
Discovering Partial Periodic High Utility
Itemsets in Temporal Databases

T. Yashwanth Reddy1, R. Uday Kiran?2,3, Masashi Toyoda2, P. Krishna
Reddy1, and Masaru Kitsuregawa2,4

1 International Institute of Information Technology, Hyderabad, India
2 The University of Tokyo, Tokyo, Japan

3 National Institute of Information and Communications Technology, Tokyo, Japan
4 National Institute of Informatics, Tokyo, Japan

yashwanth.t@research.iiit.ac.in,

{uday rage,toyoda,kitsure}@tkl.iis.u-tokyo.ac.jp and pkreddy@iiit.ac.in

Abstract. High Utility Itemset Mining (HUIM) is an important model
with many real-world applications. Given a (non-binary) transactional
database and an external utility database, the aim of HUIM is to discover
all itemsets within the data that satisfy the user-specified minimum util-
ity (minUtil) constraint. The popular adoption and successful industrial
application of HUIM has been hindered by the following two limitations:
(i) HUIM does not allow external utilities of items to vary over time and
(ii) HUIM algorithms are inadequate to find recurring customer purchase
behavior. This paper introduces a flexible model of Partial Periodic High
Utility Itemset Mining (PPHUIM) to address these two problems. The
goal of PPHUIM is to discover only those interesting high utility item-
sets that are occurring at regular intervals in a given temporal database.
An efficient depth-first search algorithm, called PPHUI-Miner (Partial
Periodic High Utility Itemset-Miner), has been proposed to enumerate
all partial periodic high-utility itemsets in temporal databases. Experi-
mental results show that the proposed algorithm is efficient.

Keywords: Data mining · pattern mining · utility itemset mining · pe-
riodic itemsets.

1 Introduction

High Utility Itemset Mining (HUIM) is an important model in data mining.
HUIM algorithms discover all interesting itemsets whose utility (profit) in a
transactional database is no less than the user-specified minimum utility (minU-
til) constraint. The utility of an itemset is the summation of its utilities in all
the transactions. The classic application of HUIM is market-basket analysis.
HUIM has many other applications, such as website click stream analysis, cross-
marketing and bio-medical applications [3]. HUIM has also inspired several other

? Corresponding author

2 Yashwanth et al.

important data mining tasks such as high-utility occupancy pattern mining [4]
and high-utility periodic pattern mining [1].

The popular adoption and successful industrial application of HUIM has been
hindered by the following two obstacles: (i) Most previous studies on HUIM
implicitly assume that the external utilities of the items do not change over time
in the entire database. However, this is the seldom in real-world applications.
In many applications, items’ external utilities can vary with respect to time.
For example, the prices of items in an eCommerce application can raise and/or
fall depending on supply and demand. (ii) In many applications, high utility
itemsets that are occurring at regular intervals can provide useful information
to the users. For instance, in an eCommerce store, customers buy certain items
(e.g. diapers and soaps) on a weekly or monthly basis. The knowledge pertaining
to such periodically purchased high utility itemsets can facilitate an eCommerce
application to improve its sales. Unfortunately, most studies on HUIM fail to
discover such periodically occurring high utility itemsets in the data.

This paper makes an effort to address the above mentioned two issues. This
paper introduces a novel model of Partial Periodic High Utility Itemset (PPHUI)
in temporal databases. A temporal database not only facilitate multiple trans-
actions to appear the same timestamp, but also facilitates irregular time gaps
between the consecutive transactions. Partial Periodic High Utility Itemset Min-
ing (PPHUIM) allows items’ external utility values to vary overtime. Thus, ad-
dressing the first obstacle of HUIM. The PPHUIM tries to address the second
obstacle of HUIM by finding partial periodically occurring high utility item-
sets in temporal databases. A fast algorithm, called Partial Periodic High Util-
ity Itemset-Miner (PPHUI-Miner), has been introduced to discover all PPHUIs
by proposing new pruning techniques. Experimental results demonstrate that
PPHUI-Miner is not only memory and runtime efficient, but also highly scalable
as well.

