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Abstract—Weighted Frequent Itemset (WFI) mining is an
important model in data mining. It aims to discover all itemsets
whose weighted sum in a transactional database is no less than the
user-specified threshold value. Most previous works focused on
finding WFIs in a transactional database and did not recognize
the spatiotemporal characteristics of an item within the data.
This paper proposes a more flexible model of Spatial Weighted
Frequent Itemset (SWFI) that may exist in a spatiotemporal
database. The recommended patterns may be found very useful in
many real-world applications. For instance, an SWFI generated
from an air pollution database indicates a geographical region
where people have been exposed to high levels of an air pollutant,
say PM2.5. The generated SWFIs do not satisfy the anti-
monotonic property. Two new measures have been presented
to effectively reduce the search space and the computational
cost of finding the desired patterns. A pattern-growth algorithm,
called Spatial Weighted Frequent Pattern-growth, has also been
presented to find all SWFIs in a spatiotemporal database.
Experimental results demonstrate that the proposed algorithm
is efficient. We also describe a case study in which our model
has been used to find useful information in air pollution database.

Index Terms—Data mining, pattern mining, weighted frequent
itemset, pattern-growth, spatiotemporal data

I. INTRODUCTION

Frequent Itemset Mining (FIM) is a famous data mining
model [2], [3], [7] with many real-world applications [1].
FIM aims to discover all itemsets in a transactional database
that satisfy the user-specified minimum support (minSup)
constraint. The minSup controls the minimum number of
transactions that an itemset must cover within the data. Since
only a single minSup is used for the whole data, the model
implicitly assumes that all items within the data have the
uniform frequency. However, this is the seldom case in many
real-world applications. In many applications, some items
appear very frequently within the data, while others rarely
appear. If the frequencies of items vary a great deal, then we
encounter the following two problems:

1) If minSup is set too high, we miss those itemsets that
involve rare items in the data.
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2) To find the itemsets that include both frequent and rare
items, we have to set minSup very low. However, this
may cause a combinatorial explosion, producing too
many itemsets, because those frequent items associate
with one another in all possible ways and many of them
are meaningless depending upon the user or application
requirements.

This dilemma is known as the rare item problem [26]. When
confronted with this problem in real-world applications, re-
searchers have tried to find frequent itemsets using multiple
minSups [18], where the minSup of an itemset is expressed
with minimum item support of its items. An open problem
of this extended model is the methodology to determine the
items’ minimum item supports.

Cai et al. [5] introduced Weighted Frequent Itemset Mining
(WFIM) to address the rare item problem. WFIM takes into
account the weights (or importance) of items and tries to
find all Weighted Frequent Itemsets (WFIs) in a transactional
database that satisfy the user-specified weight constraint. Sev-
eral weight constraints (e.g., weighted sum, weighted support,
and a weighted average) have been discussed in the literature
to determine the interestingness of an itemset in a transactional
database. Selecting an appropriate weight constraint depends
on the user or application requirements. Some of the practical
applications of WFIM include market-basket analytics [5],
spectral signature analytics in astronomical databases [6], and
event analytics in Twitter data [12].

This paper argues that though studies on WFIM consider the
importance of items within the data, they disregard the spa-
tiotemporal characteristics of an item. Consequently, WFIM is
insufficient to find only those WFIs that have items close (or
neighbors) to one another in a spatiotemporal database. This
paper introduces Spatial Weighted Frequent Itemset Mining
(SWFIM) to address this issue. Before we discuss the contri-
butions of this paper, we describe an essential application of
SWFIM.

Air pollution is a significant factor for many cardio-
respiratory problems found in the people living in Japan. In
this context, the Atmospheric Environmental Regional Obser-
vation System (AEROS) constituting of several monitoring



stations has been set up by the Ministry of Environment, Japan.
The data generated by these stations represent a non-binary
spatiotemporal database. An SWFI found in this pollution
database provides the information regarding the geographical
region (or set of stations) where people exposed to high levels
of an air pollutant. This information is useful for the users of
the pollution control board in devising appropriate policies to
control the industrial emissions.

High Utility Itemset Mining [9], [14], [27] generalizes
WFIM by taking into account the items’ internal utility and
external utility values. Consequently, WFIs can be generated
using HUIM algorithms. However, such an approach is ineffi-
cient. It is because we need to transform a binary transactional
database into a non-binary transactional database by adding
one as the internal utility for every item in the data. Con-
sequently, the resultant database size increases significantly
(approximately 1.5 to 2 times), which in turn increases the
memory and runtime requirements of a HUIM algorithm.

This paper proposes a more flexible model of SWFI that
may exist in a spatiotemporal database. An itemset in a
spatiotemporal database is considered as an SWFI if it sat-
isfies the user-specified minimum weighted sum and maximum
distance constraints. The generated SWFIs do not satisfy the
anti-monotonic property. Two upper bound measures, called
estimated weighted sum (EWS) and cumulative neighborhood
weighted sum (CNWS), have been employed to reduce the
computational cost of desired itemsets. EWS aims to identify
candidate items whose supersets may be SWFIs. CNWS
seeks to identify those items that have to be projected (or
build conditional pattern bases) to find all SWFIs. A pattern-
growth algorithm, called Spatial Weighted Frequent Pattern-
growth (SWFP-growth), has also been presented to find all
SWFIs in STD efficiently. Experimental results demonstrate
that SWFP-growth is efficient. We also describe a case study
in which we apply our model to find useful information in air
pollution database.

