Discovering Spatial High Utility Itemsets in Spatiotemporal Databases

R. Uday Kiran
National Institute of Information and Communications Technology, Japan
The University of Tokyo, Japan
uday_rage@tkl.iis.u-tokyo.ac.jp

Koji Zettsu
National Institute of Information and Communications Technology, Japan
zettsu@nict.gov.jp

Masashi Toyoda
The University of Tokyo, Japan
toyoda@tkl.iis.u-tokyo.ac.jp

Philippe Fournier-Viger
Harbin Institute of Technology, Shenzhen, China
philfv8@hit.edu.cn

P. Krishna Reddy
International Institute of Information Technology, Hyderabad, India
pkrreddy@iiit.ac.in

Masaru Kitsuregawa
National Institute of Informatics, Japan
kitsure@tkl.iis.u-tokyo.ac.jp

ABSTRACT
In real-world databases, high utility itemset (HUI) is an important class of regularities. Most previous studies have focused on mining HUIs in transactional databases and did not consider the spatiotemporal characteristics of items. In this study, a more flexible model of spatial HUIs (SHUIs) that exist in spatiotemporal databases is proposed. In a spatiotemporal database (STD), an itemset is said to be an SHUI if its utility is not less than a user-specified minimum utility and the distance between any two of its items is not more than a user-specified maximum distance. Identifying SHUIs is very challenging because the generated itemsets do not satisfy the anti-monotonic property. In this study, we present two novel pruning techniques for reducing computational costs. Moreover, a fast single scan algorithm is presented for effectively evaluating all SHUIs in a STD. Furthermore, two case studies are presented, in which the proposed model is used to identify useful information in traffic congestion data and air pollution data.

CCS CONCEPTS
• Information systems → Association rules.

KEYWORDS
Data mining, utility itemset mining, pattern mining and spatiotemporal databases

1 INTRODUCTION
In data mining, frequent itemset mining (FIM) [1] is an important model, and its mining algorithms can be used to discover all itemsets in a transactional database that satisfies a user-specified minimum support (minSup) constraint. The latter indicates that the minimum number of transactions that an itemset must cover in the data. Because the support measure is only used to determine the interestingness of an itemset, the model implicitly assumes that all items within the data have uniform weight and that an item at most appears only once in a transaction. Both these assumptions limit the applicability of FIM because the items in many real-world databases have non-uniform weights and can occur multiple times in a transaction. For example, in a supermarket, items have different prices and a customer can purchase multiple quantities of an item such as three bottles of milk, six bread rolls, and a bottle of wine. Because FIM algorithms disregard the purchase quantities of items and their unit prices, they may encounter many uninteresting frequent itemsets. Therefore, the generation of revenue would be low and many rare itemsets that could result in the generation of high revenue would be missed. This problem is referred to as the "rare item problem" [12].

To address the rare item problem, Yao et al. [25] proposed high utility itemset mining (HUM), which extends considering the items’ internal utility (such as the number of occurrences of an item within a transaction) and external utility (such as the weight of an item). Given a (non-binary) transactional database, HUM aims to find all high utility itemsets (HUs), i.e., itemsets having a utility that is not less than a user-specified minimum utility (minUtil) constraint. The utility of an itemset is the sum of its utilities in all transactions. HUM has a number of applications such as market-basket analysis [24], mobile commerce [23], click stream analysis [2], biomedicine [16], and cross-marketing [9]. Moreover, mining HUIs have inspired several other important data mining tasks such as high utility sequential pattern mining [26] and high utility periodic pattern mining [8].

Although HUM and its variants consider an item’s weight and its occurrence frequency in a transaction, they disregard spatiotemporal characteristics of the item. Consequently, they fail to discover only the HUIs that have items close to one another in a spatiotemporal database. To address this issue, we introduced spatial HUI
SSDBM ’19, July 23–25, 2019, Santa Cruz, CA, USA

mining (SHUIM). Herein we present two business applications of SHUIM.

The first application of SHUIM is improving the road traffic safety in smart cities. To measure and monitor congestion at various road segments, Japan Road Traffic Information Center (JARTIC) has set up a sensor network. Figure 1 shows the road network covered by congestion measuring sensors in Kobe, Japan. The data generated by these sensors represent a spatiotemporal database and an external utility database. Figure 2(a) shows a portion of the actual data generated by the sensors. Figures 2(b), (c), and (d) show the temporal database, spatial database, and external utility database generated from Figure 2(a), respectively. An SHUI generated from these databases, such as a total of 5 km of congestion, was observed on the set of roads {2171, 1181} and provided information regarding the set of neighboring roads where a significant length of congestion was observed. At the time of disasters, the above mentioned information can be very useful to users for various purposes such as diverting the traffic, alerting the pedestrians, and suggesting a patrol path for the police. Japanese Industrial Standard X 0410 regional mesh code (or simply, mesh code) [4] represents a portion of the square grid on the Earth’s surface. Because a road segment can pass through multiple mesh codes, the congestion length observed by a sensor is equally split among its mesh codes. Thus, the internal utility of an item in the temporal database represents the number of occurrences of a road segment with various mesh codes at a particular timestamp. The terms “Pt” and “SID” represent the point and sensor identifier, respectively. PM$_{2.5}$ is measured in micro-gram per cubic-meter (i.e., $\mu g/m^3$)

The second application of SHUIM is improving public health by identifying highly polluted geographical regions. Air pollution is a major cause of cardio-respiratory problems for people living in Japan. Thus, to tackle pollution, the Japanese Ministry of Environment has set up the Atmospheric Environmental Regional Observation System (AEROS). This system comprises air pollution measuring sensors located all over Japan (see Figure 3). The data generated by these sensors is a spatiotemporal database and an external utility database, as shown in Figure 4. An SHUI identified in this pollution database indicates that a total of 12500$\mu g/m^3$ of PM$_{2.5}$ was observed by a set of sensors {1, 4, 5} that are close to one other. This provides information regarding neighboring sensors (or geographical regions) where large quantities of air pollution have been observed. This information is useful to users of pollution control board and helps them take appropriate steps such as increasing the vegetation, alerting the people to remain indoors

1PM$_{2.5}$ refers to atmospheric particulate matter that have a diameter of <2.5 micrometers.
at certain times of the day, and proposing new policies to regulate industrial emissions.

