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Abstract

Database buffer management is a cornerstone in modern database
management systems (DBMS). So far, a shared buffer strategy has
been widely employed to improve the cache efficiency and reduce
the I0 workload. However, it involves a significant processing over-
head induced by the inter-thread synchronization, thus failing to
exploit the potential bandwidth that recent non-volatile memory
(NVM) storage devices offer. This paper proposes to employ a sepa-
rated buffer strategy. According to this strategy, the database buffer
manager is allowed to achieve significantly higher throughput, even
though it may produce an extra amount of IO workload. In recent
multi-core NVM storage environments, separated buffer performs
faster in query processing than shared buffer. This paper presents
our experimental study with the TPC-H dataset on two different
NVM machines, demonstrating that separated buffer achieves up
to 1.47 million IOPS and finally performs up to 637% faster in query
processing than shared buffer.

1 Introduction

The emerging non-volatile memory (NVM) has the great potential
to accelerate query processing in database management systems
(DBMS). Redesigning and optimizing DBMS for NVM is now a key
problem.

Aiming at exploiting the potential bandwidth of NVM, this pa-
per proposes a new design strategy for a database buffer manager,
a cornerstone component being responsible for handling IOs in
DBMS. So far, the mainstream study of a database buffer manager
was directed to improving the cache efficiency and optimizing the
IO sequence in order to reduce IO time and then improve query
processing performance [2, 3, 7]. This strategy was practically ac-
ceptable because IOs were approximately six orders of magnitude
slower than memory, allowing many processor cycles to be utilized
for carefully controlling every IO. Now, due to NVM, the latency
gap between IO and memory is narrowing (one to four orders of
magnitude). A database buffer manager is only allowed to utilize
a much smaller amount of processor cycles for IO control. Actu-
ally, a database buffer manager is often a performance bottleneck
[8]. This paper proposes a separated buffer strategy, which simpli-
fies the buffer management to reduce inter-thread synchronization
and improve IO throughput even though it sacrifices the cache effi-
ciency. Our experimental study clarifies that this simplification fi-
nally improve query processing performance in recent multi-core
NVM storage environments.

2 Database Buffer Management

In modern DBMS, a database buffer manager is an essential ab-
straction layer that handles all IOs between a query executor and
persistent storage. While processing a query, the query processor
requests a fix of a page when needing the page; upon the request,
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Figure 1: Comparison of database buffer strategies.
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the database buffer manager reads the page content from the stor-
age and places the page into a buffer (allocated in main memory),
so that the query processor can use the page for the query process-
ing [5]. Similarly, the query processor requests an unfix when no
longer needing the page; the database buffer manager releases the
page from the buffer after writing the page content to the storage,
if necessary, according to page replacement policies such as LRU,
Generalized CLOCK [2], TinyLFU [3] and ARC [7].

Recent DBMS eagerly utilizes multi-threading in order to achieve
query execution parallelism [4]. The query processor invokes mul-
tiple threads, each of which concurrently fixes and unfixes pages
during query processing. Conventionally, as illustrated in Figure
1(a), all the threads share a single buffer in order to improve the
cache efficiency. However, this strategy involves mutual exclusion
at the buffer for every fix/unfix operation, thus inducing significant
processing overhead for inter-thread synchronization [8]. Partic-
ularly, in recent multi-core NVM storage environments, the data-
base buffer is likely to be a performance bottleneck [6].

Contrary to the conventional practice, we propose to separate
the buffer into thread-specific pieces, as illustrated in Figure 1(b).
This strategy removes the necessity of mutual exclusion at the
buffer, thus having the great benefit of reducing the inter-thread
synchronization and improving the IO throughput significantly. A
possible concern is that this strategy may produce an extra amount
of IO workload since different threads may invoke IOs for an iden-
tical page. The next section experimentally demonstrates that the
benefit overcomes the concern; specifically speaking, the separated
buffer strategy improves the query performance.

3 Experiment

We experimentally verified the performance benefit of the sepa-
rated buffer strategy in comparison with the conventional shared
buffer strategy by using a multi-threaded database engine [4] with
a TPC-H dataset (scale factor: 100) [1]. We implemented four con-
figuration options: (1) separated buffer (SEP), (2) shared buffer with
a single giant lock (SHR-1), (3) shared buffer with 16 partitioned
locks (SHR-16) and (4) shared buffer with 512 partitioned locks
(SHR-512). In all cases, Generalized CLOCK [2] was utilized for
buffer replacement. Page size and buffer size were set to 16,384
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Figure 2: Separated buffer (SEP) achieves significant speedup (up to 637% faster with 44 threads) over shared buffer (SHR-1,
SHR-16 and SHR-512) on both NVMe flash (a-c) and Optane (d-f) machines for simplified Query 3 on TPC-H dataset.

bytes and 65,536 pages. Query execution was tested with one to
44 threads, each being assigned to a separate processor core. This
paper reports a result of the simplified Query 3 (three-way nested-
loop index join) as a representative case, since quite similar results
were observed for other queries.

We performed the test on two different machines: NVMe flash
was composed of two Intel Xeon E5-2699 processors (2.2 GHz, 22
cores), 256GB memory and ten Intel DC P3700 devices (800GB),
while Optane was composed of two Intel Xeon Gold 6152 proces-
sors (2.1 GHz, 22 cores), 256GB memory and ten Intel Optane DC
X4800 devices (375GB). Storage devices were striped without any
parities in both cases.

Figure 2 shows that the separated buffer strategy (SEP) achieves
significant speedup over the shared buffer strategy (SHR-1, SHR-16
and SHR-512) on both the NVMe flash and Optane machines. Fig-
ure 2(a) and (d) report query execution time. All the test cases (SEP,
SHR-1, SHR-16 and SHR-512) performed comparably for a single
thread, but separated buffer (SEP) gained more speedup over the
other as the multi-threading became more intensive. Finally, sep-
arated buffer performed up to 486% faster (reducing 82.9% of ex-
ecution time) on NVMe flash and 637% faster (reducing 86.4% of
execution time) on Optane with 44 threads. Figure 2(b) and (e) in-
dicate that this query speedup was caused by the intensive growth
of IO throughput. Separated buffer offered 1.41 million IOPS (95.9%
of the potential IO bandwidth) on NVMe flash and 1.47 million
TOPS (98.4% of the potential IO bandwidth) on Optane!), whereas
shared buffer only yielded 0.22 million IOPS on NVMe flash and
0.20 million IOPS on Optane at maximum. In contrast, Figure 2(c)
and (f) indicate that the side effect of separated buffer was rather
moderate; the extra IO amount was merely limited to 87% increase

! According to the micro-benchmark test, NVMe flash and Optane potentially held 1.46
and 1.50 million IOPS of IO bandwidth respectively.

at maximum. In summary, the experiment verifies that separated
buffer speeds up query execution over shared buffer substantially
(by 17.4% to 637%) by improving the IO throughput significantly.

4 Conclusion

This paper has proposed the employment of the separated buffer

strategy for database buffer management. With the separated buffer
strategy, the database buffer manager is allowed to achieve sig-

nificantly higher throughput than the conventional shared buffer

strategy, particularly in recent multi-core NVM storage environ-

ments, even though it may produce an extra amount of I0 work-

load. This paper has presented our experimental study with the

TPC-H dataset on two different NVM machines and demonstrated

that the separated buffer achieves up to 1.47 million IOPS and fi-

nally performs up to 637% faster in query processing than the shared
buffer. We plan to extend the study to explore lock-free techniques

that leverage the state-of-the-art processor capability and evaluate

other types of queries such as online transactions.
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