The remainder of this paper is organized as follows. Section
2 discusses the previous literature related to a problem. Section
3 introduces the proposed model of SWFI in a STD. Section 4
describes the SWFP-growth. Experimental results are reported
in Section 5. Section 6 concludes the paper with future
research directions.

II. RELATED WORK

A. Weighted itemset mining

Cai et al. [5] introduced WFIM to address the rare item
problem in FIM. Two Apriori algorithms, called MinWAL(O)
and MinWAL(M), have been discussed for finding WFIs in
a transactional database. Unfortunately, both algorithms suffer
from the performance issues involving multiple database scans
and the generation of too many candidate itemsets. Yun
and John [28] discussed a pattern-growth algorithm, called
WFIM, to find the weighted frequent itemsets. Uday et al.
[12] described an improved WFIM based on the concept of
cutoff weight, which represents the maximum weight among
all weighted items.

Cai et al. [6] used a variant of WFIM algorithm to find
weighted frequent itemsets in an astronomical database. An
entropy-based weighting function has been employed to de-
termine the interestingness of an itemset.

In the literature, researchers have studied WFIM by taking
into account other parameters. Tao et al. [21] proposed a
weighted association rule model by taking into account the
weight of a transaction. An Apriori-like algorithm, called
WARM (Weighted Association Rule Mining) algorithm, was
discussed to find to the itemsets. Vo et al. [25] proposed a
Weighted Itemset Tidset tree (WIT-tree) for mining the item-
sets and used a Diffset strategy to speed up the computation
for finding the itemsets. Lin et al. [16] studied the problem of
finding weighted frequent itemsets by taking into account the
occurrence time of the transactions. The discovered itemsets
are known as recency weighted frequent itemsets. Further-
more, Lin et al. [17] extended the basic weighted frequent
itemset model [5] to handle uncertain databases. Chowdhury
et al. [4] discussed a weighted frequent itemset model with
an assumption that weights of items can vary with time
and proposed the algorithm AWFPM (Adaptive Weighted
Frequent Pattern Mining). Please note that though some of the
above studies consider the temporal occurrence information of
items within the data, they completely disregard the spatial
information of the items. On the contrary, the proposed study
investigates the problem of finding SWFIs in STD by taking
into account the spatiotemporal characteristics of the items
within the data.

B. High utility itemset mining

Yao et al. [27] introduced HUIM by taking into account
the items’ internal utility (i.e., number of occurrences of an
item within a transaction) and external utility (i.e., weight of an
item in the database) values. Since then, the problem of finding
HUIs from the data has received a great deal of attention [9],
[11], [14], [30]. As HUIM generalizes WFIM, WFIs can be
generated using HUIM algorithms by transforming a binary
database into a non-binary database. This paper argues that
such an approach to finding WFIs using HUIM algorithms is
inefficient because of two main reasons:

1) The process of transforming a huge binary database into
a non-binary database is a costly operation concerning
to both memory and runtime.

2) The size of the resultant non-binary transactional
database is generally much more substantial (approxi-
mately 1.5 to 2 times) than that of the actual binary
database. Consequently, HUIM algorithms have to find
WFIs from much larger databases consuming memory
and runtime.

In practice, a WFIM algorithm (respectively, FIM algorithm)
is generally faster thana HUIM algorithm for mining WFIs
(respectively, FIs) in a binary transactional database. It is
because they are more optimized for that specific problem.

Uday et al. [15] discussed an algorithm, called Spatial
High Utility Itemset Miner (SHUIMiner), to find all spatial
high utility itemsets in a non-binary spatiotemporal database.



Unfortunately, finding the proposed SWFIs using SHUIMiner
turns out to be costly due to the above mentioned reasons.

C. Spatial co-occurrence itemset mining

The problem of finding spatiotemporal co-occurrence item-
sets (or association rules) in spatiotemporal databases has
received a great deal of attention [8], [10], [19], [22]. These
algorithms can be broadly classified into distance-based ap-
proaches [8], [10] and transaction-based approaches [19], [22].
A distance-based approach typically uses a parameter, called
the prevalence, to determine how interesting the spatiotem-
poral co-occurrences are in the data. A transaction-based
approach initially cluster the data over space and time and then
apply traditional association rule mining algorithms on each
cluster to find useful information. Unfortunately, all spatiotem-
poral co-occurrence itemset mining algorithms determine the
interestingness of an itemset by taking into account only its
support and disregard the internal and external utility values
of an item. Moreover, most of these algorithms cannot handle
numeric data. On the contrary, the proposed model considers
internal and external utility values of an item and handles
numeric data.

Overall, the proposed model of finding SWFIs in a spa-
tiotemporal database is novel and distinct from current studies.