The rest of the paper is organized as follows. Related work is presented in
Section 2. Section 3 introduces the proposed model of PPHUIM. The proposed
is presented in Section 4. Experimental results are reported in Section 5. Section
6 provides conclusions.

2 Related Work

High utility itemset mining: Yao et al. [12] described HUIM by taking into
account the importance of items and their occurrence frequency in every trans-
action. Since then, several algorithms have been proposed to discover high utility
itemsets in transactional databases [2, 7–9, 11] and sequence databases [14]. To
circumvent the fact that the utility is not anti-monotonic and to find all high
utility itemsets, several HUIM algorithms (e.g. Two-Phase [9] and UP-Growth+
) have employed Transaction Weighted Utilization (TWU) to reduce the search
space. The TWU measure represents an upper bound on the utility of itemsets.
Recently, alorithms like EFIM [13] introduced by proposing tighter measures to
calculate upper bound on the utility of itemsets than TWU .

Discovering Partial Periodic High Utility Itemsets in Temporal Databases 3

Periodic high utility itemset mining: Tanbeer et al. [10] have introduced a
model to find periodic-frequent itemsets in transactional databases. Philippe et
al. [1] have extended the model [10] to discover full periodic high utility itemsets
in a transactional database (i.e., a database in which transactions occur at a fixed
time interval). This model discovers all periodic itemsets within the transactional
database that satisfy the user specified minimum utility (minUtil), minimum
average periodicity (minAvgPer), maximum average periodicity (maxAvgPer),
minimum period (minPer) and maximum period (maxPer). This model suffers
from the following limitations: (i) If an itemset has one instance where period (or
inter-arrival time) is more than the user-specified maxPer, the corresponding
itemset is considered as an uninteresting itemset. (ii) This model assumes time
gap between two consecutive transactions is constant, which is not the case in
real-world databases and It requires too many input parameters from the user.

A model has been proposed in [6] to find partial periodic itemsets in temporal
databases. It can overcome limitations of model proposed in [1]. However, the
model [6] disregards the importance of the items and their occurrence frequency
in every transaction.

The proposed model of PPHUI mining does not suffer from any of the above
mentioned limitations. A part from extracting PPHUI from a given trasanac-
tional database, the proposed model is different from the model proposed in [1]
as that model employs different measures to find periodic high utility itemsets.

3 Proposed Model

Let I = {i1, i2, · · · , im}, m ≥ 1, be a set of items. Let X ⊆ I be an itemset. An
itemset containing k items is known as k-itemset. A transaction Ttid = (tid, ts, Y)
is a triplet, where tid ∈ R+ represents the transactional identifier, ts ∈ R+

represents the timestamp of corresponding transaction and Y ⊆ I is an itemset.
A temporal database, denoted as TDB, represents a set of transactions. That
is, TDB = {T1, T2, · · · , Tn}, 1 ≤ n. Let p(ij , tid) denote the external utility of
an item ij ∈ I in a transaction whose transaction identifier is tid. Let P (ij) =
{p(ij , 1), p(ij , 2), · · · , p(ij , n)} denote the set of all external utility values of ij
in the data. The (external) utility database, UD, is the set of external utility

values of all items in I. That is, UD =
⋃
ij∈I

P (ij). Every item ij ∈ Ttid has

a positive number q(ij , tid), called its internal utility. The internal utility of
an item generally represents its frequency in a transaction and external utility
represents cost/profit of item in a transaction.

Example 1. Let I = {a, b, c, d, e, f, g, h, i, j} be the set of items. The set of items
‘d’ and ‘f ’, i.e., {d, f} (or df , in short) is an itemset. This itemset contains
two items. Therefore, it is a 2-itemset. A temporal database generated from I is
shown in Table 1. This database contains 8 transactions. The minimum and max-
imum timestamps of the transactions in this database are 1 and 12, respectively.
It can be observed that temporal databases not only allow multiple transactions

4 Yashwanth et al.

Table 1. Temporal database

tid ts items

1 1 (a, 1), (b, 2), (c, 1)

2 3 (a, 2), (b, 2), (e, 2), (h, 1)

