaction ‘2’,
one sub-pattern ‘2’ is generated. As item ‘c’ belongs to item group GI2 and two ma-
chines are allocated to it, the sub-pattern ‘2’ is hashed to either m1 or m2 using a hash
function. Similarly, for the sub-transaction ‘5’, one sub-pattern ‘5’ is generated and is
hashed to either m1 or m2. Following conditional transactions are received at the m0,
{ab,a,ab,ab,ab,ab,b,a,ab,a,ab,b}. As per the output of the hash function used, the
items ‘c’, ‘ f ’ and ‘g’ are assigned to m1 and the items ‘d’ and ‘e’ are assigned to m2.
The following conditional transactions are received at m1, {c,c, f g, f ,c,c, f g,c, f g}.
Similarly, m2 receives the following conditional patterns, {e,e,cde,cd,d,cd}.

{}

a:10 b:2

b:7

c:3

d:3

e:1

c:5 f:4

g:3

{}

d:1

{}

(a) (b) (c)

e:2

Fig. 2: (a) Tree at m0. (b) Tree at m1. (c) Tree at m2

Parallel mining of correlated patterns is similar to the mining process of FP-Growth
algorithm but each worker machine performs the mining process only for those suffix
items for which it is responsible for computation. The prefix tree is constructed for a
chosen suffix item by inserting the prefix sub paths of the nodes of the selected item.
The conditional tree is constructed from the prefix tree by removing the nodes which
do not satisfy the minSup threshold. This process is repeated for all the items assigned
to each worker node. Now, all the items are translated back into their original values.
Finally, the patterns extracted by all the worker nodes are gathered at the master node.
Consider the mining of patterns with suffix items ‘g’ and ‘c,’ as shown in Figure 3. In
the existing sequential approach, the mining process of ‘c’ occurs only after the mining
process of ‘g’ and other items below ‘c’ in the FP-list is completed. Whereas in the
proposed approach, both the processes happen in parallel.
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{} {} {}
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f 3
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Fig. 3: Mining for suffix items ‘g’ and ‘c’ (a) Prefix tree of ‘g’ (b) Conditional tree of
‘g’ (c) Prefix tree of ‘c’ (d) Conditional tree of ‘c’



Example 8. The mining process is started from the least frequent item, which is ‘g’ in
the above example. The item ‘g’ is assigned to m2. So, the mining of patterns with suffix
‘g’ is done at the tree built at m2 i.e., Figure 2(c). The prefix tree for ‘g’ is constructed
from this tree by removing the nodes of item ‘g’. There is only one branch < f : 3 >
containing the item g. The final prefix tree for item ‘g’ is shown in Fig 3(a) . From the
prefix tree, conditional tree is constructed by removing the items which do not satisfy
the minSup threshold. The item ‘ f ’ satisfies the minSup threshold. The conditional tree
for item ‘g’ is shown in Fig 3(b). Thus, from this tree the correlated patterns obtained are
{g : 3, f g : 3}. Consider the item ‘c’. For mining th patterns with suffix ‘c’, the tree at m1
has to be mined as ‘c’ is assigned to it. Though the tree at m2 has nodes containing item
‘c’, it need not be mined as the mining of ‘c’ will be done in the tree at m1. The prefix
tree of ‘c’ is constructed from the tree in Figure 2(b). The prefix tree of ‘c’ is NULL, so
the conditional tree is also NULL, as shown in Fig 3(c) and (d) respectively. Therefore,
the only correlated pattern generated is {c : 5}. This mining process is repeated for all
the items in their respective trees and the final correlated patterns are obtained.

5 Experimental Results

In this section, we evaluate the performance of PCP-growth algorithm. The algorithm is
written in Python using Apache Spark architecture and the experiments are conducted
on Amazon Elastic Map-Reduce cluster, with each machine having 8GB memory. The
runtime is measured in seconds and specifies the total execution time of the spark job.
We conducted the experiments on both synthetic (T10I4D100K) and real-world(Retail
and Online Store [17]) datasets. The T10I4D100K dataset contains 100,000 transactions
with 870 items. The Retail dataset contains 88,162 transactions with 16,470 items. The
Online store dataset contains 541,909 transactions with 2,603 items. For all the experi-
ments, the minSup threshold for these datasets is set to 0.1%. Since there is no existing
parallel algorithm for finding correlated patterns, we extend the existing PFP-growth al-
gorithm to find correlated patterns using all-confidence measure. We call this algorithm
as naive algorithm and compare it against the proposed PCP-growth algorithm.

Figures 4(a)-(c) show the number of correlated patterns generated in T10I4D100k,
Retail and Online Store databsets respectively at different minAllCon f values. It can
be observed that with increase in minAllCon f value, the number of correlated patterns
generated decreases.
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Fig. 4: Correlated patterns generated in various databases.



Fig 5 (a)-(c) show the number of sub-databases generated for various datasets at dif-
ferent minAllCon f values. It can be observed that increase in minAllCon f increases the
number of sub-databases. The reason is as follows: increase in minAllCon f decreases
the support-interval range for the items. The reduction of support-interval ranges for
the items increases the number of sub-databases.
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Table 5: Number of 1-length transactions. The term TS is used as an acronym for Trans-
action Segmentation

Dataset Without TS With TS at minAllCon f =0.7 With TS at minAllCon f =0.9
T10I4D100K 128 127,798 470,429

Retail 3016 269,114 566,261
Online Store 2635 1,238,305 1,922,804

Figures 6 (a)-(c) show the distribution of transaction lengths in various databases
before and after applying transaction segmentation technique. Since number of single-
ton transactions (or transactions containing only one item) generated after transaction
segmentation are too many, we have presented these results separately in Table 5. It can
be observed that transaction segmentation has segmented many larger transactions into
smaller transactions depending upon the minAllCon f value. These shorter transactions
reduce the tree size in PCP-growth algorithm.

Figures 7 (a)-(c) show the variation of total time consumed with the number of
machines. It can be observed that increase in number of machines decreases the runtime
for both naive and proposed algorithms. However, proposed algorithm was at least 50%
faster than the naive algorithm.
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Figures 8 (a)-(c) show the amount of data shuffled among the machines. It can be
observed that increase in machines increases the amount of data shuffled for both naive
and proposed algorithms. However, it can be observed that the data shuffled is very less
in PCP-growth algorithm.
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6 Conclusions and Future Work

Correlated pattern mining in an important model in data mining. Most of its mining al-
gorithms are sequential algorithms. Existing parallel frequent pattern mining algorithms
can be extended to mine correlated patterns. However, such a naive parallel algorithm
is inadequate to discover correlated patterns effectively. It is because naive parallel al-
gorithm cannot exploit the properties of all-confidence measure to discover the patterns
effectively. In this paper, we have proposed an efficient parallel correlated pattern min-
ing algorithm by introducing two novel data segmentation techniques. Experimental
results have demonstrated that proposed algorithm is efficient.

In this paper, we have extended the proposed data segmentation techniques to Map-
Reduce framework. As a part of future work, we would like extend the proposed tech-
niques to other distributed frameworks, such as cluster and grid networks.
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