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Abstract—Understanding the spread of diseases and the use of
medicines is of practical importance for various organizations,
such as medical providers, medical payers, and national govern-
ments. This study aims to detect the change in the prescription
trends and to identify its cause through an analysis of Medical
Insurance Claims (MICs), which comprise the specifications of
medical fees charged to health insurers. Our approach is two-
fold. (1) We propose a latent variable model that simulates
the medication behavior of physicians to accurately reproduce
monthly prescription time series from the MIC data, where
prescription links between the diseases and medicines are missing.
(2) We apply a state space model with intervention variables to
decompose the monthly prescription time series into different
components including seasonality and structural changes. Using
a large dataset consisting of 3.5-year MIC records, we conduct
experiments to evaluate our approach in terms of accuracy,
usefulness, and efficiency. We also demonstrate three applications
for our medical analysis.

I. INTRODUCTION

The extent of the spread of diseases and the frequency of the
use of medicines vary over time. Diseases have time-varying
factors such as seasonality and epidemics [1]. A number
of new medicines have been developed by pharmaceutical
companies. In Japan, for example, more than 100 applications
of new medicines are approved by the Minister of Health,
Labour and Welfare every year.

Understanding the trends in medicine prescriptions for dis-
eases is a key issue, and, in particular, detecting the change
in prescription trends is of practical importance for various
organizations. For pharmaceutical companies, knowing the
trend of new medicines plays an important role in planning an
appropriate marketing strategy to provide their products and in
spreading cutting-edge prescription to all medical institutions.
The accurate tracking of trending prescriptions also enables
national governments to confirm the proper use of medicines
and to make medical charges more reasonable. Furthermore,
if new indications can be detected early from the actual use of
medicines in clinical practice, the feasibility of clinically-based
drug repositioning1 will be worth exploring as an alternative
to conventional bioinformatics approaches [3], [4].

Traditionally, electronic health records (EHRs) [5] and X-
ray images [6]–[8] have been frequently used for the resources
of data mining in the medical domain. However, because EHRs
contain highly confidential data, it is not easy to obtain data

1Drug repositioning is the application of known drugs to new indications. This
approach has received great attention owing to its advantages over traditional
drug development in terms of drug safety and development cost [2].
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Fig. 1: Overview of our two-fold approach.

from many medical institutions. In addition, when using X-ray
images, one cannot analyze the diseases that do not require an
X-ray inspection. These make it difficult to conduct universal
analysis for population-scale healthcare using EHR data.

As another resource, the present study focuses on Medical
Insurance Claims (MICs), which comprise the specifications
of medical fees that medical institutions charged to health
insurers (see Section III-A for details). An advantage of using
MIC data is the full coverage of patients: as the Japanese
government has achieved a universal healthcare service system
since 1961, every citizen is obligated, by the law, to take out
any health insurance, where most MIC records are computer-
ized.2 While we use Japanese MIC data in this work, similar
systems have been adopted in other nations including Korea
and Taiwan.3

Given the MIC big data, this paper addresses the problem
of detecting the change in prescription trends and identifying
its cause. Our approach is two-fold as shown in Figure 1. The
first step is to accurately reproduce monthly prescription time
series from the MIC data, where prescription links between
diseases and medicines are missing. To this end, we propose
a latent variable model that simulates the medication behavior
of physicians (Figure 1a). The second step is to detect the
trend change from the reproduced prescription time series. We
achieve this by applying a state space model with intervention
variables that can decompose the prescription time series
into different components including seasonality and structural

2As of September, 2017, the penetration rate of electronic MIC records was
93.2% on a medical institution basis and 98.2% on a record basis.

3http://www.esri.go.jp/jp/prj/int prj/prj-2004 2005/macro/macro16/09-1-R.
pdf

http://www.esri.go.jp/jp/prj/int_prj/prj-2004_2005/macro/macro16/09-1-R.pdf
http://www.esri.go.jp/jp/prj/int_prj/prj-2004_2005/macro/macro16/09-1-R.pdf


changes. We then categorize the trend change into disease-,
medicine-, and prescription-caused changes by assessing the
structural change component (Figure 1b). We evaluate the
effectiveness of our approach with real big data consisting
of 3.5-year MIC records.

We make the following contributions with this work:
• We introduce the change detection of prescription trends

as a promising application for mining electronic MIC big
data, which has a large impact on not only academic but
also practical domains such as medical, administrative,
and economic fields. To the best of our knowledge, this
is the first attempt to use MIC data for this purpose. We
also present two more applications for universal medical
analysis.

• We develop a probabilistic medication model that uses
latent variables to predict prescription links missing from
MIC records. Our experiments show that the model
performs significantly better than a cooccurrence-based
approach in terms of both predictive capability of unseen
medicines and prescription relevance assessed by a med-
ical professional.

• We empirically show that our model based on a state
space model with intervention variables can find from
hundreds of thousands of disease-medicine pairs the ones
with a change in prescription trends due to, for example,
new medicine and new indication effects. We also pro-
pose a method for efficiently finding approximate change
points and compare its performance with a method find-
ing the exact solution in terms of both computational cost
and approximation accuracy.

II. RELATED WORK

Medical Data Mining. Much effort has been devoted
to medical data mining, aiming at improving the quality
of medical services either directly or indirectly [5]–[8]. In
addition to sensitive medical data such as EHRs [5] and X-
ray images [6]–[8], other data resources are beginning to be
analyzed from the different perspective of user understanding
and knowledge discovery on the medical domain. Paparrizos
et al. [9] used search logs to predict those who will issue first-
person diagnostic queries about devastating diseases. Mishra
et al. [10] also leveraged search logs to find searchers with
time-critical health information needs (e.g., seeking an urgent
care facility). Aramaki et al. [11] proposed using Twitter as
a social sensor to detect influenza epidemics. As alternative
data, we use MIC records in this work to detect the change in
prescription trends. Matsubara et al. [1] developed FUNNEL,
an analytical model for long-term epidemiological data across
a wide area. FUNNEL is so flexible as to generalize existing
epidemiological models like SIRS [12] and can find important
patterns of epidemiological time series. We borrow from
Matsubara et al.’s work [1] several factors (e.g., seasonality)
affecting prescription trends while also considering the own
ones unique to our problem setting (Section III).