III. PROPOSED MODEL

A. Model of Spatial Weighted Frequent Itemset

Let I = {i1, i2, · · · , im},m ≥ 1, be the set of items. Let
X ⊆ I be an itemset (or a pattern). An itemset X containing k
number of items is called a k-itemset. A transaction, denoted
as Tts = (ts, Y ), where ts ∈ R+ represents the transactional
identifier (or timestamp) of the corresponding transaction and
Y ⊆ I is an itemset. A (binary) temporal database, denoted
as TDB = {T1, T2, · · · , Tn}, n ≥ 1. Let w(ij , Tts), 1 ≤
ts ≤ n, denote the weight of an item ij in a transaction Tts.
Let W (ij) = {w(ij , T1), w(ij , T2), · · · , w(ij , Tn)} denote the
set of all weights of ij in a temporal database. The items’
weight database, WD, is the set of weights of all items in
I . That is, WD =

⋃
ij∈I

W (ij). A spatial database, denoted

as SD =
⋃
ij∈I

(ij , (latij , longij )) is a collection of location

points of all items in I . The terms latij and longij respectively
denote the latitude and longitude information of an item ij . (A
spatiotemporal database is a combination of TDB and SD.
For brevity, we describe SWFIM using TDB, WD and SD.)

Example 1. Let I = {a, b, c, d, e, f, g} be the set of items (or
air pollution monitoring station identifiers). The set of items
‘a’ and ‘b,’ i.e., {a, b} (or ab, in short) is an itemset. This
itemset contains two items. Therefore, it is a 2-itemset. A
temporal database generated from I is shown in Table I. A
spatial database of all items in Table I is shown in Table
II. These two databases jointly represent a spatiotemporal
database. The items’ weight database is shown in Table III.
Each transaction in this database represents the measurement

of an air pollutant, say PM2.5, by a sensor for a particular
time period. The weight of an item a in the first transaction,
i.e., w(a, T1) = 20. In other words, station a located at (0, 0)
has recorded 20µg/m3 of PM2.5 at the timestamp of 1.

Definition 1. (The support of X in a temporal database.) If
X ⊆ Tk.Y , 1 ≤ k ≤ n, it is said that X occurs in transaction
Tk (or Tk contains X). Let TDBX ⊆ TDB denote the set
of all transactions containing X in TDB. The support of X
in TDB, denoted as S(X) = |TDBX |.

Example 2. The itemset ab ⊆ T1.abgf . Thus, the first trans-
action contains the itemset ab. Similarly, the sixth transaction
also constaints the itemset ab. The set of all transactions
containing ab in Table I, i.e., TDBab = {T1, T6}. The
support of ab in Table I, i.e., S(ab) = |TDBab| = 2.

Definition 2. (Weighted sum of an itemset X in a
transaction.) The weighted sum of an itemset X in Tk,
denoted as WS(X,Tk), is the sum of weights of all items of X
in Tk. That is, WS(X,Tk) =

∑
ij∈X w(ij , Tk). If X 6⊆ Tk.Y ,

then WS(X,Tk) = 0.

Example 3. The weighted sum of ab in T1, i.e.,
WS(ab, T1) = w(a, T1) + w(b, T1) = 20 + 15 = 35. The
itemset ab does not occur in the second transaction. It means
the stations a and b have cumulatively recorded 35 µg/m3 of
PM2.5 at the timestamp 1.

Definition 3. (Weighted sum of an itemset X in a temporal
database.) The weighted sum of X in TDB, denoted as
WS(X) =

∑
Tts∈TDBX WS(X,Tts).

Example 4. The weighted sum of ab in Table I, i.e.,
WS(ab) =

∑
Tts∈TDBab WS(ab, Tts) = WS(ab, T1) +

WS(ab, T6) = (20 + 15) + (10 + 20) = 35 + 30 = 65.
Similarly, for the itemset cd, TDBcd = {T4, T5}, S(cd) = 2
and WS(cd) =

∑
Tts∈TDBcd WS(cd, Tts) = WS(cd, T4) +

WS(cd, T5) = (80 + 10) + (40 + 20) = 150.

Definition 4. (Weighted Frequent Itemset X .) An itemset X
is a weighted frequent itemset if WS(X) ≥ minWS, where
minWS represents the user-specified minimum weighted
sum.

Example 5. If the user-specified minWS = 150, then ab is
not a weighted frequent itemset because WS(ab) 6≥ minWS.
On the other hand, the itemset cd is a weighted frequent
itemset because WS(cd) ≥ minWS.