3 4 (c, 1), (d, 3), (f, 2)

4 6 (b, 1), (d, 2), (e, 3), (f, 1), (g, 2), (h, 3)

5 7 (c, 3), (f, 1), (g, 1)

6 7 (i, 1), (j, 3)

7 9 (a, 1), (b, 1), (d, 2), (f, 1), (g, 2)

8 12 (c, 3), (d, 1), (e, 1), (f, 2), (g, 2)

Table 2. External utility database

tid a b c d e f g h i j

1 200 100 50 0 0 0 0 0 0 0

2 50 100 0 0 100 0 0 100 0 0

3 0 0 200 200 0 200 0 0 0 0

4 0 200 0 200 150 300 100 200 0 0

5 0 0 100 0 0 150 50 0 0 0

6 0 0 0 0 0 0 0 0 40 20

7 150 300 0 200 0 300 200 0 0 0

8 0 0 50 200 300 50 200 0 0 0

to share a common timestamp, but also encourage irregular time gaps between
the consecutive transactions. Thus, a temporal database generalizes a transac-
tional database by taking into account the temporal occurrence information of
the transaction. Table 2 shows the external utilities (or prices/profit) of all items
in every transaction. Let the currency of these prices be Japanese Yen (U). The
external utility of an item d in the third transaction, i.e., p(d, 3) = 200U. The
internal utility of an item d in the third transaction T3, i.e., q(d, 3) = 3.

Definition 1. (Utility of an item in a transaction). The utility of an item
ij in a transaction Ttid denoted as u(ij , Ttid) = p(ij , Ttid)× q(ij , Ttid).

Definition 2. (Utility of an itemset in a transaction) The utility of an
itemset X in a transaction Ttid, denoted as u(X,Ttid) = Σi∈Xu(i, Ttid).

Definition 3. (Utility of an itemset in a database) The utility of an item-
set X in the database TDB, denoted as u(X) = ΣTtid∈g(X)u(X,Ttid), where
g(X) is the set of transactions containing X.

Example 2. Continuing the previous example, the utility of ‘d’ in third transac-
tion T3, i.e., u(d, T3) = p(d, T3)×q(d, T3) = 200×3 = 600U. The utility of itemset
df in T3, u(df, T3) = u(d, T3) + u(f, T3) = 600U + 400U = 1000U. In Table 1,
the itemset df has appeared in the transactions T3, T4, T7 and T8. Therefore,
g(x) = {T3, T4, T7, T8}. The utility of df in each of these three transactions:
u(df, T3) = 1000U, u(df, T4) = 700U, u(df, T7) = 700U and u(df, T8) = 300U.
Therefore, the utility of df in the database, u(df) = 2700U.

Definition 4. (Periodic appearance of X.) Let TSX = {tsXa , tsXb , · · · , tsXc },
tsmin ≤ tsxa ≤ tsxb ≤ tsxc ≤ tsmax, be an ordered list of timestamps in which
X appeared in TDB. The terms tsmin and tsmax represent the minimal and
maximal timestamps in TDB. Let tsXj , ts

X
k ∈ TSX , tsmin ≤ tsXj ≤ tsXk ≤ tsmax,

denote any two consecutive timestamps in TSX . The time difference between
tsXk and tsXj is referred to an inter-arrival time of X, and denoted as iatXp ,

p ≥ 1. That is, iatXp = tsXk − tsXj . Let IATX = {iatX1 , iatX2 , ..., iatX|TSX |−1},
be the list of all inter-arrival times of X in TDB. An inter-arrival time of X
is said to be periodic (or interesting) if it is no more than the user-specified

Discovering Partial Periodic High Utility Itemsets in Temporal Databases 5

maximum-inter arrival time (maxIAT). That is, an iatXk ∈ IATX is said to
be periodic if iatXk ≤ maxIAT .