Link Prediction. The problem of predicting links between
nodes has been studied extensively as it has a broad range of

applications such as product purchase prediction and human
relationship understanding [13]–[15]. To understand the asso-
ciation between words and tags in documents, Blei et al. [16]
proposed Correspondence Topic Model, which selects a topic
for each tag from the ones assigned to words in the same
document. Iwata et al. [17] extended that model to deal with
the situation in which documents contain noisy tags unrelated
to the content. The MIC data we use in this work also lacks
links indicating prescriptions between diseases and medicines.
The absence of these links causes adverse effects on the
accurate reproduction of prescription time series, from which
we detect trend changes. Thus, we propose a similar model
with latent variables that simulates physicians’ medication
behavior.

Time Series Analysis. The autoregressive (AR), autore-
gressive integrated moving average (ARIMA), and state
space models have been well-known, representative meth-
ods throughout the history of time series analysis. Many
researchers have addressed the problem of time series analysis
by building on these models [18]–[20]. The state space model,
in particular, is a technique encompassing the AR and ARIMA
models, and the parameter estimation and forecasting can
be efficiently achieved thanks to the Kalman filter [21]. It
allows one to incorporate domain knowledge and/or his/her
assumption to the model and to interpret the change in time
series through the component decomposition [22]. Taking
these advantages into account, we apply a state space model
with intervention variables for our purpose. The change and
burst detection has also been studied by the data mining
community for years [23]–[26]. In this work, we detect the
change in prescription trends in a fully automatic manner by
considering the fitting quality of our model.

III. CHALLENGES

This section describes two main challenges to be addressed
in this work. One is attributed to the structure of MIC data,
while the other is related to factors affecting the change in
prescription trends.

A. Medical Insurance Claims (MICs)

MIC records that we use in this work consist of (1) medical
institutions, (2) patients covered by health insurances, (3)
the patients’ diseases diagnosed by physicians, (4) medical
services (e.g., actions taken, medicines prescribed, and devices
used) offered for the disease treatments, and (5) medical fees
for the services. Each medical institution creates a single MIC
record for every patient on a monthly basis to recover the
medical fees incurred from the health insurers. Receiving the
MIC records, the health insurers assess the validity of the
medical treatments and, if the assessment is favorable, pay the
medical institutions the medical fees (except for out-of-pocket
expenses borne by the patients).

As the purpose of generating MIC records is to charge the
incurred medication fees to health insurers, detailed clinical
information (e.g., the results of medical tests and X-ray
images) is omitted from these records, unlike in EHRs. This
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Fig. 2: Adverse effect of missing prescription links on prescription
count prediction for hypertention.

gives rise to the following challenge when using MIC data for
prescription trend analysis.

Missing prescription links. As both a list of diseases
diagnosed and a list of medicines prescribed are included in
MIC data, we can easily understand how often each disease
is diagnosed and how often each medicine is prescribed per
month. However, there is no direct method to count the
prescriptions for each disease-medicine pair. This is because
links indicating the prescription relationship between diseases
and medicines are missing from the MIC data. As noted
above, each MIC record contains monthly medical treatments
offered to every patient. For instance, if a patient visits the
same hospital several times a month to have treatments for
different diseases, individual treatments are aggregated into the
same MIC record. In fact, the average frequencies of diseases
and medicines per MIC record are as large as 7.435 and
4.788, respectively, in our dataset (Section VIII). To detect
the change in prescription trends in a reliable manner, it is
necessary to reproduce the prescription time series for each
disease-medicine pair as accurately as possible by predicting
the missing prescription links.

One straightforward approach to the above issue is to
assume the number of cooccurrences between each disease
and medicine in MIC data as the prescription count for
that disease-medicine pair. Figure 2a shows the prescription
time series of two medicines (i.e., a depressor and an anti-
inflammatory analgesic) for hypertension, predicted by this
approach. Note that only the former medicine has efficacy for
hypertension. Nevertheless, the cooccurrence-based approach
shows a higher prediction of the prescription count for the
latter medicine than that for the former one. In this way,
this approach has a mis-prediction problem especially for
medicines appearing frequently in the MIC data.

B. Prescription Trend

The number of prescriptions of medicines for diseases varies
over time due to various factors. We carried out a close
observation of real MIC data to organize components that are
required to model the dynamics of the prescription time series.
In what follows, we show several examples of prescription
time series that have been estimated by our model (Section IV)
for addressing the aforementioned missing link problem in
MIC data.

Seasonality. Some diseases cause epidemics in particular
seasons [1] while others behave stably during any season.
Figure 3a shows the prescription time series of medicines for
hay fever, heatstroke, and influenza. We can observe from this

TABLE I: Notation ((t) is omitted when it is clear from the context).
Symbol Description

R(t) monthly MIC dataset at time t

R(t) number of MIC records in R(t)

D(t) number of unique diseases in R(t)

M(t) number of unique medicines in R(t)

d
(t)
r bag of diseases in MIC record r (d(t)r = {d(t)rn}N

(t)
r

n=1 )

m
(t)
r bag of medicines in MIC record r (m(t)

r = {m(t)
rl }

L
(t)
r

l=1 )

η(t) D(t)-dimensional parameter of disease distribution at time t

z
(t)
rl (latent) disease for which medicine m

(t)
rl is prescribed

θ
(t)
r D(t)-dimensional parameter of latent disease distribution for MIC record r

φ
(t)
d M(t)-dimensional parameter of medicine distribution for disease d

q
(t)
rld probability of selecting disease d for l-th medical treatment in MIC record r

figure that hay fever, heatstroke, and influenza are prevalent
during spring, summer, and winter, respectively. In this way,
the seasonality of diseases brings periodic change to the
number of prescriptions. A model for analyzing prescription
trends must be able to distinguish such periodic change from
structural changes described below.

Medicine-derived structural changes. While seasonality is
a disease-specific property affecting the number of prescrip-
tions, some medicines also have their unique effects on the
prescription trend changes. The release of new medicines is a
prime example of such medicine-specific effects. Figure 3b
shows the prescription time series of a bronchodilator for
three of its target diseases. In the figure, the number of
prescriptions for these diseases suddenly increased from zero
around November in 2011, from when this medicine has been
on sale. The revision of medicine price is another example. It
is possible that a medicine whose price is discounted at some
point in time will be prescribed more frequently from then
on. These medicine-derived structural changes also need to be
taken into consideration in the model.

Prescription-derived structural changes. Structural
changes can also be caused by interaction effects between
diseases and medicines. Examples of this effects include
indication expansion (i.e., adding new indications to known
medicines). Figure 3c shows the prescription time series of
another bronchodilator that is known to be efficacious for
chronic obstructive pulmonary disease (COPD; the generic
term for chronic bronchitis and pulmonary emphysema).
Because bronchial asthma was announced as the new
indication for this medicine around the end of 2014, the
prescription for this indication has started to increase
gradually since then.