Definition 5. (Spatial Weighted Frequent Itemset X .) A
weighted frequent itemset X is said to be a spatial weighted
frequent itemset if the distance between any two items in
X is no more than the user-specified maximum distance
(maxDist). That is, X is a SWFI if ∀ia, ib ∈ X, a 6=



ts Items
1 abgf
2 acfg
3 dfg
4 bcd
5 bcde
6 abceg

TABLE I: Temporal database

Items location
a (0, 0)
b (3, 4)
c (3,−4)
d (6, 0)
e (3, 0)
f (9, 0)
g (12, 0)

TABLE II: Spatial
database

ts/Item a b c d e f g
1 20 15 0 0 0 20 20
2 5 0 30 0 0 20 10
3 0 0 0 30 0 20 15
4 0 60 80 10 0 0 0
5 0 60 40 20 5 0 0
6 10 20 10 0 45 0 20

TABLE III: Items’ weight database

b,Dist(ia, ib) ≤ maxDist, where Dist(.) is a distance
function such as Euclidean distance.

Example 6. The Euclidean distance between c and d items,
i.e., Dist(c, d) = 5. If the user-specified maxDist = 5, then
the weighted frequent itemset cd is a spatial weighted frequent
itemset because Dist(c, d) ≤ maxDist. The complete set of
SWFIs generated from Table I are shown in Table IV.

Definition 6. (Problem Definition.) Given a temporal
database (TDB), items’ weight database (WD) and items’
spatial database (SD), the problem of spatial weighted fre-
quent itemset mining involves discovering all itemsets in
TDB that have weighted sum no less than the user-specified
minimum weighted sum (minWS) and the distance between
any two of its items is no more than the user-specified
maxDist. It is interesting to note that WFIM is a special
case of the problem SWFIM when maxDist = ∞ (or very
large). For brevity, we have considered spatial items as points.
However, the proposed model is generic and allows spatial
items to be represented with other geometric forms such as
lines and polygons.

B. A small discussion.

In our model, we have set a strict constraint that all items
in an SWFI must be close (or neighbors) to one another. If
we relax this constraint, then too many uninteresting itemsets
with items far away from the rest can be generated as SWFIs.
Example 7 illustrates the importance of employing a strict
spatial constraint on SWFIs.

Example 7. Let l = (0, 0), m = (2, 0), n = (4, 0) and o =
(6, 0) be four items located on a straight line. Let maxDist =
2. If we relax the constraint that all items in a SWFI need not
be close to each other, then we may find lmno as a SWFI.
Unfortunately, this itemset may be uninteresting to the user as
the items n and o are located far away from l.

To reduce the number of input parameters, the proposed
model does not determine the interestingness of an itemset
using minSup constraint. However, if an application demands,
the user can employ minSup as an additional constraint to find
SWFIs. Please note that significant changes are not needed
for our SWFP-growth algorithm as it inherently records the
support information of an itemset.

IV. PROPOSED ALGORITHM

The space of items in a database gives rise to a subset lattice.
The itemset lattice is a conceptualization of the search space
when mining SWFIs. The proposed SWFP-growth is a variant
of UP-growth [23], which performs a depth-first search on
this itemset lattice to find all SWFIs in TDB. The reason
for choosing pattern-growth algorithm over other algorithms
(e.g., Apriori [3], Eclat [29], or LCM [24]) is because pattern-
growth algorithms can be easily extended to develop disk-
based algorithms and parallel algorithms [13]. Due to page
limitation, this paper confines only to the sequential memory-
based pattern-growth algorithm.

In this section, we first introduce the basic idea of SWFP-
growth algorithm. Next, we describe the working of SWFP-
growth using the database shown in Table I.

A. Basic idea

The weighted sum of an ordered itemset can be more
or less than the weighted sum of its ordered superset. In
other words, the SWFIs generated from the data do not
satisfy the convertible anti-monotonic, convertible monotonic,
or convertible succinct properties [20]. This increases the
search space, which in turn increases the computational cost
of finding the SWFIs. Two upper bound measures, called
optimized estimated weighted sum (OEWS) and cumulative
neighborhood weighted sum (CNWS), have been presented to
reduce the search space and the computational cost. These two
measures aim to identify itemsets (or items) whose supersets
may yield SWFIs. We now describe each of these measures.

1) Optimized estimated weighted sum: The key objective
of OEWS measure is to identify items whose supersets may
yield SWFIs. The items whose OEWS value is no less than
the user-specified minWS are called as candidate items. Def-
initions 7 and 8 define the estimated weighted sum (EWS) of
an itemset in a transaction and temporal database, respectively.
Definitions 9 and 10 respectively define the candidate item
and candidate itemsets. Pruning technique to remove itemsets
whose supersets may not yield any SWFI is given in Property
1. Definition 11 defines the calculation of optimized EWS
value of an item based on the prior knowledge regarding the
pattern-growth technique.

Definition 7. (Estimated Weighted Sum of an item ij in
a transaction.) Let Nij denote the set of all neighbors of an
item ij ∈ I . That is, ∀ik ∈ Nij , dist(ij , ik) ≤ maxDist.
The estimated weighted sum (EWS) of an item ij in a
transaction Tts, denoted as EWS(ij , Tts), represents the sum



Itemset weighted sum
c 160
b 155
cd 150
bd 150

TABLE IV: SWFIs
generated from Table I
at minWS = 150 and
maxDist = 5

Item Neighbours
a bce
b ade
c ade
d bcef
e abcd
f dg
g f

TABLE V: Neighbors of
each item at maxDist = 5

of weights of ij and its neighboring items in Tts. That is,
EWS(ij , Tts) = w(ij , Tts) +

∑
ik∈Tts.Y ∩ik∈Nij

w(ik, Tts).