HUI algorithms cannot be directly employed for identifying SHUIs in spatiotemporal databases because of the following reasons:

- HUI algorithms implicitly assume that transactions occur at a fixed time interval and the external utility of an item remains unchanged in the entire data. However, a SHUIM algorithm has to consider that transactions within the data can occur at irregular time intervals and the external utilities of items (such as congestion length on a road segment and PM2.5 value recorded by a sensor) can vary over time.
- HUI algorithms determine the interestingness of an itemset without considering the spatial information of its items. Alternatively, a SHUIM algorithm has to determine the interestingness of an itemset by considering both its utility and the closeness (or proximity) of its items.
- Identifying SHUIs in spatiotemporal databases is a computationally expensive process because the utility function does not satisfy the convertible anti-monotone, convertible monotone, or convertible succinct properties [19]. The pruning techniques of existing HUIM algorithms can be employed to reduce computational costs; however, such techniques are inefficient because they disregard the spatial information of items.

With this motivation, we propose a more flexible model of SHUIs in spatiotemporal databases. In a spatiotemporal database (STD), an itemset is said to be an SHUI if its utility is not less than a user-specified minimum utility and the distance between any two of its items is not more than a user-specified maximum distance. To calculate an upper bound on the utility of itemsets, two new measures, Probable Maximum Utility (PMU) and Neighborhood Sub-tree Utility (NSU), are proposed. Moreover, to effectively reduce the search space, two novel pruning techniques employing the PMU and NSU measures have been proposed. Furthermore, a fast single scan algorithm, called SHUI-Miner, is presented to effectively determine all SHUIs in a spatiotemporal database. The proposed SHUI-Miner algorithm is based on the renowned efficient high-utility itemset mining (EFIM) algorithm [27]. Experimental results show that SHUI-Miner is efficient. We also present two case studies in which we applied the proposed model to identify useful information in traffic congestion and air pollution data.

The remainder of this study is organized as follows. In Section 2, we discuss the literature on spatial frequent itemset mining and HUI mining. In Section 3, we introduce the proposed model of SHUI. In Section 4, we introduce the SHUI-Miner algorithm. In Section 5, we present the experimental results. Finally, in Section 6, we provide conclusion of this study and discuss future research directions.

2 RELATED WORK

2.1 Spatial co-occurrence itemset mining

Since the introduction of frequent itemsets in [1], the problem of identifying spatiotemporal co-occurrence itemsets (or association rules) in spatiotemporal databases has received considerable attention of researchers [6, 7, 17, 22]. These algorithms can be broadly classified into distance-based approaches [6, 7] and transaction-based approaches [17, 22]. Typically, a distance-based approach uses a parameter called prevalence to determine how interesting spatiotemporal co-occurrences occur in the data. Initially, a transaction-based approach clusters data over space and time (i.e., spatial clustering) and then applies traditional association rule mining algorithms to cluster and determine useful associations. Unfortunately, all spatiotemporal co-occurrence itemset mining algorithms determine the interestingness of an itemset by considering only its support and disregarding the internal and external utility values of an item. Consequently, most of these algorithms cannot handle numeric data. Nevertheless, the proposed SHUIM model considers the internal and external utility values of items and handles numeric data.

2.2 HUI mining

To address the rare item problem in FIM, Cai et al. [5] proposed weighted frequent itemset mining (WFIM). WFIM algorithms [5, 10] can be used to identify all interesting itemsets in a binary transactional database using the weight (or importance) of items. A major limitation of WFIM algorithms is that they do not consider the number of occurrences of an item in a transaction. Yao et al. [25] proposed HUIM, which considers the importance of items and their occurrence frequency in every transaction. To circumvent the fact that utility is not anti-monotonic and to identify all HUIs, algorithms such as IHUP [3], PB [11], Two-Phase [15], BAHUI [21], UP-Growth and UP-Growth+ [13, 14], and MU-Growth [28] utilize the transaction weighted utility (TWU) to prune the search space. TWU is an upper bound on the utility of itemsets. Note that the aforementioned algorithms operate in two phases. In the first phase, they identify candidates of HUIs by calculating their TWUs to prune the search space. If an itemset has a TWU greater than minUtil, then it is considered as a candidate itemset because the itemset or its supersets may be HUIs. Otherwise, if an itemset has a TWU less than minUtil, it is discarded. In the second phase, these algorithms scan the database to calculate the exact utility of all candidates to filter those that are low-utility itemsets; unfortunately, all of the abovementioned algorithms suffer from the problem of generating too many candidates.

Recently, to avoid the problem of candidate generation, single phase HUI mining algorithms (such as 42HUP [13], EFIM [27], and HU-FIMi [24]) were developed. These algorithms use upper bounds that are tighter than the TWU to prune the search space and can immediately obtain the exact utility of any itemset to determine if it should be outputted. Unfortunately, all HUIM algorithms disregard the spatiotemporal characteristics of items within the data. The proposed SHUIM model generalizes HUI by considering the spatiotemporal characteristics of the items. Thus, the proposed SHUIM model is novel and distinct from HUIM.

3 PROPOSED MODEL

Let \(I = \{i_1, i_2, \ldots, i_m\}, m \geq 1 \) be a set of items. Let \(p(i_j, t_s) \) denote the external utility of an item \(i_j \) in \(I \) at a timestamp \(t_s \leq t_s \leq n \). Let \(P(i_j) = p(i_j, 1) \cup \cdots \cup p(i_j, n) \) denote the set of all external utility values of \(i_j \) in the data. The (external) utility database, \(UD \), refers to the set of external utility values of all items in \(I \),
i.e., $UD = \bigcup_{i,j \in T} P(i,j)$. A temporal database, $D = \{T_1, T_2, \ldots, T_n\}$, where $T_{ts} \subseteq I$ denotes a transaction. Each transaction T_{ts} is associated with a timestamp $ts \in (1, n)$. Every item $i_j \in T_{ts}$ has a positive number $q(i_j, T_{ts})$, called its internal utility. Generally, the internal utility of an item represents its frequency in a transaction. A spatial database, $SD = \bigcup_{i,j \in I} (i_j, (lat(i_j), long(i_j)))$ is a collection of location points of all items in I. The terms $lat(i_j)$ and $long(i_j)$ denote the latitude and longitude information of an item i_j, respectively. (A spatiotemporal database SDT is a combination of D and SD. For brevity, we describe SHUIs using UD, D, and SD.)

