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Abstract— Weighted Frequent Itemset (WFI) mining is an
important model in data mining. The popular adoption and
successful industrial application of this model has been hin-
dered by the following two obstacles: (i) finding WFIs is a
computationally expensiveness process as these itemsets do
not satisfy the downward closure property and (ii) lack of
parallel algorithms to find WFIs in very large databases (e.g.
astronomical data and twitter data). This paper makes an effort
to address these two obstacles. Two pattern-growth algorithms,
Sequential Weighted Frequent Pattern-growth and Parallel
Weighted Frequent Pattern-growth, have been introduced to
discover WFIs efficiently. Both algorithms employ three novel
pruning techniques to reduce the computational cost effectively.
The first pruning technique prunes some of the uninterest-
ing items by employing a criterion known as cutoff weight.
The second pruning technique, called conditional pattern base
elimination, eliminates the construction of conditional pattern
bases if a suffix item is an uninteresting item. The third
pruning technique, called pattern-growth termination, defines a
new terminating condition for the pattern-growth technique.
Experimental results demonstrate that the proposed algorithms
are memory and runtime efficient, and highly scalable as well.

I. INTRODUCTION

Frequent itemset mining [1], [2] is an important model

in data mining. Its mining algorithms discover all itemsets

in the data that satisfy the user-specified minimum support

(minSup) constraint. The minSup controls the minimum

number of transactions that an itemset must cover within the

data. Since only single minSup is used for the entire data,

the model implicitly assumes that all items within the data

have uniform frequency. However, this is the seldom case

in many real-world applications. In many applications, such

items appear very frequently within the data, while others

rarely appear. If the frequencies of items vary a great deal,

then we encounter the following two problems:

1) If minSup is set too high, we miss those itemsets that

involve rare items in the data.

2) In order to find the itemsets that involve both fre-

quent and rare items, we have to set minSup very

low. However, this may cause combinatorial explosion,

producing too many itemsets, because those frequent

items associate with one another in all possible ways

and many of them are meaningless depending upon the

user and/or application requirements.

This dilemma is known as the rare item problem. When

confronted with this problem in real-world applications,

researchers have tried to find the frequent itemsets using

multiple minimum supports [3], where the minSup of an

itemset is expressed with the minimum item support of its

items. The main limitation of this extended model is that

it suffers from an open problem of determining the items’

minimum item supports.

Cai et al. [4] introduced Weighted Frequent Itemset (WFI)

model to address the rare item problem. This model finds

interesting itemsets by taking into account their importance

(say, price of an item in market-basket data) within the

data. The basic model of WFIs is as follows [5]: Let

I = {i1, i2, · · · , in}, n ≥ 1, be the set of items. Let W =
{wi1 ,wi2 , · · · ,win} be the set of weights for all items in I.

That is, wik ∈ W , wik ∈ R and wik ≥ 0, is the weight of

ik ∈ I, 1 ≤ k ≤ n. Let Wmin and Wmax represent the minimum

and maximum weights of all items, respectively. Thus, the

weight range of all items in T DB is (Wmin,Wmax). Let X ⊆ I

be an itemset (or a pattern). If an itemset contains k items,

then it is a k-itemset. A transaction t = (tid,Y ), where tid

represents transaction-identifier and Y is an itemset. A set of

transactions represents a transactional database and denoted

as T DB. That is, T DB = {t1, t2, · · · , tm}, m ≥ 1. The support

of X , denoted as S(X), represents the number of transactions

containing X in T DB. The itemset X is a frequent item-

set if S(X) ≥ minSup, where minSup represents the user-

specified minimum support. The weight of X , denoted as

W (X), represents the average weight of all items in X . That

is, W (X) =
∑ j∈X w j

|X | . The weighted support of X , denoted

as WS(X) = S(X)×W (X). An itemset X is a weighted

frequent itemset if WS(X) ≥ minWS, S(X) ≥ minSup and

W (X)≥minWt, where minWS and minWt represent the user-

specified minimum weighted support and minimum weight

constraints, respectively. The problem of mining WFIs in



TABLE I: Transactional database

tid itemset tid itemset
1 abcdeg 5 acegh

2 acegh 6 bcd

3 acdeg 7 a f gi

4 b f i 8 cdh

TABLE II: Weighted frequent itemsets

Itemset S W Itemset S W

a 5 1.3 cega 4 1.2
ca 4 1.2 e 4 1.2
ea 4 1.25 d 4 1.3
cea 4 1.2 cd 4 1.2
ga 4 1.25 g 5 1.2
cga 4 1.2 eg 4 1.2
ega 4 1.24

TDB is to discover all WFIs that satisfy the minWt, minSup

and minWS constraints. (The association rules generated

from the WFIs are known as weighted association rules.

For brevity, we are not discussing about these rules in this

paper. One can reduce the number of input parameters by

considering minSup = minWS.)