Example 3. In Table 1, the itemset df has appeared in the transactions T3, T4,
T7 and T8. Therefore, the set of timestamps of these four transactions, i.e.,
TSdf = {4, 6, 9, 12}. The inter-arrival times of ‘df ’ are: iatdf1 = 6−4 = 2, iatdf2 =

9 − 6 = 3, iatdf3 = 12 − 9 = 3. Thus, IAT df = {iatdf1 , iat
df
2 , iat

df
3 } = {2, 3, 3}. If

the user-specified maxIAT = 3, then iatdf1 is considered interesting (or periodic)

occurrence of df within the database because iatdf1 ≤ maxIAT . Similarly, iatdf2
and iatdf3 are also periodic occurrences of df .

Definition 5. (Periodic-Support of itemset). Let IATX ⊆ IATX be the
set of all inter-arrival times that have value no more than maxIAT . That is,
IATX ⊆ IATX such that if ∃iatXk ∈ IATX : iatXk ≤ maxIAT , then iatXk ∈
IATX .The periodic-support of X, denoted as PS(X) = |IATX |.

Example 4. Continuing with the previous example, IAT df={iatdf1 , iat
df
2 , iat

df
3 }.

Therefore, the periodic support of ‘df ’, i.e., PS(df) = |IAT df | = 3. In other
words, the itemset ‘df ’ has appeared 3 times periodically within the data.

The periodic-support, as defined above, determines the number of periodic oc-
currences of an itemset in the database. An inter-arrival time of an itemset can
be expressed in percentage of (tsmax− tsmin). The periodic-support of an item-
set also can be expressed in percentage of |TDB|−1, where |TDB|−1 represents
the maximum periodic-support an itemset can have in the database.

Definition 6. (Partial Periodic High Utility Itemset X.) An itemset X
is a Partial Periodic High Utility Itemset (PPHUI) if u(X) ≥ minUtil and
PS(X) ≥ minPS, where minUtil and minPS represent the user-specified min-
imum utility and minimum periodic-support, respectively.

Example 5. If the user-specified minUtil = 1500U, maxIAT = 6 and minPS =
2, then the itemset ‘df ’ is a PPHUI because u(df) ≥ minUtil and PS(df) ≥
minPS. All PPHUIs generated from Table 1 are shown in Table 4.

Problem Statement: Given a temporal database (TDB), an external utility
database (UD) and the user-specified minUtil, maxIAT and minPS, the prob-
lem of finding PPHUIs involve discovering all itemsets in TDB whose utility
and periodic-support is no less than the user-specified minUtil and minPS,
respectively.

4 Proposed Approach

The problem is to develop an efficient approach for discovering partial peri-
odic high utility itemsets (PPHUIs) in Temporal Database subject to minUtil,
minPS and maxIAT constraints. Given n data items, a näıve way to find

6 Yashwanth et al.

Table 3. TWU values of items in Table 1

item f d g b e c a h i j

TWU 6750 6250 5550 4950 3900 3300 2800 2750 100 100

PS 4 3 3 3 2 3 2 1 0 0

Table 4. PPHUIs generated from Table 1 at minUtil = 2000, PS = 2,maxIAT = 6

Itemset d f g ab cf dg df fg dfg

Utility 1600 1250 1250 1150 1300 2200 2700 2100 2900

PS 3 4 3 2 2 2 3 3 3

PPHUIs is to mine set of all possible 2n − 1 combinations of items and test
for minUtil, minPS and maxIAT constraints. Notably, such an approach suf-
fers from exponential complexity. The basic idea is to define pruning techniques
based on Transaction Weighted Utilization (TWU), Periodic Support (PS) and
Remaining Utility and proposed efficient approach to mine PPHUI. We briefly
explain these techniques and discuss the proposed approach.

i. Pruning using TWU :
We carry out the pruning based on TWU [9]. The notion of TWU is defined

as follows.

Definition 7. (Transaction Weighted Utilization (TWU)) The transac-
tion utility (TU) of a transaction Ttid is the sum of the utility of all items in Ttid.
i.e. TU(Ttid) = Σx∈Ttid

u(x, Ttid). The transactional-weighted utilization (TWU)
of an itemset X is defined as the sum of the transaction utility of transactions
containing X, i.e. TWU(X) = ΣTc∈g(X)TU(Tc).

