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Abstract—Large events with many attendees cause congestion
in the traffic network around the venue. To avoid accidents or
delays due to this kind of unexpected congestion, it is important to
predict the level of congestion in advance of the event. This study
aimed to forecast congestion triggered by large events. However,
historical congestion information alone is insufficient to forecast
congestion at large venues when non-recurrent events are held
there. To address this problem, we utilize microblog posts that
refer to future events as an indicator of event attendance. We
propose a regression model that is trained with microblog posts
and historical congestion information to accurately forecast con-
gestion at large venues. Experiments on next 24-hour congestion
forecasting using real-world traffic and Twitter data demonstrate
that our model reduces the prediction errors over those of the
baseline models (autoregressive and long short term memory) by
20% – 50%.

Index Terms—human mobility, microblogs

I. INTRODUCTION

Large events such as baseball games or concerts attract huge
crowds of people, causing congestion around their venues.
Such congestion has various negative impacts not only on
the event attendees themselves, but also on passers-by. For
example, if a train is more crowded than usual when it is
packed with people returning from a concert, passengers may
feel physically and mentally stressed, and the increased time
spent aboard the train results in economic losses. If tourists
are not informed in advance about congestion at sightseeing
spots, they may be dissatisfied with the trip if their plans are
disrupted by the congestion. In addition, congestion can even
cause fatal accidents. On 2014 New Year’s Eve celebration
event in Shanghai, the crowd became uncontrollable and 35
people died in a stampede [1].

Congestion prediction plays a key role in solving these
problems. For instance, if the time, place, and degree of
future congestion can be predicted, train passengers can take
a different line where trains are less crowded, and tourists
can make plans so that they can avoid congestion. Against
this background, previous studies [2], [3] have proposed
frameworks that utilize data collected from GPS-equipped
devices and predict congestion on the city scale. However,
the predictions of these methods are limited to a few hours in
advance because the longer the forecast horizon is, the greater
the effect of external factors (e.g., large events) becomes [4].

§Currently, he works for Mantra Inc.

Thus, the forecasting should be over a long enough period to
give people a time to take measures against congestion.

In this study, we tackle the problem of longer-term forecast-
ing of congestion. However, as we show later (Section III), it
is difficult to forecast congestion in the vicinity of venues
where non-recurrent events are held. To address this problem,
we focus on the fact that some microblog posts refer to future
events. Such posts are valuable for automatically extracting the
time, place, and type of the target events from the microblog
posts. For example, if there is a post that says “Protest in front
of the National Diet Building on April 14!”, we can infer from
it that a mass demonstration will take place in front of the
National Diet Building on April 14. Based on this idea, we
propose to predict congestion in the future from both historical
congestion information and microblog posts referring to future
events (Section IV). We demostrated the superiority of our
model relative to baseline models in experiments on real-world
traffic and Twitter data (Section V).

II. RELATED WORK

A. Congestion Prediction Using Location Data

Location data collected from GPS-equipped mobile phones
or cars are widely used as means of congestion prediction at
venues. Fan et al. [2] pointed out that the previous studies
on congestion prediction treated congestion triggered by large
events as outliers. To tackle this problem, they proposed an
online version of the Markov chain model trained with GPS-
based short-term human movement data to forecast city-scale
human movements during large events.

A more direct approach to forecasting future human move-
ments is to use query logs from transit or map apps. Konishi et
al. [5] utilized the route-search query logs from a transit app
and forecasted congestion in railway networks due to large
events such as fireworks. Liao et al. [3] proposed a deep
learning method based on the fact that the number of the
search queries for a venue on map apps increases just before
the event.

The existing methods directly associate these location data
with spatio-temporal points in a city. In contrast, our model can
combine these spatio-temporal data with the microblog posts
that are only weakly associated with venues, which does not
depend on specific services.



B. Event Extraction from Microblog Posts

Microblog services such as Twitter have been widely used as
social sensors for capturing information on real-world events.

Yamada et al. [6] extracted the local event information from
Twitter posts to help tourists make trip plans. They normalized
venue names to collect posts containing event information and
extracted the event name and duration from those posts. Jatowt
et al. [7] proposed a visual analytics framework for future and
past events based on time-referring expressions in microblog
posts.

Inspired by these studies, we utilize microblog posts that
contain both normalized venue names and time-referring ex-
pressions as an indicator of future attendance.

C. Congestion Estimation and Prediction Using Microblog
Posts

Some studies attempt to utilize microblog posts to estimate
or predict congestion in the real world.