Example 1: Table I shows a transactional database with

the set of items I = {abcde f ghi}. Let the weights of the

items a,b,c,d,e, f ,g,h and i be 1.3, 1.2, 1.1, 1.3, 1.2, 1.5,

1.2, 1.1 and 1.3, respectively. The Wmin and Wmax are 1.1 and

1.5, respectively. Therefore, the weight range is (1.1,1.5).
The set of items ‘a’ and ‘c’, i.e., ‘ac’ is an itemset. This

itemset contains 2 items. Therefore, it is a 2-itemset. The

itemset ‘ac’ appears in 4 transactions. Therefore, the support

of ac, i.e., S(ac) = 4. If the user-specified minSup = 4, then

ac is a frequent itemset. The weight of this itemset, i.e.,

W (ac) = wa+wc

|ac| = 1.3+1.1
2

= 1.2. The weighted support of ac,

i.e., WS(ac) = 4×1.2= 4.8. If the user-specified minWS = 4

and minWt = 1.2, then the frequent itemset ac is also a

weighted frequent itemset because WS(ac) ≥ minWS and

W (ac)≥ minWt. The set of all WFIs discovered from Table

I are shown in Table II.

The weights for items can be either specified by the

user or determined using information theory measures (e.g.

entropy [6] and Term Frequency-Inverse Document Fre-

quency). Some of the practical applications of WFI model are

market-basket analytics [4] and spectral signature analytics in

astronomical databases [6]. Another important application of

this model is event analytics in social datasets (e.g. Twitter).

Events (or topics) in general are multifaceted covering vari-

ous topics. Some topics can be frequent, while others can be

relatively infrequent (or rare) in the data. The WFI mining

on social datasets can facilitate us to find the correlations

between the frequent and rare topics. This information can

further be used for various purposes, such as understanding

the information cascades [7] and topic summarization [8].

For instance, WFI mining on a Twitter corpus related to

Manchester Arena bombing has revealed that the words

“explosion” and “injured” have occurred together in 1,852

tweets out of 97,000 tweets. Further analytics on these

tweets, such as topology (see Fig. 1a) and popular tweets

(see Fig. 1b), can be found useful to the analysts. Topology

is crucial to understand the information cascade.

Cai et al. [4] discussed Apriori algorithms to find WFIs.

Unfortunately, these algorithms suffer from the performance

issues involving the generation of huge number of candidate

itemsets and multiple scans on the database. Yun and John

(a)

S.no.

1

Tweets

2

3

Ariana Grande says she is broken 
and suspends #DWTour after expl-
osion in Manchester that left 22
dead and 59 injured

Police in Manchester England say 
atleast 19 dead & 50 jured amid rep-
orts of explosion at Ariana Grande’s
concert #ManchesterBombing
My prayers to those injured after 
explosion at the Ariana Grande con-
cert in the UK #PrayforManchester

(b)

Fig. 1: Analytics on the tweets containing the words ‘explo-

sion’ and ‘injured’. (a) tweet-retweet network of users and

(b) top-3 retweets containing these two words

[5] discussed a pattern-growth algorithm, called Weighted

Frequent Itemset Mining (WFIM), to find WFIs. Since

the WFIs do not satisfy the downward closure property,

the WFIM finds candidate weighted frequent 1-itemsets

(CWFIs), constructs WFIM-tree constituting of CWFIs, and

recursively mines the entire tree by building the conditional

pattern bases (CPBs) for every item in the tree. In other

words, WFIM basically extends Frequent Pattern-growth

(FP-growth [9]) to find WFIs. The criterion used to find

CWFIs is known as “weight upper bound,” and it involves

pruning all uninteresting itemsets whose product of support

and maximum weight of all items in the database is less than

the user-specified minWS.

Since the WFIs discovered by the basic model do not

satisfy the downward closure property, researchers have

discussed several alternative weighing functions, such as

maximum weight and transaction weight, to find WFIs. Each

weighing function has a selection bias that justifies the

significance of one itemset over another. As a result, there

exists no best model to discover WFIs in any given database.

In this paper, we focus on efficient discovery of WFIs using

the basic model as this model is widely used in practical

applications.



Pei et al. [10] introduced convertible constraints, and

showed that weighted average satisfies the convertible anti-

monotonic property. The authors have also showed that mea-

sures satisfying the convertible anti-monotonic property can

be directly pushed into Frequent Pattern-growth (FP-growth)

algorithm [9]. It has to be noted that although weighted

average satisfies the convertible anti-monotonic property, we

cannot simply use FP-growth algorithm to discover WFIs. It

is because the WFI model has to take into account weighted

support, which is a product of support and weighted average

of all items within an itemset.

Example 2: In Table II, it can be observed that the item c

is not a weighted frequent item. However, it can be observed

that this item has still generated weighted frequent itemsets

by combining with other items. Thus, the existing down-

ward closure property based FP-growth algorithm cannot be

directly used for finding the WFIs although weighted average

satisfies the convertible anti-monotonic property.

This paper argues that finding WFIs using WFIM is

costly because of two main reasons: (i) many uninteresting

items whose supersets cannot be WFIs can still satisfy the

“weight upper bound criterion” and (ii) recursive mining of

entire WFIM-tree increases the computational cost of WFIM

because the algorithm has to search the supersets of those

uninteresting items (or itemsets) that cannot be WFIs. It is

thus important to generate WFIs without taking into account

many uninteresting itemsets.

In the era of BigData, parallel algorithms are playing a key

role in finding useful information in very large databases.

In the field of pattern mining, researchers have discussed

many parallel frequent pattern mining algorithms using Map-

Reduce framework [11], [12]. These parallel frequent pattern

mining algorithms can be extended to mine WFIs. However,

as we discussed in the above paragraphs, such extended

algorithms are costly as they generate WFIs by taking into

account many uninteresting itemsets.