Example 8. Consider the item a in Table I. The neighbors of
a, i.e., Na = {bce} (see Table V). The estimated weighted sum
of a in T1 is the sum of weights of a and its neighboring items
in T1. That is, EWS(a, T1) = w(a, T1) + w(b, T1) = 20 +
15 = 35. Please note that the weights of remaining items (i.e.,
g and f ) in T1 are not used in the calculation of EWS(a, T1).
It is because these two items are not neighbors of a. The above

definition of EWS captures the maximum weighted sum of
a and its neighboring items in a transaction. We now extend
this definition by taking into account a set of transactions (or
a temporal database).

Definition 8. (EWS of an item in a temporal database).
Let TDBij denote the set of all transactions containing ij
in TDB. The EWS of an item ij in TDB, denoted as
EWS(ij), represents the sum of estimated weighted sum
of ij in all transactions of TDBij . That is, EWS(ij) =∑

Tk∈TDBij EWS(ij , Tk).

Example 9. The transactions containing a in Table I are: T1,
T2 and T6. Therefore, TBDa = {T1, T2, T6}. The EWS of a
in T1, i.e., EWS(a, T1) = 35. Similarly, EWS(a, T2) = 35
and EWS(a, T6) = 85. The EWS of a in the entire
database, i.e., EWS(a) = EWS(a, T1) + EWS(a, T2) +
EWS(a, T6) = 35+35+85 = 155. In other words, EWS(a)
provide the information that an item a with all its neighboring
items has resulted in a maximum weighted sum of 155 µg/m3

in the entire database. Henceforth, this value can be used as
a upper-bound constraint to identify candidate items whose
supersets may yield SWFIs. The above definition captures

the maximum weighted support an item and its supersets
(constituting of its neighboring items) can have in the entire
spatiotemporal database with respect to its neighboring items.
Thus, EWS acts as a weighted sum upper bound on the items.
For an item ij ∈ I , if EWS(ij) < minWS, then neither ij
nor its supersets will result in SWFIs. So only those items
whose EWS is no less than minWS will generate SWFIs
at higher order. We call these items as candidate items and
defined in Definition 9.

Definition 9. (Candidate item.) An item ij in TDB is said
to be a candidate item if EWS(ij) ≥ minWS.

Example 10. Continuing with the previous example, the item
a in Table I is a candidate item because EWS(a) ≥ minWS.
We now generalize the above definition by taking into account

the notion of itemset. This generalization facilitates uses to
push the above pruning technique to the lower levels of itemset
lattice.

Definition 10. (Candidate itemset.) Let α be a suffix itemset.
Let TDBα ⊆ TDB be the conditional pattern base (or
projected database) of α. (If α = ∅, then TDBα = TDB.) Let
WS(α) be the weighted sum of α in TDB. Let ij be an item
in TDBα. Let ̂EWS(ij) denote the EWS value of an item ij
in TDBα∪ij . If ̂EWS(ij) +WS(α) ≥ minWS, then α∪ ij
is a candidate itemset (or ij is a candidate item in TDBα).
Otherwise, ij is an uninteresting item that can be pruned
from TDBα. The proposed SWFP-growth employs the above

definition to identify candidate itemsets whose supersets may
yield SWFIs.

Property 1. (Pruning technique). For an itemset X , if
EWS(X) ≤ minWS, then neither X nor its supersets can
be SWFIs.

Definition 11. (Calculating the optimized EWS value
of an item using the prior knowledge regarding the
pattern-growth technique). In the pattern-growth technique,
the conditional pattern base (or CPB) of a suffix item does
not include any previous suffix items. For example, let a, b, c
and d be the sorted list of items in a lexicographical order.
In the pattern-growth technique, the search space of finding
SWFIs from these four items can be divided into four smaller
search spaces: (i) d’s conditional pattern base (or d-CPB), (ii)
c-CPB excluding d (which is after c in the sorted list), (iii)
b-CPB excluding c and d and (iv) a-CPB excluding b, c and
d. Thus, given a sorted transaction, T̂k = (ts, {i1, i2, · · · , ik}),
the optimized EWS value of an item ip in T̂k, denoted as
OEWS(ip, T̂k), is the summation of weighted sum of ij and
neighboring items before ip in T̂k. That is, OEWS(ip, T̂k) =

w(ip, T̂k)+
∑

ia∈{ip-CPB∩Nip}
w(ia, T̂k), where ip-CPB de-

note the set of items that include in the conditional pattern base
of ip and Nip represent the neighboring items of ip.

Example 11. Let us consider the first transaction T1 in Table
I. The lexicographical sorted order of items in this transaction
is abfg. Let us consider the item g, which is the last item in
the sorted transaction. The conditional pattern base of g, i.e.,
g-CPB = {abf} ∩Ng = {abf} ∩ {f} = {f}. Therefore, the
EWS of g in T1, i.e., OEWS(g, T1) = w(g, T1)+w(f, T1) =
20 + 20 = 40. Similarly, for the item f , f -CPB = {ab} and
Nf = {dg}. The OEWS of f in T1, i.e., OEWS(f, T1) =
w(f, T1) +

∑
ik∈{f-CPB∩Nf} w(ik, T1) = w(f, T1) = 20.