Outliers. The prescription time series can have extreme
spikes at some time points due to other external factors such
as pandemics. In Figure 3a, for example, we can see that the
prescription count for influenza during the winter season in
2014 is much larger than that in other years. Due to these
outliers in real MIC data, the model needs to be robust against
random fluctuations.

IV. PRESCRIPTION LINK PREDICTION

To address the missing link problem in the MIC data, we
propose a latent variable model that simulates how physi-
cians prescribe medicines for the diseases that they diagnose.
Table I summarizes the notation used throughout the paper.
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Fig. 4: Generative process of diseases and medicines in our model.

Suppose that we have T monthly MIC datasets, i.e., R(t)

(t ∈ {1, . . . , T}). Let R(t) be the total number of MIC records
in R(t), where D(t) and M (t) kinds of diseases and medicines
appear, respectively. Each MIC record r ∈ {1, . . . , R(t)} is
represented by (d(t)r ,m

(t)
r ), where d(t)r = {d(t)rn}N

(t)
r

n=1 is a bag
of diseases diagnosed in r, and m(t)

r = {m(t)
rl }

L(t)
r

l=1 is a bag
of medicines prescribed in r. In what follows, we omit the
superscript (t) when it is clear from the context.

A. Generative Process

Figure 4 illustrates how our model generates diseases and
medicines in MIC data. As shown in the figure, diseases,
realizations of latent variables, and medicines are generated
in this order. In what follows, we explain each generation step
in detail.

Disease Diagnosis. A physician makes diagnoses through
patient examinations. Our model simulates this behavior by
generating diseases dr for each MIC record r. More specifi-
cally, drn ∈ dr, the n-th disease diagnosed in the MIC record
r, is chosen from the multinomial distribution with the D-
dimensional parameter η = (η1, . . . , ηD), where ηd ≥ 0
and

∑D
d=1 ηd = 1 (i.e., drn ∼ Multinomial(η)). Note that

diseases frequently diagnosed by physicians could vary over
time due to, for example, seasonality. To take this temporal
effect into account, we assume in our model that disease
diagnoses (and medicine prescriptions described below) follow
different distributions at different time points (on a monthly
basis in our dataset).

Medication Target. After diagnosing diseases that a patient
is affected, a physician judges which of them need medication.
To simulate this behavior, our model iteratively selects a
value of a latent variable zrl from diseases dr of the MIC
record r generated in the previous step. Mathematically, this
step is represented by zrl ∼ Multinomial(θr), where θr =
(θr1, . . . , θrD) is a D-dimensional parameter (θrd ≥ 0 and∑D
d=1 θrd = 1) indicating the disease selection distribution

in the MIC record r. Note that this parameter must satisfy
the constraint θrd = 0 for each disease d not appearing in
r (i.e., d /∈ dr) because such disease cannot be the cause of
medication in r.

Medicine Prescription. Once identifying diseases in need
of medication, a physician prescribes appropriate medicines
for each of them. To simulate this behavior, our model
generates a medicine for each disease in {zrl}Lr

l=1. Given
zrl = d, the l-th medicine mrl ∈ mr prescribed in the MIC
record r is chosen from the multinomial distribution with
the M -dimensional parameter φd = (φd1, . . . , φdM ), where
φdm ≥ 0 and

∑M
m=1 φdm = 1 (i.e., mrl ∼ Multinomial(φd)).

In our model, a disease and a medicine are not independent
with each other if the disease is regarded (by the latent
variable) as the cause of prescribing the medicine. Making
medicine distributions dependent on (latent) diseases allows
us to represent the difference in medicine prescriptions among
different diseases.

In clinical practice, some diseases require many medicines
for treatment. An identical medicine is sometimes prescribed
for different diseases. Occasionally, no medicine are prescribed
for some diseases that are diagnosed in a medical examination.
Our model is flexible enough to address all of these cases be-
cause it allows many-to-many relationships between diseases
and medicines in each MIC record.

B. Formulation

We formulate the aforementioned generative process of
diseases and medicines in MIC data. Given the parameters
η, Θ = (θ1, . . . ,θR), and Φ = (φ1, . . . ,φD), the occur-
rence probability P (R | η,Θ,Φ) of the MIC data R =
{(dr,mr)}Rr=1 is given by

P (R | η,Θ,Φ) =

R∏
r=1

P (dr | η)P (mr | dr,θr,Φ)

=

R∏
r=1

Nr∏
n=1

P (drn | η)

Lr∏
l=1

∑
zrl∈dr

P (zrl | θr)P (mrl | φzrl)

=

R∏
r=1

Nr∏
n=1

ηdrn

Lr∏
l=1

D∑
d=1

θrdφdmrl
. (1)

In the rest of this section, we describe how to estimate these
parameters when fitting our model to the MIC data and how to
reproduce the prescription time series from the fitted model.

C. Inference

First, we describe the estimation of the parameter Θ. In
this work, we assume that the probability of selecting a
disease that needs medication is proportional to the frequency
of the disease in the MIC record. This is similar to what



correspondence topic models [16], [17] assume. Under this
assumption, we define the probability θrd of selecting a disease
d requiring medication from a MIC record r as follows:

θrd =
Nrd
Nr

, (2)

where Nrd is the frequency of the disease d in the MIC
record r; therefore,

∑D
d=1Nrd equals Nr, the number of

diseases appearing in r. Clearly, θrd defined above satisfies
the constraint described in Section IV-A (i.e., θrd = 0 if
d /∈ dr). This formulation is based on our rationale that
the more times a patient is diagnosed as a disease, the more
frequently medicines are prescribed to treat the disease.

Next, we describe the estimation of the rest parameters
η and Φ. Taking Equation (1) as the likelihood with re-
spect to these two parameters, the log-likelihood L(η,Φ) ≡
logP (R | η,Θ,Φ) with respect to them is given by

L(η,Φ) =

R∑
r=1

Nr∑
n=1

log ηdrn︸ ︷︷ ︸
≡L(η)

+

R∑
r=1

Lr∑
l=1

log

D∑
d=1

θrdφdmrl︸ ︷︷ ︸
≡L(Φ)

. (3)

The parameter η can be estimated by maximizing L(η) with
the method of Lagrange multipliers. However, the estimate of
the parameter Φ cannot be analytically obtained from L(Φ).
Thus, we use the EM algorithm to alternately update Φ and a
so-called responsibility Q at each iteration. The responsibility
qrld ∈ Q represents the probability of selecting a disease d as
the one that needs the l-th medicinal treatment in a MIC record
r and satisfies qrld ≥ 0 and

∑D
d=1 qrld = 1. In summary, the

estimates of η, φdm, and qrld are obtained as follows:

ηd =

∑R
r=1Nrd∑D

d′=1

∑R
r=1Nrd′

, (4)

φdm =

∑R
r=1

∑Lr

l=1 qrld1(mrl = m)∑M
m′=1

∑R
r=1

∑Lr

l=1 qrld1(mrl = m′)
, (5)

qrld =
θrdφdmrl∑D

d′=1 θrd′φd′mrl

, (6)

where 1(p) is an indicator function that returns 1 if the
predicate p is true and 0 otherwise.