Example 1. Let $I = \{a, b, c, d, e, f, g\}$ be a set of all items (or road identifiers). An irregular temporal database generated from I is shown in Table 1. Table 2 presents the external utilities of items a and b at timestamp ts for all items in I. (For brevity, internal utilities have been presented along with the external utilities.)

Table 1: Temporal database

<table>
<thead>
<tr>
<th>ts</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$(a, 2), (b, 3), (g, 2), (f, 1)$</td>
</tr>
<tr>
<td>2</td>
<td>$(a, 1), (c, 3), (f, 4), (g, 1)$</td>
</tr>
<tr>
<td>3</td>
<td>$(d, 3), (f, 2), (g, 3)$</td>
</tr>
<tr>
<td>4</td>
<td>$(b, 4), (c, 4), (d, 1)$</td>
</tr>
<tr>
<td>6</td>
<td>$(b, 4), (c, 4), (d, 1), (e, 1)$</td>
</tr>
<tr>
<td>9</td>
<td>$(a, 1), (b, 2), (c, 2), (c, 3), (g, 1)$</td>
</tr>
</tbody>
</table>

Table 2: External utility database

<table>
<thead>
<tr>
<th>$ts/Item$</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>200</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>150</td>
<td>100</td>
<td>200</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
<td>100</td>
<td>50</td>
<td>0</td>
<td>150</td>
<td>0</td>
<td>200</td>
</tr>
</tbody>
</table>

Table 3: Spatial database

<table>
<thead>
<tr>
<th>Items</th>
<th>location</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$(0, 0)$</td>
</tr>
<tr>
<td>b</td>
<td>$(3, 4)$</td>
</tr>
<tr>
<td>c</td>
<td>$(3, -4)$</td>
</tr>
<tr>
<td>d</td>
<td>$(6, 0)$</td>
</tr>
<tr>
<td>e</td>
<td>$(3, 0)$</td>
</tr>
<tr>
<td>f</td>
<td>$(9, 0)$</td>
</tr>
<tr>
<td>g</td>
<td>$(12, 0)$</td>
</tr>
</tbody>
</table>

Definition 1. (Utility of an item in a transaction) The utility of an item i_j in a transaction T_{ts}, denoted as $u(i_j, T_{ts})$, representing the product of its internal and external utility values, i.e., $u(i_j, T_{ts}) = p(i_j, T_{ts}) \times q(i_j, T_{ts})$.

Example 2. Continuing with the previous example, the utility of an item a (i.e., congestion length at road d) in the first transaction is $u(a, T_1) = p(a, T_1) \times q(a, T_1) = 2 \times 100 = 200$ m.

Definition 2. (Utility of an itemset in a transaction) Let $X \subseteq I$ be an itemset. An itemset is a k-itemset if it contains k items. The utility of an itemset X in a transaction T_{ts} is $u(X, T_{ts}) = \sum_{i_j \in X} u(i_j, T_{ts})$ if $X \subseteq T_{ts}$; otherwise, $u(X, T_{ts}) = 0$.

Example 3. The set of items "a" and "b" (i.e., $\{a, b\}$) or "ab" in short) is an itemset, which contains two items; therefore, it is a 2-itemset. The utility of itemset ab (or the total length of congestion observed on the roads a and b) in the transaction T_1 is $u(ab, T_1) = u(a, T_1) + u(b, T_1) = 200 + 150 = 350$ m.

Definition 3. (Utility of an itemset in a database) The utility of an itemset X in a database D is defined as $u(X) = \Sigma_{T_{ts} \in g(X)} u(X, T_{ts})$, where $g(X)$ denotes the set of all transactions containing X.

Example 4. In Table 1, the itemset ab appears in the transactions T_1 and T_2; therefore, $g(X) = \{T_1, T_2\}$. The utility of itemset ab (or the total length of congestion observed on the roads a and b) in the entire database is $u(ab) = u(ab, T_1) + u(ab, T_2) = 350 + 300 = 650$ m. Similarly, the utility of itemset cd in the entire database is $u(cd) = u(cd, T_1) + u(cd, T_2) = 900 + 600 = 1,500$ m.

Definition 4. (High utility itemset) An itemset X is said to be a HUI if $u(X) \geq minUtil$, where minUtil represents the user-specified minimum utility value.

Example 5. If the user-specified minUtil $= 1,500$ m, then ab is not a HUI because $u(ab) \geq minUtil$, i.e., ab is an uninteresting low utility itemset. However, cd is a HUI because $u(cd) \geq minUtil$.

Definition 5. (Spatial high utility itemset) A HUI X is said to be a spatial high utility itemset if and only if the distance between its items is not more than the user-specified maximum distance (maxDist). Thus, an itemset X is a SHUI if $u(X) \geq minUtil$ and $\forall i_x, i_y \in X, a \neq b, Dist(i_x, i_y) \leq maxDist$, where $Dist(.)$ is a distance function (e.g., Euclidean distance and Geodesic distance) and $maxDist$ denotes a user-specified maximum distance constraint.

Example 6. Continuing with the previous example, the HUI cd is also an SHUI because $Dist(c, d) \leq maxDist$. This SHUI can be expressed as cd [utility $= 1500$ m]. The set of all SHUIs generated from Table 1 are shown in Table 4. Note that Table 5 lists the neighbors of every item at maxDist $= 5$.

Note that all items in a SHUI must be close to one another (i.e., the distance between any two items in a SHUI must always be less than or equal to the user-specified maxDist). If we relax this constraint, then uninteresting itemsets with items far away from the rest can be generated as SHUIs.

Example 7. Let $p = (0, 0)$, $q = (4, 0)$, $r = (8, 0)$, and $s = (12, 0)$ be four items located on a straight line and let maxDist $= 4$. If we relax the constraint that all items in a SHUI need not be close to each other, then we may identify $pqrs$ as a SHUI because $dist(p, q) \leq maxDist$, $dist(q, r) \leq maxDist$ and $dist(r, s) \leq maxDist$. Clearly, the itemset $pqrs$ is uninteresting because the items r and s are far away from p.