With this motivation, this paper revisits the problem of

finding the WFIs in a transactional database. In this paper,

we show that WFIs satisfy the sorted closure property [3].

Two pattern-growth algorithms, called ‘Sequential Weighted

Frequent Pattern Growth’ (SWFP-growth) and ‘Parallel

Weighted Frequent Pattern Growth’ (PWFP-growth), have

been introduced to find WFIs. Both algorithms employ

three novel pruning techniques to reduce the computational

cost effectively. The first pruning technique, called “cutoff

weight,” eliminates uninteresting items (or itemsets) whose

supersets cannot be WFIs. The second pruning technique,

called “conditional pattern base elimination,” prevents the

construction of conditional pattern bases for the uninteresting

(suffix) items. The third pruning technique, called “pattern-

growth termination,” defines the terminating condition for the

pattern-growth technique. This pruning technique eliminates

the recursive mining of entire tree (as by done by existing

FP-growth-like algorithms). Thus, reducing the computa-

tional cost effectively. Experimental results demonstrate that

the proposed algorithms are efficient.

The rest of the paper is organized as follows. Section 2

describes the related work. Section 3 describes the WFIM

algorithm. Section 4 describes the performance issues of

WFIM and introduces the proposed SWFP-growth algorithm.

Section 5 describes the proposed PWFP-growth algorithm.

Section 6 reports results. Finally, Section 7 concludes the

paper with future research directions.

II. RELATED WORK

In this section, we first discuss the related work on finding

WFIs in the data. Next, we describe the works on various

properties used to reduce the search space in itemset mining.

A. Weighted frequent itemset mining

Cai et al. [4] introduced weighted frequent itemset mining

as an intermediary step to find weighted association rules

in a transactional database. Two Apriori algorithms, called

MinWAL(O) and MinWAL(M), have been discussed for find-

ing WFIs. Unfortunately, these two algorithms suffer from

the performance issues involving multiple database scans and

generation of too many candidate itemsets. Yun and John [5]

discussed a pattern-growth algorithm, called WFIM, to find

the weighted frequent itemsets. Cai et al. [6] used a variant

of WFIM algorithm to find weighted frequent itemsets in

astronomical databases. This algorithm uses an entropy based

weighting function to determine the interestingness of an

itemset. The rules generated from these itemsets are called

as stellar spectra association rules. Although WFIM and its

variants do not suffer from the performance issues as that of

the Apriori algorithms, they are still inadequate to find the

WFIs effectively. It is because such algorithms have to take

into account many uninteresting itemsets whose supersets

may not generate any weighted frequent itemset. In this

paper, we propose an improved pattern-growth algorithm that

efficiently prunes uninteresting itemsets whose supersets may

not generate any weighted frequent itemset.

In the literature, researchers have extended weighted fre-

quent itemset mining by taking into account other param-

eters. Tao et al. [13] proposed a weighted association rule

model by taking into account the weight of a transaction. An

Apriori-like algorithm, called WARM (Weighted Association

Rule Mining) algorithm, was discussed to find to the item-

sets. Vo et al. [14] proposed a Weighted Itemset Tidset tree

(WIT-tree) for mining the itemsets and used a Diffset strategy

to speed up the computation for finding the itemsets. Lin et

al. [15] studied the problem of finding weighted frequent

itemsets by taking into account the occurrence time of the

transactions. The discovered itemsets are known as recency

weighted frequent itemsets. Furthermore, Lin et al. [16]

extended the basic weighted frequent itemset model [4] to

handle uncertain databases. Chowdhury et al. [17] discussed

a weighted frequent itemset model with an assumption that

weights of items can vary with time and proposed the

algorithm AWFPM (Adaptive Weighted Frequent Pattern

Mining). The pruning techniques proposed in this paper can

be extended to some of these extended weighted frequent

itemset models. However, in this paper, we confine to the

basic weighted frequent itemset model due to page limitation.



Utility itemset mining is another important model in

data mining [18]. This model takes into account internal

utility (say, number of times an item has appeared within

a transaction) and external utility (say, price of an item)

of items within the database and tries to find itemsets that

have highly utility value. Since some of the utility functions

as discussed in [10] satisfy the sorted closure property, the

proposed pruning techniques can be extended to find utility

itemsets effectively. As a part of future work, we would like

to extend the proposed pruning techniques to utility itemset

mining.

B. Various properties used to reduce the search space in

itemset mining

Reducing the search space is an important problem in

itemset mining. Aggrawal et al. [1] discussed downward

closure property to reduce the search space in frequent

itemset mining. This property was widely used by many

itemset mining algorithms. Liu et al. [3] discussed sorted

closure property to reduce the search space for finding

the frequent itemsets with multiple minimum supports. Pei

et al. [10] discussed convertible anti-monotonic property,

convertible monotonic property and succinct properties to

discover constraint-based itemsets. In this paper, we show

that weighted frequent itemsets satisfy the sorted closure

property, and use this property to reduce the search space

effectively.

Over the past two decades, several improvements have

been suggested to improve the performance of FP-growth

algorithm. Unfortunately, most of these improvements cannot

be employed in the proposed algorithm because they were

based on the downward closure property.