D. Time-Series Reproduction

To obtain time series XP ∈ RD×M×T of the number
of monthly prescriptions for each disease-medicine pair, we
apply our medication behavior model to individual monthly
MIC datasets. More specifically, xdmt ∈ XP, the number of
prescriptions of a medicine m for a disease d in a time t (on
a monthly basis), is estimated as follows:

xdmt =

R(t)∑
r=1

L(t)
r∑
l=1

q
(t)
rld 1(m

(t)
rl = m) . (7)

Disease time series XD ∈ RD×T and medicine time series
XM ∈ RM×T can also be reproduced from XP. Let xdt ∈ XD

be the number of medical treatments for a disease d in a time

t and xmt ∈ XM be the number of medical treatments with a
medicine m in t. We estimate these counts by

xdt =

M∑
m=1

xdmt , xmt =

D∑
d=1

xdmt . (8)

Figure 2b shows the prescription time series that our model
reproduced for the disease-medicine pairs explained in Sec-
tion III-A. As shown in the figure, the prescription counts
of the medicine that is not effective for hypertension were
predicted to be nearly zero. For the medicine with efficacy,
in contrast, we can observe that its predicted prescription
time series is almost identical to the cooccurrence-based
prescription time series (shown in Figure 2a).

V. TREND CHANGE DETECTION

To detect the change in prescription trends of the time series
reproduced by the procedure in Section IV-D, we incorporate
the components described in Section III-B into a state space
model.

A. Formulation

We represent the dynamics of the time series {xqt}Tt=1 of
either diseases (q = d), medicines (q = m) or prescriptions
(q = (d,m)) with the following state space model:

xqt = µqt + γqt1 + λqwqt + εqt ,

µq,t+1 = µqt + ξqt ,

γq,t+1,s =

{
−
∑11
s′=1 γqts′ + ωqt (s = 1) ,

γqt,s−1 (s ∈ {2, . . . , 11}) ,
εqt ∼ N(0, σ2

ε ), ξqt ∼ N(0, σ2
ξ ), ωqt ∼ N(0, σ2

ω) ,

(9)

where N(µ, σ2) is the normal distribution with mean µ and
variance σ2. The observation equation (the first in Equa-
tions (9)) decomposes the given time series into four com-
ponents: level (µ·), seasonality (γ·), intervention (λ·w·), and
irregularity (ε·). We explain each component below.

Level. This is intended to express slow change in time
series, which cannot be explained by the other three. This
level is similar to the intercept in linear regression, but it may
vary over time.

Seasonality. This captures periodic change in time series.
Remember that diseases in Figure 3a have a 12-month pe-
riodicity in their prescription time series. Thus, we express
the dynamics of the seasonality component with 11 state
equations.

Intervention. This component is added to capture structural
change in time series. This component consists of two vari-
ables: w·, a dummy value indicating the presence or absence
of the change, and λ·, the scale of the change. As described in
Section III-B, we are interested particularly in the structural
change due to the new medicine and new indication effects,
both of which usually occur at most once and, if so, cause
an increase in the slope of a time series (Figures 3b and 3c).
Thus, we allow for a single change point for each time series
and use the slope shift [22] to model its structural change.



Algorithm 1 Find exact change point of time series {xqt}Tt=1 with exhaustive
search.

1: best_point← NULL , best_aic←∞
2: for each change point t ∈ {1, . . . , T,∞} do
3: aic← AIC({xqt}Tt=1, t) . AIC value of our model fitted with t
4: if aic ≤ best_aic then
5: best_point← t , best_aic← aic

6: return best_point

Algorithm 2 Find approximate change point of time series {xqt}Tt=1 with
binary search.

1: function FINDWITHIN(left,right)
2: if right− left ≤ 1 then
3: return argmint∈{left,right} AIC({xqt}Tt=1, t)

4: middle← left+right
2

5: if AIC({xqt}Tt=1,left) < AIC({xqt}Tt=1,right) then
6: return FINDWITHIN(left,middle)
7: else
8: return FINDWITHIN(middle,right)
9: best← FINDWITHIN(1, T )

10: return argmint∈{best,∞} AIC({xqt}Tt=1, t)

More specifically, we define wqt, a dummy value at a time
point t for time series having the change point tCP (defined
as ∞ if no change point exists), as t − tCP + 1 if t ≥ tCP)
and 0 otherwise. In this work, we assume that the scale of the
structural change is constant over time for simplicity.

Irregularity. The last terms in the observation and state
equations represent the irregularity of these components. These
terms allow the value of each component to vary over time,
which improves the flexibility the model. In addition, outliers
may exist in time series data, as mentioned in Section III-B. As
these abnormal values are absorbed into the irregularity term
ε· of the observation equation, our trend change detection is
robust to noise.

B. Inference

Given the time series {xqt}Tt=1 and its change point tCP,
we can efficiently estimate the parameters of our state space
model by using the Kalman filter [21]. Thus, the remaining
problem to be solved is finding the change point for given
time series. In particular, we would like to find it using a
fully automated approach without any hyperparameter, be-
cause human intervention is unrealistic for the massive number
of time series (e.g., more than 200 thousand prescriptions in
our experiments).

To this end, we use Akaike’s Information Criterion
(AIC) [27] as a criterion for the automatic change point
detection. AIC measures the quality of statistical models on
the basis of both the likelihood and the number of parameters
of the model. A lower AIC value indicates better quality.
Our choice of this criterion is based on the following: it
allows for a fair comparison between multiple models with
different numbers of parameters [22], has been commonly used
for model selection [18], [28], and performs at least as well
as its alternatives (e.g., the Bayesian Information Criterion
(BIC) [29]) [30]. Note, however, that our solutions presented
below can work with other criteria for model selection.
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Fig. 5: The effect of intervention selection on model performance.