Table 4: SHUs generated from Table 1 at minUtil = 1500 and maxDist = 5

<table>
<thead>
<tr>
<th>Itemset</th>
<th>utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>1600</td>
</tr>
<tr>
<td>b</td>
<td>1550</td>
</tr>
<tr>
<td>cd</td>
<td>1500</td>
</tr>
<tr>
<td>bd</td>
<td>1500</td>
</tr>
</tbody>
</table>

Table 5: Neighbors of each item at maxDist = 5

<table>
<thead>
<tr>
<th>Item</th>
<th>Neighbours</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>bce</td>
</tr>
<tr>
<td>b</td>
<td>ade</td>
</tr>
<tr>
<td>c</td>
<td>ade</td>
</tr>
<tr>
<td>d</td>
<td>bce, f</td>
</tr>
<tr>
<td>e</td>
<td>abcd</td>
</tr>
<tr>
<td>f</td>
<td>dg</td>
</tr>
<tr>
<td>g</td>
<td>f</td>
</tr>
</tbody>
</table>

Definition 6. (Problem definition) Given a temporal database D, spatial database SD, and a utility database UD, the problem of SHUIM is to identify all itemsets that have a utility not less than the user-specified minUtil and the distance between its items is not more than the user-specified maxDist. Interestingly, SHUIM is a special case of SHUIM problem when maxDist = ∞ (or for a very large value).

In the next section, we present the SHUI-Miner algorithm for efficiently identifying all SHUIs in a spatiotemporal database.

4 SHUI-MINER

In this section, we first present the basic idea of SHUI-Miner. Next, we explain the algorithm using the database shown in Table 1.

4.1 Basic idea

The space of items in a database gives rise to a subset lattice. When mining SHUIs, the itemset lattice is a conceptualization of the search space. However, reducing this search space is a challenging task because the generated SHUIs do not satisfy the convertible anti-monotonic, convertible monotonic, or convertible succinct properties [18]. To address this challenge, SHUI-Miner employs two new utility upper bound measures, i.e., probable maximum utility (PMU) and Neighborhood Sub-tree Utility (NSU), to identify itemsets (or item) whose supersets may generate SHUIs. Both PMU and NSU measures internally utilize the information on the neighborhood of items (or distance between the items) to identify itemsets whose supersets may generate SHUIs. We will now present each of these two measures.

4.1.1 Probable Maximum Utility. PMU aims to prune itemsets whose supersets in a database (or projected database) cannot be SHUIs. The PMU of an itemset in a database is defined in Definition 12, and is based on Definitions 7, 8, 9, 10, and 11.

Definition 7. (Probable Maximum Utility of an item in a transaction). Let N_i denote the neighbors of an item $i_j \in I$, i.e., $\forall i_k \in N_i, dist(i_j, i_k) \leq maxDist$. The probable maximum utility (PMU) of an item in a transaction T_i is denoted as $PMU(i_j, T_i)$, and represents the sum of utilities of i_j and its neighboring items in T_i, i.e., $PMU(i_j, T_i) = u(i_j, T_i) + \sum_{i_k \in T_i \times N_i} u(i_k, T_i)$.

Example 8. Consider the item a in Table 1. The neighbors of a, i.e., $N_a = \{bce\}$ (see Table 5). The probable maximum utility of a in T_1 is the sum of utilities of a and its neighboring items in T_1, i.e., $PMU(a, T_1) = u(a, T_1) + u(b, T_1) = 200 + 150 = 350$. Note that the utilities of the remaining items (i.e., g and f) in T_1 are not used while calculating $PMU(a, T_1)$ because these two items are not neighbors of a.

Definition 8. Let $g(i_j)$ denote the set of all transactions containing an item i_j. The PMU of an item in a database, denoted as $PMU(i_j)$, represents the sum of probable maximum utility of i_j in all transactions containing i_j, i.e., $PMU(i_j) = \sum_{T_i \subseteq U, g(i_j)} PMU(i_j, T_i)$.

Example 9. The transactions containing a in Table 1 are as follows: T_1, T_2 and T_5; therefore, $g(a) = \{T_1, T_2, T_5\}$. The PMU of a in T_1 is $PMU(a, T_1) = 350$. Similarly, $PMU(a, T_2) = 350$ and $PMU(a, T_5) = 850$. Note that the PMU of a in the entire database is $PMU(a) = PMU(a, T_1) + PMU(a, T_2) + PMU(a, T_5) = 350 + 350 + 850 = 1550$, i.e., a with all its neighbors has resulted in a utility (or congestion length) of 1,550.

The above definition captures the utility upper bound of an item with respect to its neighbors. Property 1 defines a pruning technique based on Definition 8. The correctness of this pruning technique is shown in Theorem 4.1, which is based on Properties 2 and 3.

Property 1. For an item $i_j \in I$, if $PMU(i_j) < minUtil$, then i_j can be pruned from the database because neither i_j nor its supersets will be SHUIs. If the user-specified minUtil = 1500, then the items “f” and “g” can be pruned from the database because $PMU(f) < minUtil$, and $PMU(g) < minUtil$.

Property 2. Let $\tilde{D} \subseteq D$ be a projected database containing items $\{i_j \cup N_i\}$. If $\tilde{I} \subseteq I$ be a set of all items in \tilde{D}. The utility of i_j in \tilde{D} will always be less than or equal to $PMU(i_j)$, i.e., $u(i_j) \leq PMU(i_j)$.

Property 3. (Utility upper bound of PMU) In the projected database \tilde{D}, $u(X) \leq PMU(i_j)$, as $i_k \subseteq X$.

Theorem 4.1. For an item $i_j \in I$, if $PMU(i_j) < minUtil$, then neither i_j nor its supersets can be SHUIs.

Proof. In \tilde{D}, if $PMU(i_j) < minUtil$, then $u(i_j) < minUtil$ (see Property 2); thus, i_j cannot be a SHUI. Moreover, for every itemset X in \tilde{D}, $u(X) \leq minUtil$ (see Property 3); thus, all supersets of i_j will not generate any SHUI. Hence, the validity of the algorithm is proved.

Definition 9. An item $i_j \in I$ is a secondary item if $PMU(i_j) \geq minUtil$. The items that are not pruned by Property 1 are known as secondary items. Definition 9 defines the secondary items. The SHUI-Miner algorithm does a depth-first search on the itemset lattice of secondary items to identify all SHUIs in the data.
Example 11. Continuing with the previous example, the secondary items in Table 1 are a, b, c, d, and e.

We now generalize Definition 8 by considering the notion of itemset. This generalization facilitates pushing the above pruning technique to the lower levels of the itemset lattice.