III. WFIM ALGORITHM

The working of WFIM involves the following two steps:

(i) compress the database into WFIM-tree and (ii) recursively

mine the entire tree to find all WFIs. The structure of WFIM-

tree is same as that of the FP-tree and mining procedure is

same as that of the FP-growth. However, since WFIs do not

satisfy the downward closure property, WFIM finds candi-

date weighted frequent itemsets (CWFIs) and generate WFIs

from CWFIs. The CWFIs are generated by employing the

following pruning conditions: (i) W (X)<minWt and S(X)<
minSup and (ii) S(X)×Wmax < minWS. Since conditional

pattern base represents the sub-database containing the items

in suffix itemset, Wmax is replaced with the lowest weight

of all items in the suffix itemset. We briefly describe the

working of WFIM using Table I. Let minSup = minWS = 4

and minWt = 1.2.

Before scanning the database, all items are inserted into

the WFIM-list with supports set to 0 (see Fig. 2(a)). Next,

the supports of all items in the WFIM-list is determined by

scanning the entire database (see Fig. 2(b)). Next, candidate

weighted frequent items are generated using the above men-

tioned pruning conditions, and sorted in ascending order of

their weights (see Fig 2(c)). In the next step, the prefix-tree

in WFIM-tree is constructed by performing another scan on

the database (see Figure 2(d)). The construction procedure is

same as that of the FP-tree [9]. Finally, the entire WFIM-tree

is recursively mined to find CWFIs. The WFIs are generated

from CWFIs. The mining procedure is same as that of the

FP-growth, and is summarized in Fig 3.

(a)
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c 6
d 4
e 4

W
1.3
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h 3 1.1
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{}

c:6 g:1b:1
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c 6
b 3
g 5
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1.3
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a 0
b 0
c 0
d 0
e 0
f 0
g 0
h 0
i 0

c 6
b 3
g 5
e 4
a 5

1.1
1.2
1.2
1.2

d 4 1.3

I S W

1.3

(c)

Fig. 2: Construction of WFIM-tree. (a) WFIM-list before

scanning the database (b) WFIM-list after scanning the entire

database (c) Final WFIM-list (d) Final WFIM-tree

IV. SEQUENTIAL WEIGHTED FREQUENT

PATTERN-GROWTH

In this section, we first report the performance issues of

WFIM. Next, we describe the basic idea for generating the

WFIs effectively. Finally, we introduce the SWFP-growth.

A. Performances issues of WFIM

The WIFM algorithm generates WFIs by taking into

account many uninteresting itemsets whose supersets cannot

be WFIs. The reasons are as follows:

1) Many uninteresting items can satisfy the weight upper

bound criterion. For instance, WFIM considers b in

Table I as a CWFI because S(b)×Wmax ≥ minWS,

However, neither b nor its supersets are WFIs as shown

in Table II.

2) The WFIM constructs CPBs for the uninteresting items

in the WFIM-list, and mines all those CPBs recur-

sively. Unfortunately, all itemsets generated during this

recursive mining process are useless because none of

them will be WFIs.

Example 3: The WFIM constructs CPBs for b (see

Fig. 3), and mines it recursively to find WFIs. All the

itemsets generated during this recursive mining process

are useless because none of them will be WFIs.

3) The WFIM terminates only when the WFIM-list is

empty. This terminating condition will increase the

computational cost because CPBs of the suffix items

with weights less than minWt will not generate WFIs.

In the next subsection, we describe the basic idea to reduce

the computational cost of finding the WFIs.

B. Basic idea

We observed that WFIs discovered using weighted average

satisfy the sorted closure property [3]. The correctness is

based on Property 1 and shown in Lemmas 1 and 2. We now

discuss three pruning techniques based on this property.



c 6
b 3
g 5
e 4
a 5

1.1
1.2
1.2
1.2
1.3

d 4 1.3

S WI Cond. Pattern Base

{cgea : 1}, {cbgea : 1}, {cb : 1}, {c : 1}
{cge : 3}, {cbge : 1}, {g : 1}
{cg : 3}, {cbg : 1}
{c : 3}, {cb : 1}
{c : 2}
{}

Cond. WFIM-Tree

<c : 4>
<c g e : 4>, <g : 1>

<c : 4>

_

<c g : 4 >

_
Weighted Frequent Patterns

{dc : 4, 1.2}
{ae : 4, 1.25}, {aeg : 4, 1.24}, ... ,{ag : 5, 1.25}, ...
{eg : 4, 1.2}

_
_
_

Fig. 3: Mining Weighted Frequent Itemsets using WFIM Algorithm

Property 1: Let Y = {i1, i2, · · · , ik}, 1 ≤ k ≤ n, be a sorted

itemset with W (i1) ≥ W (i2) ≥ ·· · ≥ W (ik). If X = Y ∪ ik+1,

W (ik)≥W (ik+1), then sup(Y )≥ sup(X) and W (Y )≥W (X).
Lemma 1: Let Y = {i1, i2, · · · , ik}, 1 ≤ k ≤ n, be a sorted

itemset with W (i1) ≥ W (i2) ≥ ·· · ≥ W (ik). If X = Y ∪ ik+1,

W (ik)≥W (ik+1), then sup(Y )×W (Y )≥ sup(X)×W (X).
Proof: Based on Propery 1, it turns out that if Y ⊂ X

and Y contains i1, then sup(Y )≥ sup(X) and W (Y )≥W (X).
Thus, sup(Y )×W (Y )≥ sup(X)×W (X). Hence proved.