Example 6. Consider the first transaction in Table 1. The transaction utility of
T1, denoted as TU(T1), is the total revenue generated by all its items. That is,
TU(T1) = u(a, 1)+u(b, 2)+u(c, 1) = 200+200+50 = 450U. In other words, the
first transaction has generated the revenue of 450U, Similarly, the transaction
utility of T2, T3, T4, T5, T6, T7 and T8 are 600, 1200, 2150, 500, 100, 1750 and
1150 respectively. Consider the item ‘d,’ which is appearing in the transactions
T3, T4, T7 and T8. The TWU of d, i.e., TWU(d) = TU(T3)+TU(T4)+TU(T7)+
TU(T8) = 6250U.

The pruning rule based on TWU is as follows. It can be observed that the
TWU of item conveys the crucial information that it is equivalent to atmost
utility that an item can generate by combining with other items in the database.
TWU measure can be used to identify the items, whose supersets may generate
PPHUIs. We ignore the extensions of items ij ∈ I whose TWU(ij) < minUtil.

ii. Pruning using PS:
We prune the itemsets based on the value of PS. Periodic-Support has

anti-monotonic property that is an itemset cannot have PS greater than PS

Discovering Partial Periodic High Utility Itemsets in Temporal Databases 7

of its subsets. So, we can ignore extensions of those items/itemsets X, whose
PS(X) < minPS.

iii. Pruning using Remaining Utility:
We carry out the pruning based on the notion of Remaining Utility. We define

the notion of Remaining Utility and define the notion of utility list.

Definition 8. (Remaining utility). Let � be any total order on items from
I and X be the itemset. The remaining utility of X in a transaction Ttid is
defined as rU(X,Ttid) = Σi∈Ttid∧i�x∀x∈Xu(i, Ttid).

Definition 9. (Utility-list) Let � be any total order on items from I. The
utility-list of an itemset X in a database D is denoted as UL(X) and defined
as a set of tuples such that there is a tuple < tid, ts, iutil, rutil > for each
transaction Ttid containing X. The iutil element of a tuple is utility of X in
Ttid. i.e., u(X,Ttid). The rutil element of a tuple is the remaining utility (see
Definition 8).

Example 7. For this example � be lexicographical order i.e. (i � h � g � f �
e � d � c � b � a) Remaining utility of df in T4 is rU(df, T4) = u(g, T4) +
u(h, T4) = 2× 100 + 3× 200 = 800.

For pruning, we use Remaining utility measure to overestimate the utility
value of itemset. Let X be an itemset. If Σiutil + Σrutil < minUtil, where
iutil, rutil ∈ ul(X), X and its extensions are low utility. So, such patterns can
be pruned. The proof that the sum of iutil and rutil values of utility list an
itemset X is an upper bound on the utility of X and its extensions is provided
in [8].

The proposed PPHUI-Miner employs depth-first search of set enumeration
tree and prunes patterns based on preceding pruning techniques.

Algorithm 1 PPHUI-Miner

1: Input: TDB: a temporal database; UD: a external utility database; minUtil: a
user-specified minimum utility constraint; maxIAT : a user-specified period con-
straint; minPS: a user-specified periodic-support constraint.

2: Output: A set of partial periodic high-utility itemsets.
3: Let α denote the itemset that needs to be extended. Initially, set α = ∅;
4: Scan TDB to compute TWU({ij}), PS({ij}) for each items ij ∈ I;
5: I∗ = {ij |ij ∈ I ∧ TWU(ij) ≥ minUtil ∧ PS(ij) ≥ minPS};
6: Let us call I∗ as candidate items;
7: Let � be the total order of TWU descending values on candidate items;
8: Scan TDB to build the utility list(UL) of each item ij ∈ I∗;
9: Primary(α) = {ij |ij ∈ I∗ ∧ ∀x ∈ α, ij � x};

10: Search (UL, α, Primary(α), minUtil, maxIAT , minPS);

The Approach: PPHUI-Miner presented in Algorithms 1, 2. We first scan
the database to measure TWU and PS values for all items within the database.