Property 2. For an itemset X , EWS(X, T̂k) ≥
OEWS(X, T̂k). In other words, OEWS is the more tighter
constraint than EWS.



The SWFP-growth employs EWS measure to find candidate
items. After finding candidate items and sorting them with
respect to EWS descending order, items’ OEWS values in
every transaction are used to find candidate itemsets effec-
tively.

2) Cumulative neighborhood weighted sum: The candi-
date items constitute of both weighted frequent items and
uninteresting items whose supersets may generate SWFIs.
We have observed that constructing projected databases (or
conditional pattern bases) for all uninteresting items is a costly
operation. In this context, we exploit another weight upper
bound measure, called cumulative neighborhood weighted sum
(CNWS), to identify those candidate items whose projections
will only SWFIs.

Definition 12. (Cumulative neighborhood weighted sum)
Let S = {i1, i2, · · · , ik} ⊆ I be an ordered list of candidate
items such that EWS(i1) ≤ EWS(i2) ≤ · · · ≤ EWS(ik).
The cumulative neighborhood weighted sum of an item ij ∈ S,
denoted as EWS(ij), is the sum of weighted sum of re-
maining items in the list which are neighbors of ij . That is,
CNWS(ij) =

∑|S|
p=j+1 WS(ip) if ip ∈ N(ip). For the last

item in S, cnws(ik) = 0.

Example 12. Let us order the candidate items in increasing
order of their EWS values. Let � denote this order of items.
The candidate items in � order are a, e, c, b and d. Let us
consider item a, which is the first item in � order. The
neighbors of this item are b, c and e (see Table V). Thus, the
item a will generate SWFIs by combining with the items b, c
and e. Thus, the cumulative neighborhood weighted sum of a,
i.e., CNWS(a) = WS(b) + WS(c) + WS(e) = 365. The
CNWS of a provides the crucial information that the item a
and its supersets containing only a’s neighborhood items can
at most have the maximum weighted sum of 365 in the entire
database. This information can be used to determine whether
a suffix item in the tree needs to be projected or not. If sum of
weighted support of suffixitemset and CNWS of a suffix
itemset is less than the user-specified minWS, then we can
prevent the depth-first search (or construction of conditional
pattern bases) to find SWFIs. Thus, significantly reducing the
search space.

Property 3. (Additive property.) For an itemset X ,
WS(X) ≤

∑
ij∈X WS(ij).

B. SWFP-growth
The proposed SWFP-growth algorithm is presented in Al-

gorithms 1 and 2. Briefly, SWFP-growth algorithm involves
the following steps: (i) finding candidate items (ii) con-
structing Spatial Weighted Frequent Pattern-tree (SWFP-tree)
by compressing the spatiotemporal database using candidate
items (iii) Recursively mining SWFP-tree to find all candidate
itemsets and (iv) finding all SWFIs from candidate itemsets
by performing another scan on the spatiotemporal database.
Before we explain each of these steps, we describe the
structure of SWFP-tree.

1) Structure of SWFP-tree: In SWFP-tree, each node N
includes N.name, N.support, N.oews, N.parent, N.hlink
and a set of child nodes. The details are as follows. N.name is
the item name of the node. N.support represents the support
of an item in node N . N.oews represents the OEWS value of
an item in node N . N.parent records the parent node of the
node. N.hlink is a node link which points to a node whose
item name is the same as N.name.

Header table is employed to facilitate the travel of SWFP-
tree. In this table, each entry is composed of an item name,
OEWS value, and a link. The link points to the last occur-
rence of the node which has the same item as the entry in
the SWFP-tree. By following the link in the header table and
the nodes in SWFP-tree, the nodes whose item names are the
same can be traversed efficiently.

2) Finding candidate items: In the first database scan, we
calculate the EWS, minimum weight sum and weightedsum
of each item in database TDB. The calculated EWS values
for all items in Table I are shown in Fig. 1(a). From these
items, the candidate items are generated by pruning all items
that have EWS value less than the user-specified minWS.
The candidate items are later sorted in descending order of
their EWS value. Let this sorted list of candidate items be
denoted as L. The sorted list of candidate items generated
from Table I for the user-specified minWS = 150 is shown
in Fig. 1(b). (The above process can be repeated until no
more items get pruned from the temporal database. However,
for computational reasons we recommend limiting this step to
single scan on the database.)

3) Construction of SWFP-tree: Using the generated candi-
date items, we scan the temporal database for the second time
and generate SWFP-tree by following the procedure similar
to that Frequent Pattern-tree (or FP-tree). It has to be noted
that we will maintaining both support and OEWS value of
an item at each node.