Lemma 2: (Sorted closure property of X .) Let X =
{i1, i2, · · · , ik}, 1 ≤ k ≤ n, be a sorted itemset with W (i1) ≥
W (i2)≥ ·· · ≥W (ik). If X is a weighted frequent pattern, then

∀Y ⊂ X and i1 ∈ Y , Y is a weighted frequent pattern.

Proof: The correctness is straight forward to prove from

Lemma 1.

1) Pruning Technique 1: (cutoff-weight criterion).: If X

is a WFI, then the item with maximum weight in X is

also a weighted frequent item (i.e., sorted closure property).

Henceforth, the maximum weight that can be achieved by

any weighted frequent itemset will always be less than or

equivalent to the maximum weight of all weighted frequent

items (or 1-itemsets). We call the maximum weight of all

weighted frequent items as Cutoff weight, and is defined as

follows.

Definition 1: Let I1 ⊆ I be the set of all weighted frequent

items in T DB. The cutoff weight, CW = max(i j|∀i j ∈ I1).
Example 4: The set of all weighted frequent items in

Table I are c,g,e,a and d. The cutoff weight CW =

max(W (c),W (g),W (e),W (a),W (d)) = 1.3.

We now introduce the following criterion to prune uninter-

esting itemsets: “Prune an itemset X if S(X)×CW <minWS,

because neither X nor its supersets can be WFIs.”

Example 5: The weight upper bound criterion of WFIM

considers b as a CWFI. However, the proposed criterion

considers b as an uninteresting item as S(b)×CW < minWS.

Thus, the proposed criterion is tighter than the weight upper

bound criterion.

2) Pruning technique 2: conditional pattern base elimi-

nation.: Since weighted frequent itemsets satisfy the sorted

closure property, we will be constructing tree by taking into

account some uninteresting items whose product of support

and CW has satisfied the minWS. This pruning technique

says that if the suffix itemset is an uninteresting itemset,

then prevent the construction of its CPB as no further WFIs

can be generated. The correctness of our argument is based

on Lemma 3 and shown in Lemma 4.

Lemma 3: Let T be a tree constructed in ascending order

of items’ weights. If a be the suffix item and b is an item

present in its conditional pattern base, then S(a)×W (b) ≥
S(ab)×W (ab).

Proof: Since tree is constructed in ascending order

of items’ weights, W (a)≥W (b). Thus, the W (ab)≤W (a).
Similarly, S(ab)≤ S(a). Thus, S(a)×W (b)≥ S(ab)×W (ab).
Hence proved.

Lemma 4: Let T be a tree constructed in ascending order

of items’ weights. Let a be the suffix item and b be another

item that is present in the conditional pattern base of a. If

a is an uninteresting item (i.e., S(a)×W (a)< minWS), then

ab is also an uninteresting itemset.

Proof: According to Lemma 3, S(a)×W (b)≥ S(ab)×
W (ab). Thus, S(ab)×W (ab) ≤ S(a)×W (b) < minWS. In

other words, ab is an uninteresting itemset. Hence proved.

3) Pruning technique 3: pattern-growth termination.:

This pruning technique states that if the weight of a suffix

item in the tree is less than minWt, then terminate the

pattern-growth technique as no further WFIs can be gen-

erated.

Since the tree is constructed in ascending order of items’

weights, it turns out that the weights of all items in the

conditional pattern base of a suffix item will always be less

than or equal to the weight of suffix item. Thus, if the

weight of suffix item is less than winWt, then the weight

of all items in its conditional pattern base will always be

less than or equal to winWt. In other words, if the suffix

item fails to satisfy the minWt, then all itemsets that can be

generated from its conditional pattern base will also fail to

satisfy the winWt. Thus, there is no need for constructing the

conditional pattern bases for the suffix items that have weight

less than minWt. Moreover, since the tree is constructed

in weight ascending order, we can immediately stop the

pattern-growth technique once we encounter a suffix item

with weight less than minWt. It is because the next suffix

item(s) will also have weight less than minWt. We call this

pruning technique as pattern-growth termination.

Example 6: Let x, y and z be three sorted items in a

list with weights 1.1, 1.2, and 1.3, respectively. Let us

consider z as a suffix item. The conditional pattern base of

z can constitute of items, x and y. According to Property

1, it turns out that W (z) ≥ W (zy) ≥ W (zyx) and W (z) ≥
W (zx)≥W (zyx). If minWt = 1.5, then z is not a WFI because

W (z) < minWt. Similarly, all itemsets generated from the



conditional pattern base of z will also have weight less than

minWt. Thus, they are also not weighted frequent itemsets.

The weight of y, i.e., W (y)<W (z)< minWt. Thus, y is not

a weight frequent itemset. Similarly, all itemsets generated

from the conditional pattern base of y will also have weight

less than minWt. Thus, they are also not weighted frequent

itemsets. The same can be said about the item x. So forth,

when we find that item z has weight less than minWt, we

can stop the pattern-growth technique as all other items in

the list will not generate any weighted frequent itemset.