Exact Solution. In this approach, we find the change
point of the given time series {xqt}Tt=1 by Algorithm 1.
This algorithm regards each time point t ∈ {1, . . . , T} as a
candidate change point of {xqt}Tt=1 and fits our model with
this assumption. In this way, we obtain the best candidate
change point that minimizes the AIC value of the learned
model within the entire period. Finally, we compare the AIC
values of this model and a model without the intervention
component to decide whether the change point really exists.

Approximate Solution. While Algorithm 1 can find the
exact solution for the change point of the given {xqt}Tt=1, it
conducts an exhaustive search for T . Thus, the computational
cost increases linearly with respect to the length of the whole
period for which MIC records have been considered. To
reduce the search space, we focus on the sensitivity of AIC
over change points. Figure 5 shows the AIC values of our
models fitted with different intervention points, together with
an original time series having the slope change in September
2013. This figure indicates that models with a intervention
point near the true change point yield lower AIC values than
those far from it. This observation leads us to an idea that we
can skip fitting a model with unlikely change points, which is
summarized in Algorithm 2. This algorithm behaves similarly
to the binary search: it halves the search space at each iteration.

Time Complexity. Let CKF be the computational time
required for the Kalman filter to fit our model to the given
time series. Algorithm 1 requires O(CKFT ) time to find the
exact solution, while Algorithm 2 requires O(CKF log(T ))
time to find the approximate solution. We evaluate the cost-
effectiveness of these algorithms in Section VIII.

VI. DATASET

We use the medical insurance claim data of all the elderly
citizens over 75 years of age who live in the Mie Prefecture,
Japan. This dataset was recorded from March 2013 through
September 2016 (i.e.. 43 months), and then anonymized and
disclosed to the authors by Mie Prefectural Association of
Medical Care Services for Older Senior Citizens by contract.
This association is the only healthcare insurance organization
in service to all the elderly citizens over 75 years of age who
reside in Mie, which enables us to perform universal analysis
for the regional elderly healthcare.

Records in our dataset are created on a monthly basis, as de-
scribed in Section III-A. On average, 3,347 medical institutes,
202,972 patients, 332,167 MIC records, 9,173 diseases, and
9,346 medicines are contained in each monthly MIC dataset
R(t) (t ∈ {1, . . . , 43}). We selected geriatric patients as our



target age group because of the following three reasons. The
first reason is the coverage and homogeneity of the data as
mentioned above.4 Second, as elderly people are likely to visit
hospitals more frequently than younger people do, we can
expect to obtain more MIC records from the former. Third,
the duration of this dataset is the longest out of all the ones
available for us.5

Before fitting our probabilistic medication model to each
dataset R(t), we omitted diseases and medicines that appear
less than five times in R(t), as was done in the existing work
on topic modeling [17], [31]. Similarly, when fitting our state
space model to the reproduced time series, we omitted those
whose total frequency during the said period is less than 10
to ensure the reliability of the model fitting. These filtering
processes reduced the numbers of diseases, medicines, and
prescriptions for which the trend change detection is applied
to 3,978, 7,474, and 206,829, respectively.

VII. APPLICATIONS

This section introduces three applications for our universal
medical analysis.

A. Temporal Prescription Change Detection

As described in Section I, detecting the change in prescrip-
tion trends has various practical applications. We demonstrate
the effectiveness of our state space model in detecting impor-
tant trend changes in reproduced time series data. Figures 6
and 7 show the fitting results for six time series reproduced
from MIC records with Equations (7) and (8). For each case
example, the top figure shows the original (i.e., xqt) and fitted
(i.e., xqt − εqt) time series, while the middle contains three
components (i.e., µqt, γqt1, and λqwqt) decomposed by our
model. For comparison, we also plotted several time series
related to the original one at the bottom.

Seasonality and outliers. Our model successfully identified
the seasonality of influenza, as shown in the middle graph
in Figure 6a. This time series contains the spike around the
winter in 2015 due to its outbreak in that season. As this
sudden increase is a temporal effect, our model treated it as
an outlier for better fitting. Figure 6b shows the time series
of diarrhea, which is diagnosed frequently as seasons change.
The figure demonstrates that our model was able to capture
the seasonality having more than one peak per year.

Medicine-derived structural changes. Figure 6c shows the
fitting result for a new medicine for osteoporosis, which has
been released in August 2013. We can observe from the middle
graph that our model detected the release date accurately. The
bottom plot draws the time series of medicines with the same

4The other citizens, below 75 years of age, enroll in different public healthcare
insurances according to their residential addresses, employers, and income
levels.

5We also applied our probabilistic medication model to a smaller dataset that
contain the MIC records of younger patients. As a result, the frequently
prescribed medicines for major diseases (such as influenza, hay fever, and
hypertension) that our model learned were consistent between the different
datasets. In this paper, we only report our results for the larger dataset due
to space limitation.

indication that were less used after the release of the new
medicine. Figure 6d is an example of the sudden decreasing
trend in medicine time series. This is attributed to the release
of generic medicines, whose usage started to increase around
the same time as shown in the bottom.

Prescription-derived structural changes. Our model also
found the new indication effect on Lewy body dementia,
as shown in Figure 7a. Another type of prescription-derived
structural changes detected by ours is shown in Figure 7b. The
top graph draws the time series of a medicine for oral feeding
difficulty. This is not a new medicine because it was prescribed
to other diseases as shown in the bottom graph. Remarkably,
the time series of dehydration (denoted as “related1”) in this
graph exhibits the opposite trend, suggesting that patients with
the same or similar symptoms might be diagnosed as different
diseases according to times.

B. Geographical Prescription Spread Visualization
While the application in Section VII-A focuses on the

temporal change in prescription trends, understanding geo-
graphical spread of prescriptions also plays an important role
in local governments’ managing medicine supply and demand.
To investigate the geographical prescription spread, we divided
our dataset on the basis of the city of each hospital where
MIC records are created. Then, we learned our probabilistic
medication model for MIC records in each city separately.

Taking the original anti-platelet medicine in Figure 6d as
an example again, we visualized the prescription counts of
the original and generic medicines at each city to see how the
latter spread geographically after their release. We can observe
from Figure 8 that Generic-3 was used most frequently among
the three in the first month after the release and still kept
its popularity at a high level one year later. This is probably
because Generic-3 is an authorized generic,6 which may be
more acceptable for patients than other generics. Another
finding from this analysis is that the original medicine still
dominated the market in some cities (e.g., the northernmost
area) even after the release of the generics. As generics are
typically cheaper than their original medicines, this application
could be used to find areas where medical costs can be reduced
by encouraging local hospitals to use generics more frequently.