Onishi and Nakashima [8] analyzed the mutual interaction
between congestion in the real world and the number of
microblog posts in the virtual world. They tried to explain
the mutual interaction between the congestion and the number
of microblog posts through the parameters of the model
trained with real-world data. However, their model is limited
to estimating the current congestion by using the number of
microblog posts and cannot be applied to future congestion
prediction, which we study in this paper.

He et al. [9] pointed out that there are posts that mention
traffic information and proposed a method to predict the
future traffic volume for longer periods. Their method utilizes
posts that are created within the target area of the prediction.
However, it is no longer available, as Twitter removed the
function of geotagging in 2019.1

To address this issue, we extend these approaches and pro-
pose a general method that does not depend on the geotagging
function.

III. PRELIMINARY EXPERIMENT

As we describe in Section II, using historical congestion
information is a typical approach to congestion prediction. In
this section, we show that forecasts based on this information
alone are far from satisfactory, especially at venues.

A. Dataset

We used “Konzatsu-Tokei ®” Data2. It consists of estimated
numbers of people in square (250 m × 250 m) grids of Japan
that were aggregated every hour from Sep. 2015 until Nov.
2018. We used the last three months of data for testing and

1https://twitter.com/TwitterSupport/status/1141039841993355264
2“Konzatsu-Tokei ®” Data consists of people flow data collected by

individual location data sent from mobile phones, given the users’ consent,
through applications* provided by NTT DOCOMO, INC. The data are
processed collectively and statistically in order to conceal private information.
The original location data are GPS data (latitude and longitude) sent in about
every a minimum period of 5 minutes and do not include enough information
to identify individuals. * Applications such as “docomo map navi” service
(map navi / local guide).

Fig. 1. Prediction errors for the 1,500 most crowded grids in Tokyo. Grids
with higher WAPEs are shown in red and those with lower WAPEs are in
blue.
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the remaining for training. We focused on the 1,500 most
crowded grids in Tokyo as of Aug. 2018. Those grids contain
large venues such as baseball stadiums and concert halls, and
transportation hubs such as main terminals and arterial roads.

B. Prediction Method

We trained an autoregressive (AR) model for each grid.
It makes a prediction X̂t for a time step t by lin-
ear regression using actual values over the last week
{Xt−24×7, Xt−24×7+1, · · · , Xt−1}. In the rest of this paper,
the time interval is set to 60 minutes.

C. Evaluation Metric

To make the results of different grids comparable, we use
the weighted absolute percentage error (WAPE):

WAPE =
1

N

N∑
t

|X̂t −Xt

X̃
| , (1)

where Xt and X̂t are respectively the actual and predicted
values at a time step t, N is the total number of time steps
evaluated, and X̃ is the average of the actual values.

D. Prediction Results and Discussion

The prediction results are shown in Fig. 1, where grids
with higher WAPEs (i.e., difficult to predict) are shown in
red and those with lower WAPEs (i.e., easy to predict) are
in blue. The grids with lower WAPEs are distributed around
main terminals such as Tokyo Station and Shinjuku Station.
On the other hand, the grids with higher WAPEs are distributed
around large venues such as Tokyo Dome and Jingu Baseball
Stadium.

To further investigate the prediction error variance, we
focused on the two grids that contain Shinjuku Station and
Tokyo Dome. Fig. 2 shows the actual and predicted time
series of each of the two grids for the week from Sep. 16,
2018. A recurrent pattern during commuting hours is observed
at Shinjuku Station. The AR model captured this pattern,
resulting in high performance. However, at Tokyo Dome,
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Fig. 2. Predicted and actual number of people within two grids in Tokyo for a week from Sep. 16, 2018.
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Fig. 3. Overview of our model.

congestion irregularly occurs due to the events held there. The
AR model failed to adapt to these surges, resulting in poor
performance. The causes of the surges were baseball games
held at Tokyo Dome on Sep. 16, 17, and 19.

IV. PROPOSED METHOD

As we showed in the previous section, historical congestion
information alone is insufficient to forecast congestion in the
vicinity of large venues. This is because the model is not aware
of the days when events with many attendees (e.g., baseball
games and concerts) are held.

A simple solution to this problem is to use the event
schedules published by venue managers or event organizers.
However, the number of venues for which official schedules
are published is limited. To make predictions for various types
of venues and events, it is desirable to be able to automatically
collect information about future events without relying on such
schedules.

In this study, we focus on the fact that information about
future events is posted on microblogs. To be specific, we

propose a method that utilizes heterogeneous data consisting
of microblog posts about events and historical congestion
information on venues. Fig. 3 shows an overview of our model.
In what follows, we explain each component of our model.