Definition 10. (Neighboring items that can extend an itemset) Let SI denote the set of secondary items. Let $>\alpha$ denote an order of secondary items in PMU in an ascending order. Let α be an itemset. Let $E(\alpha)$ denote the set of all secondary items that can be used to extend α according to the depth-first search, i.e., $E(\alpha) = \{z \mid z \in SI, z > x, \forall x \in \alpha\}$. Let $N(\alpha) = (\bigcap_{i_k \in \alpha} N_{i_k}) \cap E(\alpha)$ denote the set of all neighboring items that can be used to extend α according to the depth-first search to identify SHUIs.

Example 12. The PMU in ascending order of secondary items in Table 1 is $SI = \{a, e, c, b, d\}$. Let $\alpha = a$ be an itemset. The $E(\alpha) = \{e, c, b, d\}$. The Neighborhood of a as $N(\alpha) = \{eb\}$ (see Table 5). Let $\alpha = ae$; then $E(\alpha) = \{cb\}$. The neighboring items that can extend ae, i.e., $N(\alpha) = N(\alpha) \cap E(\alpha) = \{cb\}$, i.e., the itemset ae will be extended by considering the items c and b. The item d will not be utilized for extending ae because d is not a neighbor of a.

Definition 11. (PMU of an itemset in a transaction) The PMU of an itemset α in a transaction T_{ts} is defined as $PMU(\alpha, T_{ts}) = u(\alpha, T_{ts}) + \sum_{i \in T_{ts} \land i \notin N(\alpha)} u(i, T_{ts})$.

Example 13. In Table 1, ae has appeared in the transaction T_9, which in PMU in an ascending order of items is $\{(a, 1), (e, 3), (c, 2), (b, 1), (g, 1)\}$. The PMU of ae in T_9 is the sum of utilities of ae and the neighboring items that are appearing in the sorted T_9 after e, i.e., $pmu(ae, T_9) = u(ae, T_9) + u(c, T_9) + u(b, T_9) = 550 + 100 + 200 = 850$.

Definition 12. (PMU of an itemset in a database) The PMU of an itemset α in a database is $PMU(\alpha) = \sum_{T_{ts} \in \alpha} pmu(\alpha, T_{ts})$.

Example 14. In Table 1, ae has appeared only in the transaction T_9; therefore, $g(ae) = \{T_9\}$. The pmu of ae in the entire database, i.e., $pmu(ae) = \sum_{T_{ts}} pmu(\alpha, T_{ts}) = 850$, i.e., the maximum utility any superset of ae (containing only the neighboring items of a and e) can have in Table 1 is 850.

The above definition represents the maximum utility achievable by any superset of an itemset (or an item) in the data. Thus, if the pmu of an itemset fails to satisfy $minUtil$, then we stop exploring its supersets. The accuracy of this algorithm is based on Property 4 as shown in Theorem 4.2. This theorem generalizes Property 1.

Property 4. (Overestimation using the PMU of an itemset) Let α be an itemset and z be an item in $N(\alpha)$. Let β be an extension of α such that $z \in \beta$. The relationship $PMU(\alpha \cup z) \geq u(\beta)$ holds (in the projected database of α), i.e., PMU is an overestimating function.

Theorem 4.2. (Pruning an item in all sub-trees using the PMU) Let α be an itemset and $z \in N(\alpha)$. If $PMU(\alpha, z) < minUtil$, then all extensions of α containing z have low utility, i.e., item z can be ignored while exploring all sub-trees of α.

Proof. The correctness is straightforward to prove from Property 4.

4.1.2 Neighborhood sub-tree utility. The PMU measure identifies secondary items (or itemsets) whose supersets may be SHUIs in the database. We use a variant of sub-tree utility [27], called Neighborhood sub-tree utility (NSU), to identify these secondary items whose projections (or depth-first search in the itemset lattice) will result in identifying all SHUIs. The NSU is defined in Definition 13 and illustrated in Example 15. The secondary items whose projections will result in identifying SHUIs are referred to as primary items. The primary items are defined in Definition 14 and illustrated in Example 16. The relationship between PMU and NSU is given in Property 5.

Definition 13. (Neighborhood sub-tree utility) Let α be an itemset and $z \in N(\alpha)$ be an item that can extend α according to the depth-first search in the itemset lattice (or set enumeration tree). The neighborhood sub-tree utility of z with respect to α, denoted as $NSU(\alpha, z) = \sum_{T_{ts} \in g(\alpha \cup z)} u(\alpha, T_{ts}) + u(z, T_{ts}) + \sum_{i \in T_{ts} \land i \notin N(\alpha \cup z)} u(i, T_{ts})$.

Example 15. The PMU in an ascending order of secondary items in Table 1 is a, e, c, b, d. Let us consider item d, which has pmu value of 3,250. Let $\alpha = \emptyset$. The neighborhood sub-tree utility of $\alpha \cup d$, $NSU(\alpha, d) = \{0 + 300\} + \{0 + 100\} + \{0 + 200\} = 600$. Because $pmu(d) \geq minUtil$ and $NSU(d) \geq minUtil$, it turns out that d will generate SHUIs in the projections of another items. The projection (or depth-first search) on d will not result in any SHUI.

Property 5. For an itemset X, $PMU(X) \geq NSU(X)$.

Definition 14. (Primary items). Given the PMU in an ascending order of secondary items, a secondary item $i_j \in SI$ is said to be a primary item if $NSU(i_j) \geq minUtil$.

Example 16. Consider the secondary items a and d, which have minimum and maximum pmu value in Table 1. The NSU values for these two secondary items, i.e., $NSU(a) = 1550$ and $NSU(d) = 600$. Because $NSU(a) \geq minUtil$, we consider a as a primary item. We do not consider d as a primary item because $NSU(d) \leq minUtil$.

4.1.3 Comparison of PMU and NSU measures against existing pruning measures. In the literature, researchers have employed Transaction Weighted Utility (TWU) [15], local utility (LU), and sub-tree utility (STU) [27] as utility upper bound measures to reduce the computational cost of identifying HUIs in (non-binary) transactional databases. These measures are defined in Definitions 15, 16, and 17. The proposed PMU measure is a tighter utility upper bound compared to TWU and LU measures (see Theorem 4.3). Similarly, the proposed NSU measure is a tighter utility upper bound compared to STU measure (see Theorem 4.4), i.e., the proposed PMU and NSU measures can help in determining the SHUIs by generating fewer secondary items and primary items compared to the existing HUI algorithms [9, 27].