C. Inter-Hospital Prescription Gap Analysis
The number of big hospitals that provide advanced medical

treatments is limited. There are many small hospitals at which
only a few physicians diagnose local residents. Understanding
difference in prescriptions between these hospitals is of prac-
tical importance to close a inter-hospital gap in the quality
of medical care. As an application for this purpose, we ana-
lyzed the prescription trends of different-sized hospitals. More
specifically, we grouped hospitals into three classes based on
the number of beds: small for [0, 20), medium for [20, 400),
and large for [400,∞).7 Then, we learned our probabilistic

6Authorized generics are identical to their original medicine in not only active
ingredients but also inactive ones and manufacturing process, etc.

7In Japan, hospitals in the small and large classes are called clinics and
advanced treatment hospitals, respectively.
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(d) Original anti-platelet medicine
Fig. 6: Fitting results of our state space model for disease and medicine time series. Top: original vs. fitted time series. Middle: components
decomposed by our model. Bottom: time series related to original one.
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Fig. 7: Fitting results of our state space model for prescription time
series, arranged in the same way as Figure 6.

medication model for MIC records in each class separately.
Table II shows the top 10 frequent diseases for which an

antibiotic was prescribed at hospitals in each class. Despite the
fact that antibiotics have efficacy for bacteria-caused diseases,
small hospitals more frequently prescribed this medicine for
cold syndrome (e.g., acute upper respiratory inflammation) and
influenza, both of which are mostly caused by viruses. The
abuse of antibiotics increases not only medical costs but also
risk for drug resistance. this application could help national
governments decide to which hospitals they should announce
the proper use of medicines.

VIII. EXPERIMENTS

To evaluate our models proposed in Sections IV and V, we
conducted experiments using real MIC data. Our experiments
were designed to answer the following questions:
Q1 Accuracy: How accurately can our probabilistic medica-

tion model predict prescription links missing from the
MIC data?

Q2 Usefulness: How well can our state space model explain
the dynamics of the prescription time series?

(a) Original (b) Generic-1 (c) Generic-2 (d) Generic-3

(e) Original (f) Generic-1 (g) Generic-2 (h) Generic-3

(i) Original (j) Generic-1 (k) Generic-2 (l) Generic-3

Fig. 8: Geographical spread of anti-platelet medicines (same as
Figure 6d). Top: one month before the release of generic medicines.
Middle: one month later. Bottom: one year later.

Q3 Efficiency: How efficient is our state space model with
binary search and how does the detection performance
change?

All the experiments were run on a Linux machine with two
10-Core 2.40GHz Intel Xeon (E7-2870) CPUs and 512GB of
memory. In what follows, significant effects are reported on
the significant level α = 0.05.

A. Q1: Accuracy

To directly answer the first question Q1, which is about
the accuracy of our probabilistic medication model, we need
true prescription links between diseases and medicines in each
MIC record, which are, however, difficult to obtain. Therefore,
we decided to evaluate our model from different perspectives
and conducted two experiments about predictive performance
and prescription relevance.

Baselines. The common baseline (denoted as Cooccurrence)
we used in both experiments is to predict prescriptions be-



TABLE II: Top 10 frequent diseases for which an antibiotic is prescribed at small, medium, and large hospitals.
(a) Small hospitals

Disease Ratio (%)

acute bronchitis 31.996
bronchitis 12.059
acute upper respiratory inflammation 9.750
allergic rhinitis 5.198
other 4.975
influenza 3.303
pharyngitis 3.202
acute pharyngolaryngitis 2.667
chronic sinusitis 2.481
acute pharyngitis 2.400

(b) Medium hospitals

Disease Ratio (%)

acute bronchitis 24.526
chronic bronchitis 12.632
bronchitis 7.233
nontuberculous mycobacterial infection 5.923
chronic sinusitis 5.260
allergic rhinitis 5.059
Helicobacter pylori infection 4.494
bronchiectasis 4.059
pharyngitis 2.150
pneumonia 1.602

(c) Large hospitals

Disease Ratio (%)

chronic sinusitis 10.626
nontuberculous mycobacterial infection 9.336
acute bronchitis 8.536
bronchiectasis 6.707
allergic rhinitis 3.997
chronic bronchitis 3.976
pneumonia 3.779
Helicobacter pylori infection 3.568
pharyngitis 2.725
diffuse panbronchiolitis 1.418

TABLE III: Mean (and SD) of predictive performance (measured
by medicine perplexity) and prescription relevance (measured by
AP@10 and NDCG@10).

Perplexity AP@10 NDCG@10

Unigram 2315.083 (103.395) — —
Cooccurrence 168.241 (7.408) 0.304 (0.243) 0.450 (0.260)

Proposed 112.436 (4.480) 0.787 (0.298) 0.835 (0.288)

tween diseases and medicines on the basis of disease-medicine
cooccurrences, as mentioned in Section III-A. More specifi-
cally, instead of Equation (5), this method uses the following
equation to predict the parameter Φd = (φd1, . . . , φdM ) of the
medicine generation distribution for each disease d:

φdm =

∑R
r=1

∑Lr

l=1 Coocr(d,m)∑M
m′=1

∑R
r=1

∑Lr

l=1 Coocr(d,m′)
, (10)

where Coocr(d,m) is the frequency of cooccurrences between
a disease d and a medicine m in a MIC record r. In the exper-
iment about predictive performance, we also used the unigram
model of medicines [32] (denoted as Unigram) as another
baseline. The comparison with Unigram and Cooccurrence
allows us to validate the effectiveness of the disease-dependent
medicine prescription and the medication target identification
in our model, respectively.

1) Predictive Performance: The first experiment aims to
evaluate the predictive performance of our probabilistic med-
ication model.

Settings. In this experiment, we sampled 90% medicines
from each MIC record to train the proposed and baseline
models and tested these models with the remaining 10% of
medicines. We used perplexity as our evaluation measure,
which is widely used to evaluate the predictive performance
of statistical models (e.g., [16], [17]). A lower perplexity indi-
cates better predictive performance. Letting m′r = {m′rl}

L′
r

l=1

be a bag of test medicines in each MIC record r, the perplexity
PPL(M) of a trained model M is given by

PPL(M) = exp

(
−
∑R
r=1

∑L′
r

l=1 logP (m′rl | M)∑R
r=1 L

′
r

)
. (11)

Results. For each monthly MIC dataset, we trained indi-
vidual models and measured the perplexity for these models.
Table III shows the mean and standard deviation (SD) of the
perplexity scores for each model. Unigram performed poorly.
Its mean perplexity was 20 times higher than ours. On average,
our model achieved about two-thirds as much perplexity as the
Cooccurrence model. In fact, ours beat this baseline in terms
of perplexity for every monthly dataset. We also conducted a

paired t-test, which revealed a significant difference between
these models (t(42) = −103.670, p < 0.001, Cohen’s d =
−15.810). In summary, this experiment uncovered that our
model simulating physicians’ medication behavior was the
most effective among the three.