The sorted transactional database constituting of only can-
didate items is shown in Fig. 1(c). The scan on the first sorted
transaction, “1: ba,” generates a branch 〈b : 1 : 15〉, 〈a : 1 : 35〉
(format is 〈item : support : OEWS〉). Fig. 2(a) shows the
branch generated after scanning first transaction. The scan on
the second sorted transaction, “2:ca,” generates another branch
〈c : 1 : 30〉, 〈a : 1 : 35〉 (see Fig. 2(b)). Simiarl process is
repeated for remaining transactions and SWFP-tree is updated
accordingly. The final SWFP-tree generated after scanning
entire temporal database is shown in Fig. 2(c). For brevity,
we are not showing the node-links. However, they exist as in
FP-tree.

4) Recursive mining of SWFP-tree: After constructing
SWFP-tree, we start with the last item in the header table.
Choosing this item as a suffix itemset, we determine its
CNWS. If the sum of weighted support of the suffix item
and its CNWS value is more than the user-specified minWS,
then we construct its conditional pattern base constituting of
neighboring items of suffix itemset, construct its conditional
SWFP-tree, and generate all candidate itemsets. If CNWS
value of a suffix item is less than the user-specified minWS,
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then we skip the construction of conditional pattern bases and
move to the next item in the header table. Similar process is
repeated for the other items in the header table.

5) Generating all SWFIs from candidate itemsets: After
finding all candidate items from SWFP-tree, we perform third
scan on the database and calculate actual weighted support
for each candidate itemset. The candidate itemset that has
weighted support no less than the user-specified minWS will
be generated as SWFI. The complete set of SWFIs generated
from Table I for the user-specified minWS of 150 is shown
in Table IV.

V. EXPERIMENTAL RESULTS

Since there exists no algorithm to mine SWFIs in a binary
spatiotemporal database, we only evaluate the proposed algo-
rithm using various databases. The SWFP-growth algorithm
has been written in java and executed on i7 1.5 GHz processor
having 8GB of memory. The experiments have been conducted
using synthetic (T10I4D100K) and real-world (Retail, Chess
and PM2.5) databases.

The T10I4D100K [3] is a sparse synthetic database, which
is widely used for evaluating various pattern mining algo-
rithms. This transactional database is converted into a temporal
database by considering tids as timestamps. A spatial database
for all the items in T10I4D100K has been generated by
assigning random coordinates between (0, 0) to (100, 100).
The coordinates of these items in a Cartesian coordinate

system is shown in Fig. 3a. It can be observed that items have
non-uniformly spread throughout the region. The statistical
details of this database were provided in Table VI.

The Retail is a sparse real-world transactional database,
which is widely used for evaluating various pattern mining
algorithms. This database is converted into a temporal database
by considering tids as timestamps. A spatial database for all
the items has been generated by assigning random coordinates
between (0, 0) to (200, 200). The coordinates of these items
in a Cartesian coordinate system is shown in Fig. 3b. It can be
observed that items have non-uniformly spread throughout the
region. The statistical details of this database were provided
in the third row of Table VI.

AEROS consists of several air pollution measuring stations
located throughout Japan. Each station measures several air
pollution concentrates (e.g., NO, NO2, PM2.5 and SO2) over
hourly intervals. In this paper, we only consider PM2.5 pol-
lution concentrate. The pollution data is generated at 1 hour
time interval for 24 hours of a day. For our experiments, we
are using air pollution data of 6 months (i.e., from 01-12-2018
to 04-06-2019). The PM2.5 database contained 5366157 data
points and 1065 items (or station ids). UTC time is used
to record the transactions. Without loss of generality, the
pollution database was split into a temporal database, spatial
database and items weight database. PM2.5 is a dense high
dimensional database. The statistical details of this database
are shown in Table VI.

The Chess is a dense real-world transactional database,
which is widely used for evaluating various pattern mining
algorithms. This database is converted into a temporal database
by considering tids as timestamps. A spatial database for all
the items has been generated by assigning random coordinates
between (0, 0) to (20, 20). The coordinates of these items in
a Cartesian coordinate system is shown in Fig. 3d. It can be
observed that items have non-uniformly spread throughout the
region. The statistical details of this database were provided
in the fourth row of Table VI.

TABLE VI: Statistics of the datasets

Database Type Items Size Transaction length
min. avg. max.

T10I4D100K sparse 870 4.5 MB 1 10 29
Retail sparse 16470 4.6 MB 1 10 76
PM2.5 dense 1065 30.1 MB 50 950 1055
Chess dense 75 354 KB 37 37 37

Figs. 4a, 4b, 4c and 4d show the number of SWFIs generated
in T10I4D100K, Retail, PM2.5 and Chess databases at differ-
ent minWS and maxDist values, respectively. The following
observations can be drawn from these two figures : (i) increase
in minWS causes a decrease in SWFIs as many itemsets
fail to satisfy the increased minWS value and (ii) increase
in maxDist causes increase in SWFIs as higher maxDist
facilitates the items to increase their neighborhood sizes. It
can be observed that at higher maxDist values, too many
SWFIs are getting generated. It is because of the increase in
neighborhood size facilitates items to combine with far away



items and generate SWFIs. Many SWFIs generated at high
maxDist may found to be uninteresting to the users.