In the next subsection, we present SHUI-Miner algorithm using primary and secondary items.

Definition 15. (Transaction Weighted Utility of an itemset) In a database D, the TWU of an itemset α, denoted as $TWU(\alpha)$,
represents the sum of utilities of all transactions containing \(a\), i.e.,
\[TWU(a) = \sum_{i \in E(a)} \sum_{T_i} u(i, T_i),\]
where \(g(a)\) represents the set of transactions containing \(a\).

Definition 16. (Local utility of an itemset.) In a database \(D\), the \(LU\) of an itemset \(a \cup z\), denoted as \(LU(a) = \sum_{T_i \in g(a \cup z)} u(a, T_i) + \sum_{z \in g(a \cup z) \cap E(a)} u(i, T_i)\).

Definition 17. (Sub-tree utility) Let \(a\) be an itemset and \(z\) be an item that can extend \(a\) according to the depth-first search in the itemset lattice (or set enumeration tree). The sub-tree utility of \(a\) with respect to \(z\), denoted as \(STU(a, z) = \sum_{T_i \in g(a \cup z)} u(a, T_i) + u(z, T_i) + \sum_{z \in g(a \cup z) \cap E(a)} u(i, T_i)\).

Property 6. For an itemset \(a\), \(TWU(a) \geq LU(a)\) [27].

Theorem 4.3. For an itemset \(a\), \(TWU(a) \geq LU(a) \geq PMU(a)\).

Proof. For an itemset \(a\), \(N(a) \subseteq E(a)\) (see Definition 10); thus, \(LU(a) \geq PMU(a)\). From Property 6, it turns out that \(TWU(a) \geq PMU(a)\); thus, \(TWU(a) \geq LU(a) \geq PMU(a)\). Hence, the validity of the algorithm is proved.

Theorem 4.4. For an itemset \(a \cup z\), \(STU(a, z) \geq NSU(a, z)\).

Proof. Because \(N(a \cup z) \subseteq E(a \cup z)\), it turns out that
\[
\sum_{T_i \in g(a \cup z)} u(a, T_i) + u(z, T_i) + \sum_{z \in g(a \cup z) \cap E(a)} u(i, T_i) \leq \sum_{T_i \in g(a \cup z)} u(a, T_i) + u(z, T_i) + \sum_{z \in g(a \cup z) \cap E(a)} u(i, T_i),
\]
which confirms the validity of the algorithm.

Algorithm 1 SHUI

1. **input**: \(D\) is a temporal database, \(SD\) is a spatial database, \(UD\) is an external utility database, \(minUtil\) is a user-specified minimum utility constraint, and \(maxDist\) is a user-specified maximum distance constraint
2. **output**: A set of SHUIs
3. \(N = \text{Neighbors}(SD, \text{maxDist})\). Let \(N(i, j)\) denote the set of all neighboring items for \(i \in I\).
4. Let \(a\) denote an itemset that needs to be extended. Initially, set \(a = \emptyset\).
5. Scan the temporal database to determine the \(PMU\) for every item \(i \in I\).
6. \(Secondary(a) = \{i | i \in I \land PMU(i) \geq \minUtil\}\)
7. Let \(\beta\) be the total order of \(PMU\) in an ascending order of their values in \(Secondary(a)\).
8. Scan \(D\) to remove each item \(i \not\in Secondary(a)\) from the transactions, sort items in each transaction according to \(\beta\), and delete empty transactions;
9. Calculate neighborhood sub-tree utility for all items in \(secondary(a)\) by scanning the database \(D\) once using utility-bin array;
10. \(Primary(a) = \{z || z \in secondary(a) \land NSU(a, z) \geq \minUtil\}\);
11. \(RecursiveSearch(a, D, Primary(a), Secondary(a), minUtil)\);
12. end for

4.2 Proposed algorithm

The SHUI-Miner is presented in Algorithms 1, 2, and 3. Because the calculation of \(PMU\) and \(NSU\) for a projected database of \(a\) is straightforward, we have not presented the related algorithms in this study. The terms “projected transaction” and “projected database” are defined in Definitions 18 and 19, respectively. We now illustrate these three algorithms using the databases shown in Tables 1, 2, and 3. Let \(minUtil = 1500\) and \(maxDist = 5\).

Definition 18. (Projected transaction.) The projection of a transaction \(T \in D\) using an itemset \(a\) is denoted as \(a - T\) and defined as \(a - T = \cup_{i \in I \land T \not\in E(a)}\).

Example 17. Let \(a = a\). In Table 1, the item \(a\) appears in \(T_1\); therefore, the projected transaction of \(a\), i.e., \(a - T = \{b, 3\}\). Other items in \(T_1\) are not included in \(a - T\) because they are not neighbors of \(a\).

Definition 19. (Projected database.) The projection of a database \(D\) using an itemset \(a\) is denoted as \(a - D\) and defined as the multiset \(a - D = \cup_{T \in D \land T \not\in \emptyset(a - T)}\).
Example 18. In Table 1, item a appears in T_1, T_2, and T_5; therefore, $a-D = \{(b,3),(c,3),(e,3),(c,2),(b,2)\}$.

To identify neighbors for each item in the data (Line 3 in Algorithm 1 and entire Algorithm 2), the spatial database shown in Table 3 is used. The list of items and their corresponding neighbors are shown in Table 5. Next, we set $\alpha = 0$ and calculate PMU values for each item in Table 1. The list of PMU values is $\{(a:1550),(b:2650),(c:2550),(d:3250),(e:2100),(f:1450),(g:1350)\}$ (lines 4 and 5 in Algorithm 1). Next, secondary items with respect to a is generated by comparing PMU of each item with minUtil (line 6 in Algorithm 1). The generated secondary items are sorted in PMU in an ascending order \succ; thus, $\text{Secondary}(a) = \{(a,e,c,b,d)\}$ (line 7 in Algorithm 1). Next, we prune all non-secondary items in D, sort the remaining items in each transaction in \succ order, and delete empty transactions. The resulting sorted temporal database containing only secondary items is shown in Table 6 (line 8 in Algorithm 1). Next, we calculate NSU for each item in $\text{Secondary}(a)$. The NSU values for the ordered secondary items is $\{(a:2000),(e:3300),(b:1850),(d:600)\}$ (line 9 in Algorithm 1). The items that have NSU value greater than minUtil are considered as primary items, i.e., $\text{Primary}(a) = \{(a,e,c,b)\}$ (line 10 in Algorithm 1). Next, we call RecursiveSearch function to generate all SHUIs from the database (line 11 in Algorithm 1).