2) Prescription Relevance: The second experiment aims to
compare our model with the baseline model in terms of the
relevance of estimated prescriptions.

Settings. In this experiment, we first selected 100 most
frequent diseases over the entire period for which the MIC
records have been obtained. Then, for each model and each
frequent disease d, we ranked medicines in the descending
order of xdm =

∑T
t=1 xdmt, which is the total prescription

count of a medicine m for d. Finally, we evaluated the
relevance of the resulting ranking at the cutoff K = 10
with the two measures common in the information retrieval
community: Average Precision (AP) [33], [34] and Normalized
Discounted Cumulative Gain (NDCG) [35]. Note that a higher
score indicates a better ranking for both measures.

Ground Truth. The aforementioned evaluation required
ground truth data about the relevance of prescriptions (1,591 in
total). To prepare such data, one author of this paper assessed
the package insert of each medicine m and judged its relevance
to each disease d on the basis of the following objective
criterion: the prescription is relevant if d or d’s hypernym is
described in the indications and/or therapeutic category fields
in the package insert of m. The assessment resulted in 1,154
prescriptions that were judged as relevant (= 1) or irrelevant
(= 0). However, the remaining 437 prescriptions were left
untouched because of the difficulty in judging relevance for
those without domain knowledge. To overcome this issue, we
asked a medical professional to investigate the relevance of
these prescriptions on the basis of his expertise.8 As a result,
we obtained 1,528 prescriptions being labeled. The remaining
63 unlabeled prescriptions were treated as irrelevant.

Results. Figure III shows the mean and SD of AP@10
and NDCG@10 scores for each model. Our model largely
improved the prescription relevance over the Cooccurrence
model in either measure. Examining individual evaluation
scores, we found that this baseline beat ours only once in
terms of AP@10 and only twice in terms of NDCG@10
out of 100 ranking pairs. The differences between these
two models were shown to be significant by paired t-tests

8We also shared the already assessed prescriptions with the medical profes-
sional for the purpose of double checking.



TABLE IV: Mean (and SD) of fitting quality (measured by AIC) for
disease, medicine, and prescription time series.

disease medicine prescription

Local Level (LL) 326.350 (64.010) 277.238 (80.352) 119.305 (76.138)
LL + Seasonality (S) 254.018 (44.937) 218.295 (56.216) 103.594 (54.999)
LL + Intervention (I) 316.905 (71.306) 268.716 (83.155) 107.579 (80.608)
LL + S + I (proposed) 244.603 (44.937) 208.396 (56.441) 91.888 (50.618)

ARIMA 286.416 (55.975) 242.001 (70.856) 87.888 (302.026)

(t(99) = 15.398, p < 0.001, Cohen’s d = 1.540 for
AP@10; t(99) = 14.374, p < 0.001, Cohen’s d = 1.437 for
NDCG@10). The advantage of our model that we illustrated
with an example in Section III-A was empirically demon-
strated by this experiment.

B. Q2: Usefulness

This subsection answers the second question Q2 about the
usefulness of our state space model. To this end, we evaluated
the fitting quality and forecast performance of our approach.

1) Fitting Quality: First, we measured the fitting quality
of our model by AIC. To identify the contribution of each
component in our full model, we used its simpler variants for
comparison: Local Level (LL), where neither the seasonal nor
intervention component exists, LL with seasonality (LL + S),
and LL with intervention (LL + I). We fitted these models
to each time series. In addition, we used as a baseline the
ARIMA model, where we determined the optimal parameters
by using AIC. Table IV summarizes the mean and SD of the
AIC values of those models.

LL, which is the simplest variant of our model, achieved
the least performance consistently. Both LL + S and LL +
I contributed to the improvement of the fitting quality: the
seasonality component was in particular effective for disease
time series while the intervention component decreased the
AIC values for all types of time series to an equal degree.
This supports our observation that the seasonality is a disease-
dependent factor while both diseases and medicines affect the
structural change of prescription time series (Section III-B).

Our full model (LL + S + I) achieved the best performance
for disease and medicine time series. Compared with the
second best model (LL + S), it decreased the mean AIC value
by about 10 for each type of time series. Conducting paired
t-tests, we found significant differences between these models
(t(3977) = −36.619, p < 0.001, Cohen’s d = −0.581 for
diseases; t(7473) = −49.829, p < 0.001, Cohen’s d =
−0.576 for medicines), indicating the importance of capturing
both the seasonality and structural change in these kinds of
time series data. In fact, our model identified change points in
the time series for 12%, 28%, and 10% of diseases, medicines,
and prescriptions, respectively.

For prescription time series, our full model achieved the
second best performance, which was comparable to the best
model (i.e., ARIMA). While the difference between these
models was shown to be significant (t(206800) = 6.107, p <
0.001), the effect size was negligible (Cohen’s d = 0.013).
The AIC variance of the ARIMA model was much larger,
indicating that its fitting quality was not as stable as ours. In

TABLE V: Computational time (in minutes) required to fit models
for all time series. Values in parentheses indicate the increased
computation rate from our model without the intervention variables.

disease medicine prescription

Exact Solution 8.529 (27.878) 17.565 (29.900) 562.614 (35.492)
Approximate Solution 1.832 (5.989) 3.678 (6.260) 117.308 (7.400)

addition, the ARIMA model, unlike our model, has no ability
to explain the cause of prescription trend changes.

2) Forecast Performance: While our main focus in this
paper is detecting prescription trend changes from given time
series, forecasting future prescriptions is also a problem of
practical importance. Thus, we also investigated the forecast
performance of our state space model. Again, we used as
a baseline the ARIMA model with the AIC-based optimal
parameters. We used the data from the first 31 months for
training and the remaining 12-month data for forecasting.

Overall, the forecast error of these two models was com-
parable to each other: the median of Root Mean Squared
Errors (RMSEs) for (normalized) disease time series was 0.169
for the ARIMA model and 0.187 for our model. However,
we found that ARIMA made less stable forecasts than ours.
Figure 9 shows the forecasting results of the two models for
five such time series, of which two have seasonality and three
have structural breaks. ARIMA failed to forecast seasonal
patterns in the testing period. It also worked unstably for time
series having structural breaks near the end of the training
period. In contrast, our model made accurate forecasts for both
cases, indicating that its seasonal and intervention components
are effective for forecasting as well as fitting.