8 Yashwanth et al.

Table 3 shows the TWU amd PS values determined for all items after scanning
the database. Next, we prune the items in the list that have PS value less
than minPS and/or TWU value less than minUtil. The remaining items in the
list are considered as candidate items and sorted in TWU descending order
of items. After finding candidate items and establishing � total order (i.e.,
TWU descending order of items), the utility list (refer Definition 9) by scanning
the database second time. The Primary(α) contains the candidate items, which
are � than every item in α.

After building the utility lists of candidate items, we call recursive search with
α and UL utility list of candidate items. Next, we expand search by combining
α with Primary(α) one by one using DFS technique. If ix ∈ Primary(α), we
build utility list of β(α∪ ix). We check utility and periodic support of β from the
above utility list. Then we have two cases: (i) if β is PPHUI, then Primary(β)
is generated and β is further extended by calling recursive search (ii) if β is not
PPHUI, it may fail to satisfy either minPS or minUtil values. In the former
case (i.e., when β fails to satisfy minPS), we stop performing depth-first search
on α. In the latter case (i.e., when β fails to satisfy only minUtil), we calculate
its remaining utility value. If this value is greater than minUtil, we continue
exploring β same as in first case. If remaining utility of β is less than minUtil,
then we stop exploring that branch in the DFS tree.

Algorithm 2 The search procedure

1: Input: α: an itemset; UL: utility lists of candidate items; UL(α): utility list of α;
Primary(α): Extension items of α; minUtil; maxIAT ; minPS.

2: Output: A set of periodic high-utility itemsets.
3: for ∀ itemsets β=α ∪ ij , ij ∈ Primary(α); do
4: Calculate utility list of β from utility lists of α and ij ;
5: Calculate utility and periodic support of β from utility list above;
6: if U(β) + rU(β) ≥ minUtil ∧ PS(β) ≥ minPS then
7: if U(β) ≥ minUtil then
8: Output β;
9: end if

10: generate itemset Primary(β);
11: Search(β, UL, UL(β), Primary(β), minUtil, maxIAT , minPS);
12: end if
13: end for

5 Experimental Results

Since there exists no algorithm to find PPHUIs in temporal databases, we only
evaluate the proposed PPHUI-Miner algorithm using both synthetic and real-
world databases. Please note that we are not comparing the proposed PPHUI-
Miner algorithm against the Periodic High Utility Mining (PHM) algorithm. It
is because PHM employs different measures to find interesting itemsets.

Discovering Partial Periodic High Utility Itemsets in Temporal Databases 9

 0

 50

 100

 150

 200

 250

 300

 10 20 30 40 50 60 70 80 90 100

#
P

P
H

U
I

minUtil (*1000)

(a) Retail

PS=500
PS=800

PS=1000

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50 60 70 80 90 100

#
P

P
H

U
I

minUtil (*1000)

(b) T10I4D100K

PS=500
PS=1000
PS=1500

Fig. 1. PPHUI generated in Retail and T10I4D100k databases.

 10
 15

 20
 25
 30

 35
 40
 45

 50
 55

 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

se
c
)

minUtil (*1000)

(a) Retail

PS=500
PS=800

PS=1000

 50
 100

 150
 200
 250

 300
 350
 400

 450
 500

 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

se
c
)

minUtil (*1000)

(b) T10I4D100K

PS=500
PS=1000
PS=1500

Fig. 2. Time taken by PPHUI-miner for Retail and T10I4D100k databases.

The algorithms, PHM and PPHUI-Miner, were written in C++ and executed
on i5 1.5 GHz processor, with 16GB ram. The experiments have been conducted
using both synthetic (T10I4D100K) and real-world (Retail) databases. The Re-
tail and T10I4D100K databases are available on SPMF toolkit.

The maxIAT value for Retail database is fixed at 500 and for T10I4D100K
database is fixed at 1000. We are not reporting results by varying maxIAT
value due page limitation. But in general, we observed that increase in maxIAT
increases number of PPHUIs generated [5].