The RecursiveSearch (i.e., Algorithm 3) works as follows. First, start with the first item a in the $\text{Primary}(a)$; moreover, because $\alpha = 0$, $\beta = a$ and we scan D (i.e., $a-D$) and calculate $u(\beta) = u(a) = 350$. Next, we construct a projected database $\beta-D$ (i.e., $a-D$) with only neighboring items of a. Figure 5(a) shows the projected database of a generated from Table 6. As $u(a) \not\succeq \text{minUtil}$, a will not be generated as a SHUI. Next, for each item z in $\beta-D$, we calculate PMU and NSU values. Figure 5(b) shows the PMU and NSU values calculated for all items in $a-D$. The items having NSU greater than or equal to minUtil are considered as primary items (i.e., $\text{primary}(\beta)$). As all items in $a-D$ have NSU value less than minUtil, we stop creating the projected databases for the primary item a and move to the next primary item $e \in \text{Primary}(a)$. The projected database of e, i.e., $e-D$, is shown in Figure 5(c). Next, we calculate PMU and NSU values for all items in $e-D$. The items c and b in $e-D$ have $\text{NSU} \geq \text{minUtil}$; thus, we consider $\text{primary}(e) = \{c,b\}$. Next, we construct a projected database for ec, i.e., $(ec-D)$, as shown in Figure 5(e). We then calculated PMU and NSU for all neighbouring items in $ec-D$, as shown in Figure 5(f). It can be observed from Figure 5(f) that we have not calculated PMU and NSU for the item b in $ec-D$ because b is not a neighbor of c. The above process is repeated for all primary items. All SHUIs generated by SHUI-Miner for the database shown in Table 1 are presented in Table 4.

![Figure 5: Recursive mining of SHUI-Miner.](image)

Figure 5: Recursive mining of SHUI-Miner. (a) Projected database of a (i.e., $a-D$), (b) PMU and NSU values of the items in $a-D$, (c) projected database of e (i.e., $e-D$), (d) PMU and NSU values of the items in $e-D$, (e) projected database of ec (i.e., $ec-D$), and (f) PMU and NSU values of the items in $ec-D$ generated by SHUI-Miner for the database shown in Table 1 are presented in Table 4.

5 EXPERIMENTAL RESULTS

Because there exists no algorithm for identifying SHUIs in spatiotemporal databases, we only evaluate the performance of SHUI-Miner. The SHUI-Miner algorithm was written in C++ and executed on a machine with 1.5 GHz processor and 4GB RAM. The experiments have been conducted on two real-world databases, namely, congestion database and pollution database. The XRAIN database was used to demonstrate the usefulness of SHUIs generated from congestion database. The open source application, QGIS, is used to display some of the interesting SHUIs generated from both databases. We now explain all three databases.

The (traffic) congestion database is provided by JARTIC. The attributes of the congestion database is shown in Table 7. Sample data of JARTIC is shown in Figure 2(a). The data from each sensor was collected over an interval of 5 min. The primary attributes for this database are as follows: mesh code and Road ID. The distance between the road segments was calculated using geodesic distance. In the experiment, we used road congestion data generated on July 17, 2015, for Kobe, Japan. On this day, Kobe was hit by Typhoon Nangka, which brought over 2 feet of rain and caused 550,000 people to leave Kobe. The source database contained 39,873 transactions and 2,412 items (or RIDs). To record the transactions, we used UTC time. Without loss of generality, original congestion database was split into temporal database, spatial database, and external utility database. The internal utility for the items in the temporal database was determined by counting the number of occurrences of Road ID (RID) at a particular timestamp.
The air pollution, particularly PM$_{2.5}$ (or simply, PM2.5) concentrate, is the major cause for many cardio-respiratory problems reported in Japan. In particular, the health of elderly people was severely affected by PM2.5. To control and monitor air pollution, AEROS was setup by the Ministry of Environment, Japan. The data generated by various sensors in AEROS helped develop the air pollution database [20]. In this study, we focused on PM$_{2.5}$, and similar studies were performed for other pollutant concentrates such as NO$_2$ and O$_3$. The unit for measuring PM$_{2.5}$ is microgram per cubic meter ($\mu g/m^3$). The attributes of pollution database are presented in Table 8. The sample data of this table is shown in Figure 4(a). The air pollution data was generated at an interval of 1 h for 24 h a day. For our experiments, we used air pollution data of the following three days: April 21, 2018; April 22, 2018; and April 23, 2018. The pollution database has 97,651 transactions and 1,026 items (or sensor ids). To record the transactions, we used UTC time. Without loss of generality, the pollution database was split into temporal, spatial, and external utility databases. Since each sensor produces only one value in an hour (i.e., transaction), the internal utility for the items in temporal database is set as 1.

XRAIN data is a high-resolution precipitation raster data provided by Japan Meteorological Agency (JMA). In this study, we used the precipitation data of Typhoon Nangka, which struck Japan on July, 17, 2015.

Table 7: Attributes of congestion database

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type of attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timestamp</td>
<td>interval data</td>
</tr>
<tr>
<td>Mesh code</td>
<td>categorical data</td>
</tr>
<tr>
<td>RID</td>
<td>categorical data</td>
</tr>
<tr>
<td>Location</td>
<td>point</td>
</tr>
<tr>
<td>Con. length</td>
<td>continuous data</td>
</tr>
</tbody>
</table>

Table 8: Attributes of pollution database

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type of attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timestamp</td>
<td>interval data</td>
</tr>
<tr>
<td>Sensor ID</td>
<td>categorical data</td>
</tr>
<tr>
<td>Sensor location</td>
<td>point</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>continuous data</td>
</tr>
</tbody>
</table>

Figure 6: SHUIs generated in pollution database

Figure 7: Memory consumed by SHUI-Miner

Figure 8: Runtime requirements of SHUI-Miner

Figures 6(a) and (b) show the number of SHUIs generated in congestion and pollution databases at different minUtil and maxDist values, respectively. The following observations can be drawn from these two figures. (i) Increase in maxDist results in increase in SHUIs because increase in maxDist increases the neighborhood size of the items, which thereby enables items to combine with more items and generate SHUIs and (ii) Increase in minUtil results in decrease in SHUIs. This is because many itemsets fail to satisfy the increased minUtil value.