Algorithm 1 SWFP-list(T DB, minWS, minWt, weights of

items’)

1: Insert all items into SWFP-list with their weights and

support set to 0

2: for each transaction t ∈ T DB do

3: for each item i in transaction t do

4: increase the support of i in SWFP-list by 1

5: Sort the SWFP-list in ascending order of items’ weights.

Find the weighted frequent items, and choose the max-

imum weight among all weighted frequent items as

cutoff-weight (CW ).

6: for each item ai in SWFP-list do

7: if ((sup(ai)< minSup) and (weight(ai)< minWt)) or

(sup(ai)×CW < minWS) then

8: Prune ai from the SWFP-list

9: Consider the remaining items in the SWFP-list as the

candidate weighted frequent items, and construct SWFP-

tree. The construction procedure for SWFP-tree is same

as that of the FP-tree [9] with the key difference that

support information is stored only at the tail-node of a

sorted transaction.

C. SWFP-growth

The working of SWFP-growth involves the following two

steps: (i) compress the database into SWFP-tree and (ii)

recursively mine the tree to discover WFIs. We now explain

the structure, construction and mining of SWFP-tree.

1) Structure of SWFP-tree.: The structure of SWFP-tree

is similar to that of FP-tree. However, to achieve memory

efficiency, the proposed tree records support information only

at the tail node of a sorted transaction. Moreover, items in

SWFP-tree are arranged in weight ascending order of items.

2) Construction of SWFP-tree.: Since WFIs do not satisfy

the downward closure property, candidate weighted frequent

items play a key role in finding WFIs effectively. The

procedure for finding candidate weighted frequent items is

shown in Algorithm 1. Briefly, this algorithm inserts all items

in to the SWFP-list with their weights and support set to

0 (see Fig. 4 (a)). Next, the support of all items in the

list is updated by scanning every transaction in the database

(see Fig. 4 (b)). Next, uninteresting items whose supersets

cannot be WFIs are removed from the list by adopting the

following criterions: (i) prune an item i if S(i)< minSup and

w(i)<minWt and (ii) prune an item i if S(i)×CW <minWS.

(a) (b)
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Fig. 4: Construction of SWFP-list. (a) After scanning first

transaction (b) After scanning second transaction (c) After

scanning entire database (d) Final list of candidate weighted

items

The remaining items in the list are considered as candidate

weighted frequent items and sorted in ascending order of

their weights (see Fig. 4 (c)).

After finding candidate weighted frequent items, we con-

duct another scan on the database and construct the prefix-

tree of the SWFP-tree. Fig. 5(a) shows the prefix-tree gen-

erated after scanning the first transaction. It can be observed

that only the tail-node a carries the support count. Fig. 5(b)

shows the prefix-tree generated after scanning the second

transaction. Fig. 5(c) shows the SWFP-tree generated after

scanning the entire database.
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Fig. 5: Construction of SWFP-tree. (a) After scanning first

transaction (b) After scanning second transaction (c) Final

tree after scanning the entire database

Algorithm 2 SWFP-growth(SWFP-tree, α)

1: Select the last item in the SWFP-list

2: for each item ai in header of SWFP-Tree do

3: if W (ai)< minWt then

4: exit();

5: else

6: Generate pattern β = ai ∪α;

7: if β is a WFI then

8: Construct β’s conditional SWFP-tree, Treeβ;

9: if Treeβ 6= 0 then

10: Call SWFP-growth(Treeβ, β);

11: Remove ai from the tree and add ai’s support to

its parent node’s support



3) Mining Weighted Frequent Patterns.: The SWFP-tree

is mined as follows. Start from length-1 itemsets (as an

initial suffix item). If this item is a weighted frequent itemset,

construct its conditional pattern base (a sub-database, which

consists of the set of prefix paths in the tree with the suffix

item), then construct its construct its conditional SWFP-

tree and mine it recursively. Pattern growth is achieved by

concatenating the suffix item with the weighted frequent

itemset generated from the conditional SWFP-tree. Next, the

initial suffix item is pruned from the original SWFP-tree by

pushing its support to the corresponding parent nodes. The

above process is repeated until SWFP-list is empty or the

weight of the suffix item is less than minWt. Please note that

if a suffix itemset is an uninteresting itemset, then we will not

construct its conditional pattern base. We simply prune the

itemset from the original tree by pushing its support counts

to the corresponding parent nodes. Fig. 6 summarizes the

mining of SWFP-tree shown in Fig. 5 (c).

After finding the weighted frequent itemsets, weighted

association rules are generated by directly applying the

association rule mining procedure [1] on weight frequent

itemsets. In this paper, we are not discussing this procedure

for brevity.

V. PARALLEL WEIGHTED FREQUENT PATTERN-GROWTH

Due to page limitation, we briefly explain the PWFP-

growth algorithm. The working of PWFP-growth is sim-

ilar to that of the Parallel Frequent Pattern-growth (PFP-

growth)[11]. However, the key differences are as follows:

(i) The PWFP-growth algorithm finds WFIs by taking into

account all items that satisfy the cutoff weight criterion.

(ii) The trees in worker machines are constructed in weight

descending order and (ii) During the recursive mining of

a tree in each worker machine, conditional pattern base

elimination and pattern-growth terminating condition are

employed to reduce the computational cost effectively.