Fig. 1(a) and Fig. 1(b) show the number of PPHUIs generated by PPHUI-
Miner in different databases at different minUtil and minPS values. It can
be observed that increase in minUtil and/or minPS results in the decrease of
PPHUIs as many itemsets fail to satisfy the increased minUtil and/or minPS
values. Fig. 2(a) and Fig. 2(b) show the runtime requirements of PPHUI-Miner in
different databases at different minUtil amd minPS values. It can be observed
that increase in minUtil and/or minPS results in the decrease of runtime for
PPHUI-Miner algorithm. It is because many itemsets fail to satisfy the increased

10 Yashwanth et al.

minUtil and/or minPS values. Similar behaviour is observed in case of memory
consumption, but due page limitation we are not including graphs of memory
consumption. Overall, it can be observed from the results that PPHUI-Miner
algorithm can efficiently discover PPHUIs in very large databases even at low
minUtil and minPS values.

6 Conclusions and Future work

In this paper, we have studied the problem of finding partial periodic high utility
itemsets in temporal databases. A fast algorithm has also been presented to find
all PPHUIs. The proposed approach employs pruning techniques to improve
efficiency (or computational cost). As a part of future work, we looking to develop
more efficient algorithms to discover Partial Periodic High Utility itemsets in
other databases like uncertain database.

References

1. Fournier-Viger, P., Lin, J.C.W., Duong, Q.H., Dam, T.L.: Phm: Mining periodic
high-utility itemsets. In: Industrial Conference on Data Mining. pp. 64–79 (2016)

2. Fournier-Viger, P., Wu, C.W., Zida, S., Tseng, V.S.: Fhm: Faster high-utility item-
set mining using estimated utility co-occurrence pruning. In: ISMIS. pp. 83–92
(2014)

3. Gan, W., Lin, J.C., Fournier-Viger, P., Chao, H., Hong, T., Fujita, H.: A survey of
incremental high-utility itemset mining. Wiley Interdiscip. Rev. Data Min. Knowl.
Discov. 8(2) (2018)

4. Gan, W., Lin, J.C.W., Fournier-Viger, P., Chao, H.C., Philip, S.Y.: Huopm: High-
utility occupancy pattern mining. IEEE Transactions on Cybernetics (2019)

5. Kiran, R.U., Reddy, T.Y., Fournier-Viger, P., Toyoda, M., Reddy, P.K., Kitsure-
gawa, M.: Efficiently finding high utility-frequent itemsets using cutoff and suffix
utility. In: PAKDD (2019)

6. Kiran, R.U., Shang, H., Toyoda, M., Kitsuregawa, M.: Discovering partial periodic
itemsets in temporal databases. In: Proc of the 29th SSDBM. p. 30. ACM (2017)

7. Lan, G.C., Hong, T.P., Tseng, V.S.: An efficient projection-based indexing ap-
proach for mining high utility itemsets. KAIS 38(1), 85–107 (2014)

8. Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In:
Proc of the 21st ACM CIKM. pp. 55–64. ACM (2012)

9. Liu, Y., Liao, W.k., Choudhary, A.: A two-phase algorithm for fast discovery of
high utility itemsets. In: PAKDD. pp. 689–695 (2005)

10. Tanbeer, S.K., Ahmed, C.F., Jeong, B.S., Lee, Y.K.: Discovering periodic-frequent
patterns in transactional databases. In: PAKDD. pp. 242–253. Springer (2009)

11. Tseng, V.S., Shie, B.E., Wu, C.W., Yu, P.S.: Efficient algorithms for mining high
utility itemsets from transactional databases. TKDE 25(8), 1772–1786 (2013)

12. Yao, H., Hamilton, H.J., Butz, C.J.: A foundational approach to mining itemset
utilities from databases. In: SIAM. pp. 482–486 (2004)

13. Zida, S., Fournier-Viger, P., Lin, J.C.W., Wu, C.W., Tseng, V.S.: Efim: a fast and
memory efficient algorithm for high-utility itemset mining. KAIS 51(2), 595–625
(2017)

14. Zida, S., Fournier-Viger, P., Wu, C.W., Lin, J.C.W., Tseng, V.S.: Efficient mining
of high-utility sequential rules. In: MLDM. pp. 157–171 (2015)