Figures 7(a) and (b) show the memory requirements of SHUI-Miner in congestion and pollution databases at different minUtil and maxDist values, respectively. The following observations can be drawn from these two figures. (i) The memory requirements of SHUI-Miner increases with an increase in maxDist because increase in SHUIs results in an increase in maxDist. (ii) The memory requirements of SHUI-Miner decreases with increase in minUtil because fewer SHUIs get generated with increase in minUtil. (iii) Moreover, it is observed that SHUI-Miner takes less time to identify SHUIs in congestion and pollution databases at large or small threshold values.

Figures 8(a) and (b) show the runtime requirements of SHUI-Miner algorithm in congestion and pollution databases at different minUtil and maxDist values. The following observations can be drawn from these two figures. (i) The runtime of SHUI-Miner increases with an increase in maxDist because of the increase in the number of SHUIs. (ii) The runtime of SHUI-Miner decreases with the increase in minUtil because of the decrease in SHUIs as a result of an increase in minUtil. (iii) Moreover, it can be observed that SHUI-Miner is efficient for large or small threshold values.
<table>
<thead>
<tr>
<th>S.No.</th>
<th>SHUI</th>
<th>Utility</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[807, 799, 792, 790, 813, 812]</td>
<td>13959</td>
<td>Tokyo</td>
</tr>
<tr>
<td>2</td>
<td>[175, 177, 176, 174, 173]</td>
<td>8616</td>
<td>Hiroshima</td>
</tr>
<tr>
<td>3</td>
<td>[516, 520, 517, 519]</td>
<td>8556</td>
<td>Nagoya</td>
</tr>
<tr>
<td>4</td>
<td>[352, 354, 356, 343]</td>
<td>7822</td>
<td>Osaka</td>
</tr>
</tbody>
</table>

Table 9: Some of the interesting SHUIs generated from pollution database

5.1 Case studies

5.1.1 Improving traffic safety. To demonstrate the usefulness of SHUIs in traffic congestion data, we have divided the congestion data of July, 17, 2015, into hourly intervals and applied SHUI-Miner algorithm to each hourly congestion data to identify SHUIs (i.e., sets of road segments where a lot of congestion was observed within the traffic network). The maxDist = 1 km and minUtil = 10000 m/10 km, i.e., a total of at least 10 km of congestion should be observed in a set of neighboring roads in an hour. Figure 9 shown hourly congestion reported from 6:00 hours to 14:00 hours. The black lines in each of these figures represent the road segments where congestion was observed by a sensor in the entire one hour interval of time. On these black lines, we have overlaid colored lines that represent road segments (or SHUIs) generated in hourly congestion data. Road segments with same color represent a SHUI. Moreover, hourly XRAIN data of the typhoon Nangka was overlaid on the road segments. The following observations can be drawn from these figures: (i) roads with heavy congestion (i.e., SHUIs) vary with time (ii) roads with heavy congestion were observed in areas with high precipitation (Figures 9(d)-(f)). Thus, the knowledge of SHUIs (or heavy congested roads) can be very useful to the traffic control room in diverting the traffic.

Some of the authors of this paper have previously developed a model to predict congestion on roads using XRAIN data [22]. Applying SHUIM algorithm on this predicted congestion database provides prior information regarding the road segments (SHUIs) where heavy congestion might happen. The users in traffic control room can utilize this knowledge for various purposes such as diverting the traffic, alerting the pedestrians to execute caution while crossing the roads, and suggesting patrol paths for the police.

5.1.2 Identifying highly air polluted locations. Table 9 shows some of the SHUIs generated from air pollution database at maxDist = 7 kilometers and minUtil = 5000 μg/m³. The spatial location of these sensors is shown in Figure 10. The exact location of the sensors presented in each SHUI is shown in Figures 11-14. It can be observed in these figures that large quantities of PM2.5 were observed at the sea ports (situated to the east coast of Japan). This information can be found very useful for devising policies for pollution control.

6 CONCLUSIONS AND FUTURE WORK

In this study, we exploited the spatiotemporal characteristics of the items within the data and proposed a flexible model for evaluating SHUI that exists in a spatiotemporal database. Two novel utility upper bound measures, PMU and NSU, have been introduced to reduce the search space of SHUI. Moreover, we have theoretically shown that the proposed measures are tighter than the current utility upper bound measures when it comes to mining SHUIs. A single pass algorithm has been proposed to effectively determine all SHUIs in spatiotemporal databases. Note that experimental results demonstrate that the proposed algorithm is efficient, and we also presented two case studies to demonstrate the effectiveness of SHUIs in real-world applications.

In this study, we examined SHUIM by considering only positive external utility values. As a part of our future work, we would like to extend the proposed model of SHUI by considering both positive and negative external utility values. We focused on identifying SHUIs in static spatiotemporal data, and it would be interesting to investigate SHUIM in graphs, data streams, and symbolic databases in future.

7 ACKNOWLEDGEMENTS

I would like to express my special thanks of gratitude to Mr. Yuji Uchiyama, Picolab Co., Ltd., Tokyo, Japan for development of the experimental system at National Institute of Information and Communication Technologies, Tokyo, Japan.

REFERENCES

Figure 9: SHUIs generated from the hourly congestion data. XRain (or precipitation) data is overlaid at hourly intervals. High congested road segments have been shown within the dark ovals. (a) to (i) show some of the SHUIs generated from the hourly congestion data starting from 6 to 14 h (UTC time).

[18] Jian Pei and Jiawei Han. 2000. Can We Push More Constraints into Frequent Pattern Mining?. In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’00). 350–354.

Figure 10: Spatial location of SHUIs generated in pollution data

Figure 11: Sensors that recorded high quantities of PM2.5 in Tokyo area

Figure 12: Sensors that recorded high quantities of PM2.5 in Nagoya area

Figure 13: Sensors that recorded high quantities of PM2.5 in Osaka area

Figure 14: Sensors that recorded high quantities of PM2.5 in Hiroshima area