The extraction of weighted frequent itemsets in parallel

requires two database scans. Each scan consists of one

Map-Reduce job. The transactional database is divided into

multiple shards (partitions) and each partition is allotted to

a machine so that processing can be done in parallel. We

have employed PFP-growth procedures for data partition

and assigning to worker machines. The proposed algorithm

consists of 2 steps:

1) Finding candidate items: Each worker machine scans

the transactions and outputs key-value pairs with key as the

item and value as 1 (< item,1 >). In the reduce phase, these

key-values are aggregated by the master machine to derive

support count of the items. Next, the master machine sorts

the items in weight ascending order and finds candidate items

by employing the cutoff-weight criterion. The procedure for

finding candidate items is shown in lines 5 to 8 in Algorithm

1. Next, the master machine assigns ranks to the candidate

items such that item with the least weight gets the lowest

rank. Let the list of these candidate items be called WF-list.

The final WF-list is transferred for all worker machines.

2) Construction and Mining of WF-trees: In the second

database scan, for each transaction the items which are not

present in the WF-list are filtered, translated into their ranks

and sorted in ascending order. The sub-patterns (conditional

transactions) for each transaction are extracted and assigned

to a machine based on the hash function: (rank[item]% Num

of machines). Here, item is the last item in a sub-pattern.

Subpatterns are constructed only if the last item is a

weighted frequent item (i.e., conditional pattern base

termination). Once we encounter an item which is not a

weighted frequent item, we stop extracting sub-patterns from

that transaction as the items after it will have weight less

than minW (i.e., pattern-growth termination). The assigned

machine is stored in a hash-table for future look-up. The

hash function gives a machine-id for which the pattern is

responsible for further computation. Thus, the sub-patterns

for each weighted frequent item in every transaction are

generated and sent to the corresponding machine. Each

sub-pattern is emitted as a key-value pair, with key as

the machine-id and value as sub-pattern. Now, the reduce

function is implemented with machine-id as key, hence all the

conditional transactions with same machine-id are processed

at one machine. Independent local WF-trees are constructed

by inserting all the sub-patterns into the tree in the same

order as WF-list. The process of tree construction is same as

SWFP-tree construction. Since the trees are constructed from

the sub-patterns itself, during conditional pattern building,

communication is not required between the machines. The

workers already have the information required to build the

conditional pattern trees. This way the mining process can

be done in parallel without any communication cost.

Parallel mining of weighted frequent itemsets is similar

to the mining process of FP-Growth algorithm but each

worker machine performs the mining process only for those

suffix items for which it is responsible for computation.

The prefix tree is constructed for a chosen suffix item by

inserting the prefix sub paths of the nodes of the selected

item. The conditional tree is constructed from the prefix tree

by removing the nodes which satisfy the pruning conditions.

This process is repeated for all the items assigned to each

worker node. Finally, the itemsets extracted by all the worker

nodes are gathered at the master node. Here, it should be

noted that the process of tree construction and mining is

done only for weighted frequent items and the items having

weight less than minW are neglected as they cannot generate

weighted frequent itemsets as suffix items.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of SWFP-

growth and PWFP-growth algorithms on various databases,

and show that the proposed algorithms are efficient. The

algorithms WFIM and SWFP-growth were written in Python

and run on a 2.66 GHz machine having 16 GB of memory.

The operating system used in this machine is Ubuntu 14.04.

Since there exists no parallel algorithm to find WFIs, we

have extended the existing Parallel Frequent Pattern-growth

(PFP-growth) algorithm [11] to find WFIs using “weight
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Fig. 6: Mining Weighted Frequent Itemsets using SWFP-growth

upper bound criterion.” We call this extended algorithm

as Parallel Weighted Frequent Itemset Mining (PWFIM).

We will use this naı̈ve algorithm to evaluate the PWFP-

growth algorithm. Both algorithms are written in Python

using Apache Spark architecture and the experiments are

conducted on Amazon Elastic Map-Reduce cluster, with each

machine having 8GB memory. The runtime is measured in

seconds and specifies the total execution time of the spark

job. The data shuffled is measured in KB and measures the

communication among the machines.

The experiments have been conducted using both synthetic

(T10I4D100K) and real-world (Connect, Mushroom, and

Twitter) databases. The synthetic database was generated

by using the IBM data generator [1]. This data generator

is widely used for evaluating association rule mining al-

gorithms. The T10I4D100K database contains 870 items

with 100,000 transactions. The Connect and Mushroom

databases have been downloaded from the Frequent Itemset

MIning (FIMI) repository. The Connect database contains

129 items with 67557 transactions. The Mushroom database

contains 119 items with 8124 transactions. The Twitter

database constitutes of 97,000 tweets collected from 22-

may-2017 to 23-may-2017. These tweets are related to 2017

Manchester Arena bombing. We have created a database by

considering top 1000 frequent English words. Please note

that sequential algorithms were evaluated using all of the

above mentioned databases. On the other hand, sensitive

Twitter data is not used for evaluating the parallel algorithms

as Amazon EC2 is a public cloud.

We have used random number generator to assign weights

to items. Similar procedure is used for evaluating the WFI

mining algorithms. Please note that in our case study, we

have employed TF-IDF to assign weights to items in Twitter

database.

Fig. 7 (a)-(d) show the number of WFIs generated in

various databases at different minWS and weight ranges. It

can be observed that decrease in minWS and increase in

weight range will have positive effect on the number of

WFIs.