C. Q3: Efficiency

To answer the last question Q3, which is about the efficiency
of our state space model, we compared the performance of our
model with the exact change point detection (Algorithm 1)
and that with the approximate change point detection (Algo-
rithm 2) in terms of the cost-effectiveness.

1) Computational Time: First, we investigated the compu-
tational cost of these models. More specifically, we measured
the total computation time required to fit these models for the
entire set of time series.

Table V shows the results together with the increased
computation rate against the computational time of our model
without the intervention variables. It is observed that the
approximate change point detection greatly decreased the
computation time compared with the exact change point
detection. Theoretically, the exact and approximate solutions
take O(CKFT ) and O(CKF log(T )) times, respectively (Sec-
tion V-B). Note that the computational cost of the Kalman filter
can be regarded as constant given the fixed duration of the
time series (T = 43 in our experiments). Thus, the expected
increase rates of the exact and approximate solutions would
be 43 and log2(43) ≈ 5.426, respectively. Our experimental
results almost agreed with these theoretical values.

2) Approximate Accuracy: Next, we evaluated the accuracy
of our approximate solution that detects change points. This
was done by comparing the change points detected by this
algorithm with those by the exact algorithm.
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Fig. 9: Forecasting results. We used the first 31 months for training and the remaining 12 months for forecasting.

TABLE VI: Change point consistency between our exact and approx-
imate methods.

(a) Disease

Approximate

pos. neg.

E
xa

ct pos. 423 40
neg. 0 3,515

(b) Medicine

Approximate

pos. neg.

E
xa

ct pos. 1,944 154
neg. 0 5,376

(c) Prescription

Approximate

pos. neg.

E
xa

ct pos. 19,106 2,079
neg. 0 185,644

Table VI shows the change point consistency between these
two algorithms. It is worth noting that no false-positive case
exists in the table for every type of time series, which is due
to the nature of Algorithm 2. In addition, the rate of false-
negative discoveries is also very low (8.639% for diseases,
7.340% for medicines, and 9.814% for prescriptions). The
measured Cohen’s κ values were 0.949 for diseases, 0.948
for medicines, and 0.943 for prescriptions, indicating strong
agreement in the change point detection by the exact and
approximate algorithms.

We also measured RMSE values between the exact change
points and the approximate ones. The RMSE values for
disease, medicine, and prescription time series were 3.862,
7.154, and 4.481, respectively. Given the period of our dataset
(i.e., T = 43), the approximate algorithm found change points
with a reasonable degree of accuracy especially for diseases
and prescriptions.

When we used Algorithm 2 for change point detection, the
mean AIC values of our model for disease, medicine, and
prescription time series were 244.742, 209.076, and 92.099,
respectively. Our approximate solution achieved a comparable
fitting quality to the exact solution by Algorithm 1 (the last
row in Table IV).

IX. DISCUSSION

In this paper, we proposed a probabilistic medication model
to predict missing links in MIC data. It was shown to be
accurate by our experiments. In terms of both subjective and
objective evaluations, our model significantly outperformed
the cooccurrence-based baseline. This suggests that the gener-
ative process defined by our model was reasonable to capture
the medication behavior by real physicians. Achieving high
accuracy in this step is crucial to reliably detect prescription
trend changes from reproduced time series. While we trained
our model for each monthly dataset separately, modeling the
evolution of disease and medicine distributions at consecutive
months (as Dynamic Topic Model [36] and Topic Tracking
Model [37] do) and/or geographical differences in those distri-
butions (by applying location-aware topic models [38]) could
further improve the performance of missing link prediction,
which would be a promising direction to extend this study.

We also proposed a state space model with seasonal and
intervention components to detect prescription trend changes.
Our full model achieved the better fitting quality in terms of
AIC than a model without these components. As shown in
Section VII-A, our model successfully identified the various
types of prescription trend changes (e.g., periodic changes
due to disease seasonality and structural breaks due to new
medicines and new indications). An interesting finding from
this analysis is that some time series have the early signs of
structural breaks (e.g., in Figure 7, the small number of initial
prescriptions exist before the prevalence). Can we predict
the future growth of a prescription from its initial behavior?
While this paper focuses mainly on detecting time series
having prescription trend changes, building a forecast model
for prescription time series would also be worth exploring in
future. Our model could be used as a foothold for this purpose
as we exemplified in Section VIII-B2.

There are several limitations that we should acknowledge
for this work. First, we assume at most one change point for
each time series because our main focus is structural changes
due to the new medicine and new indication effects, both of
which usually occur at most once. In reality, however, more
than one change point can exist in time series. This may be a
possible explanation of why our model did not outperform the
ARIMA model for prescription time series, which tended to
have a zigzag shape due to data sparsity. It is worth examining
whether the fitting quality improves by allowing for multiple
change points. As state space models can accept more than
one intervention variable, we can extend our model in that
way. Second, we formulated our state space model with linear
equations and Gaussian distributions to make our problem
simple and tractable. To capture more realistic trends, more
sophisticated techniques (e.g., non-linear and non-Gaussian
state space models [39] and deep learning models [40]) are
worth considering. Other directions for future work include
modeling the co-evolution [41] of medicines, making our
solution more efficient, and experimenting with other datasets
for different populations and countries.

X. CONCLUSIONS

In this paper, we addressed the problem of detecting the
change in prescription trends and identifying its cause. To our
knowledge, this work is the first attempt to use MIC data for
this purpose. We proposed a two-fold approach and evaluated
its effectiveness through extensive experiments with the real
data consisting of 3.5-year MIC records. Our approach was
shown to be

1) accurate: Our probabilistic medication model performed
significantly better than a cooccurrence-based baseline



in terms of both predictive capability and prescription
relevance;

2) useful: Our state space model successfully detected the
change in prescription trends due to new medicine and
new indication effects, etc. and could be used for prac-
tical applications such as geographical prescription trend
visualization and inter-hospital prescription gap analysis;

3) efficient: Our approximate algorithm reduced the compu-
tational cost while detecting most change points correctly.

In addition to the temporal prescription change detection,
we also demonstrated the geographical prescription spread
visualization and the inter-hospital prescription gap analysis
as promising applications for MIC big data.

Our future directions include improving our model so
that it can discover more complex changes in prescription
trends and accurately forecasting the spatiotemporal growth of
prescriptions from their initial trends. We are also interested
in leveraging the MIC data for other challenging tasks for
population-scale healthcare.
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