S.No. Pattern WS Location
1 {5587,5605,5611,5617,5624} 154,583 Sapporo

2 {4249,4255,4275,4282,4331,4348,- 381,348 Tokyo4354,4391,4396}
3 {2079,2091,2102,2106} 164,538 Osaka
4 {1197,1229,1265,1270} 198,402 Okayama

TABLE VII: Some of the interesting SWFIs generated in
pollution database

Figs. 5a, 5b, 5c and 5d show the memory requirements of
SWFP-growth (in megabytes) on T10I4D100K, Retail, PM2.5
and Chess databases at different minWS and maxDist
values, respectively. The following observations can be drawn
from these two figures : (i) increase in minWS results in the
decrease of memory as relatively less number of SWFIs get
generated and (ii) increase in maxDist results in increase of
memory required to find SWFIs. It is because a large number
of SWFIs get generated at higher maxDist values.

Figs. 6a, 6b, 6c and 6d show the runtime requirements of
SWFP-growth algorithm on T10I4D100K, Retail, PM2.5 and
Chess databases at different minWS and maxDist values,
respectively. The following observations can be drawn from
these two figures : (i) increase in minWS results in a decrease
of runtime as fewer SWFIs are getting generated and (ii)
increase in maxDist results in the increase of runtime.

1) A case study: identifying highly polluted regions of
PM2.5: Table VII shows the SWFIs generated in the PM2.5
database at maxDist = 5 kilometers and minWS =
10, 000µg/m3. The spatial location of these stations is shown
in Fig. 7(a). The spatial location of the sensors present in
each spatial weighted frequent itemset are shown in Fig. 7(b).
These patterns indicate the geographical areas where people
have been exposed to high levels of PM2.5 pollutant. This
information can be found very useful in devising policies to
control pollution.

VI. CONCLUSION

In this paper, we have introduced a flexible model of
spatial weighted frequent itemset that exist in a spatiotemporal
database. Two novel measures have been introduced to reduce
the search space effectively. A pattern-growth algorithm has
also been presented to find all desired itemsets in a spa-
tiotemporal database. Experimental results demonstrate that
the proposed algorithm is efficient. Finally, we have also
demonstrated the usefulness of the proposed model with a
real-world case study on air pollution data.

In this paper, we have studied the problem of finding
SWFIs by taking into account positive weights for the items
in a spatiotemporal database. As a part of future work, we
would like to investigate finding SWFIs in a spatiotemporal
database using both positive and negative weights for the
items. Additionally, we would like to investigate disk-based
and parallel algorithms to find SWFIs.

Algorithm 1 SWFP-tree (TDB: temporal database, I: items
in a database, SD: spatial database, WD: weight database,
minWS: minimum weighted sum, minDist: minimum dis-
tance)

1: Scan the spatial database SD and identify neighbors for
each item ij in I . Let N(ij) denote the neighbors for item
ij in I .

2: Scan the database TDB and calculate EWS, WS and
minimumwieghts for each item ij in I . Prune all items
in I that have EWS less than the user-specified minWS.
Consider the remaining items in I as candidate items and
sort them in descending order of their EWS values. Let
L denote this sorted list of candidate items.

3: Create the root node of SWFP-tree T and label it as
“null”. Scan the temporal database TDB for the second
time and update SWFP-tree as follows. For each trans-
action Tts ∈ TDB do the following. Identify and sort
the candidate items in Tts in L order. Let T̂ts denote the
sorted transaction of Tts containing only candidate items.
Let the sorted candidate item list in T̂ts be [p|P ], where
p is the first element and P is the remaining list. Call
insert tree([p|P ], T ), which is performed as follows. If T
has a child N such that N.item-name = p.item-name,
then increment the N.support value by 1, calculate the
OEWS value of p in T̂ts and add this value to the
existing N.oews value. If T has a child N such that
N.item-name 6= p.item-name, then create a new node
N , set its support count to 1, calculate the OEWS value
of p in T̂ts and set this value as N.oews. Next, its parent
link is linked to T , and its node-link to the nodes with
the same item-name via the node-link structure. If P is
non-empty, call insert tree(P , N ) recursively.

Algorithm 2 SWFP-growth

1: input : TX : SWFP-tree, HX : header table for TX , X: an
itemset

2: output: all candidate weighted frequent itemsets in TX

3: for each item ai ∈ HX do
4: generate an itemset Y = X ∪ ai. The EWS(Y ) is set

as ai.oews in HX .
5: if WeightedSum(Y ) + CNWS(ai) is no less than

minWS then construct Y ’s conditional pattern base
constituting of only neighbors of ai. Next, recalcu-
late each node’s oews value. Consider items having
oews value greater than minWS as candidate items
in Y -CPB and put them in HY . Readjust the oews
values for the items by removing non-candidate items
in Y -CPB. Create a new tree TY by calling in-
sert tree([p|P ], TY ). If Ty 6= null, call SWFP −
growth(TY ,HY , Y ).

6: end for
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