Table III show the number of nodes generated by WFIM

and SWFP-growth algorithms at different weight ranges in

various databases. The minSup and minWS in T10I4D100K

are set at 1% and 1%, respectively. In Twitter database, the

minSup and minWS are set at 1.5% and 1.5%, respectively.

In Connect database, the minSup and minWS are set at 50%

and 50%, respectively. In Mushroom database, the minSup

and minWS are set at 15% and 15%, respectively. It can

be observed that increase in weight range has increased the

number of nodes generated by both algorithms. however,

TABLE III: Number of nodes visited

Dataset Weight Range WFIM Proposed
0.1 - 0.5 78,149 21,784
0.5 - 1 932,185 125,846

T10I4D100K 1 - 2 1,133,694 562,483
2 - 4 3,516,791 1,373,642
4 - 6 3,585,909 1,467,310
0.1 - 0.5 372,151 80,214
0.5 - 1 741,395 475,182

Twitter 1 - 2 1,245,217 845,124
2 - 4 2,452,166 1,324,857
4 - 6 3,451,248 2,684,751
0.1 - 0.5 942,412 751,481
0.5 - 1 2,415,780 962,340

Connect 1 - 2 3,614,278 1,247,527
2 - 4 5,248,167 3,217,544
4 - 6 6,190,652 4,581,961
0.1 - 0.5 271,582 63,634
0.5 - 1 835,227 101,606

Mushroom 1 - 2 2,848,660 1,783,272
2 - 4 3,102,708 2,158,959
4 - 6 3,226,296 2,384,382

the proposed algorithm has generated less number nodes.

The reason is as follows: the increase in weight range

actually increases the Wmax value, thereby enabling many

uninteresting itemsets to be candidate weighted frequent

items. As SWFP-growth is not influenced by the Wmax, it

has not generated too many nodes.

Fig. 8(a)-(d) show the runtime consumed by WFIM and

SWFP-growth algorithms on T10I4D100K, Twitter, Connect

and Mushroom databases, respectively. It can be observed

that although the runtime for both the algorithms increases

with the increase in weight range, SWFP-growth takes less

time than the WFIM. Moreover, SWFP-growth is more

efficient at high weight ranges. (In general, higher weight

ranges are used to find WFIs in sparse databases).

Figures 9(a)-(d) show the memory consumed by WFIM

and SWFP-growth algorithms on T10I4D100K, Twitter, Con-

nect and Mushroom databases, respectively. Similar observa-

tions as that of the runtime can be drawn for the memory.

Figures 10 (a) and (b) show the runtime requirements of

PWFIM and PWFP-growth algorithms with the number of

machines. It can be observed that increase in number of

machines decreases the runtime for both PWFIM and PWFP-

growth algorithms. However, PWFP-growth algorithm was at

least 50% faster than the PWFIM algorithm.

Figures 11 (a) and (b) show the amount of data shuffled

among the machines. It can be observed that increase in

machines increases the amount of data shuffled for both naive

and proposed algorithms. However, it can be observed that

the data shuffled is very less in PWFP-growth algorithm.
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A. A case study on Twitter data

In this subsection, we demonstrate the usefulness of WFIs

using Twitter database. The weights to items were set using

TF-IDF weighting scheme. The minWS is set at 1.5%. The

weight range is (2,4). The minWt is set at 1.3. Some of the

interesting WFIs discovered from the database are shown in

Table IV. This information regarding the WFIs can be used



(a) Manchester and explosion

(b) terrorist and attack

Fig. 12: Topology of tweets containing weighted frequent

2-itemsets

for various purposes, such as understanding the topology

and event summarization. Figure 1 shows the topology of

tweets containing the words ‘explosion’ and ‘injured.’ Figure

14 (a) and (b) show the topology of tweets containing

the words ‘Manchester and explosion’ and ‘Terrorist and

attack,’ respectively. It can be observed that their is one big

cluster for the tweets containing the words ‘terrorist’ and

‘attack,’ while there were many small clusters for the words

‘Manchester’ and ‘explosion.’

TABLE IV: Some of the interesting itemsets generated in

Twitter data

Itemsets Sup W

{Manchester,explosion} 4849 1.8
{terrorist,attack} 2182 1.4
{explosion,injured} 1852 1.75

VII. CONCLUSIONS AND FUTURE WORK

The problem of finding WFIs has been widely studied in

the past. Recently, the practical applications of this model are

gaining popularity in many real-world applications, such as

astronomy and market-basket analytics. The popular adop-

tion and successful industrial application of the model has

been hindered by its huge computational requirements. With

this motivation, this paper revisited the problem of finding

WFIs and showed that the itemsets generated using the

weighted average function satisfy the sorted closure prop-

erty. We proposed three pruning techniques, cutoff weight,

conditional pattern base elimination and pattern-growth ter-

mination, to reduce the uninteresting itemsets that have to be

take into account for finding the WFIs. Two pattern-growth

algorithms, SWFP-growth and PWFP-growth, have also been

discussed to find the WFIs effectively. Experimental results

on both synthetic and real-world databases demonstrate that

proposed algorithms are runtime and memory efficient, and

highly scalable as well.

In this paper, our study has been confined to finding WFIs

in transactional databases. As a part of future work, we would

like to extend the proposed pruning techniques to utility

itemset mining and finding WFIs in uncertain databases and

data streams.ad
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