A. Microblog Posts as an Event Indicator

As an indicator of future congestion at large venues, we
utilize microblog posts that contain time-referring expressions
and a venue name. We consider that a post which is useful for
predicting congestion on a future date d at a venue v should
meet all of the following conditions:

• It contains a time-referring expression to d
• It contains the venue name v
• It was created before d

We eliminate duplicates (e.g., auto-generated posts by bots)
from these posts. Then, we concatenate the unique posts into
a single document and use the bag-of-words representation of
it. The bag-of-words representation can handle any number
of posts and it is invariant to the permutation of posts. This
property is suited to this task because the numbers of posts



TABLE I
DESCRIPTION OF VENUES.

Type Venue Capacity

Sports venue

Nissan Stadium 72,327
Tokyo Dome 55,000
Ajinomoto Stadium 50,000
Jingu Baseball Stadium 35,133
Yokohama Stadium 30,000
Chichibunomiya Rugby Field 24,871

Concert hall
Pacifico Yokohama 18,000
Yokohama Arena 17,000
Nippon Budokan 14,471

are different for each target day and the order of input posts
are not related to the crowd size on the target day.

B. Hourly Prediction by Microblog Posts and Historical Con-
gestion Information

To capture the short-term trend in the time series, we
simply concatenate the bag-of-words vector with hourly data
on the number of people for 24 × n time steps and feed
the concatenated vector into a regression model. Here, n is a
hyperparameter that determines the number of days for which
the historical time series is used.

Our model makes a prediction by regression for each
hour, taking as input the concatenated bag-of-words and time-
series vector, and outputting the number of people at the
corresponding hour. We use the gradient boosting regression
(GBR) model [10]. GBR is based on the theory of gradient
boosting learning, which is a kind of ensemble method. It
is used with decision trees as weak learners. An advantage
of GBR is that it can handle mixed-type data. We set the
hyperparameters of GBR to the default values of scikit-learn’s
implementation [11].

V. EXPERIMENT

We examined the effectiveness of our model in experiments
with real-world data. Our experiments were designed to an-
swer the following questions:
Q1 Can our model identify event days? (Section V-B)
Q2 How accurately can our model forecast the crowd size in

different settings? (Section V-C)
Q3 What are the important features? (Section V-D)

A. Experimental Settings

Dataset. Our dataset consisted of spatio-temporal popula-
tion data and microblog posting data.

For the spatio-temporal population data, we used “Konzatsu-
Tokei ®” Data, which is described in Section III, collected
from Dec. 2014 to Nov. 2018. We used the last 12 months for
testing (Dec. 2017 – Nov. 2018) and the remaining for training
(Dec. 2014 – Nov. 2017). As shown in Table I, we chose nine
venues in Tokyo and Kanagawa, Japan, from two different
event categories (i.e., sports venues and concert halls). These
were the nine largest venues by capacity as of Dec. 2014.
For each venue, we chose a grid that covers the venue and

TABLE II
EVENT THRESHOLD (MEDIAN OF DAILY PEAK CROWD SIZES PLUS 5,000)

AND NUMBER OF EVENT DAYS IN TEST DATA
DETERMINED BY THE THRESHOLD.

Venue Threshold # event days
Nissan Stadium 6,161.5 10
Tokyo Dome 19,308.0 174
Ajinomoto Stadium 5,612.0 35
Jingu Baseball Stadium 7,379.5 103
Yokohama Stadium 9,448.5 80
Chichibunomiya Rugby Field 8,839.0 19
Pacifico Yokohama 11,649.5 50
Yokohama Arena 10,060.0 43
Nippon Budokan 8,226.0 67

“Konzatsu-Tokei ®” ©ZENRIN DataCom CO., LTD.

considered the number of people in the grid as the crowd
size around the venue. To capture the weekly patterns of the
historical time series, the hyperparameter n (Section IV-B)
was set to n = 7, unless otherwise mentioned. There are cyclic
trends in the time series data. They result from daily or weekly
commuting and interfere with the crowd-size prediction. Thus,
it is important to remove these trends from the time-series data
analysis [12]. We removed them from both the input and target
time series data by simply subtracting the historical averages
for each hour of the day.

For the microblog posting data, we used posts that were
extracted from our Twitter archive. Our archive has been
maintained since Mar. 2011 by continuously crawling with the
Twitter API. It consists of timelines from about 2.5 million
public users. Our crawling started with 30 famous Japanese
users, and the set of users has been repeatedly extended by
following retweets and mentions in their timelines. To expand
the coverage of event-related posts meeting the matching con-
ditions (Section IV-A), we created a dictionary of synonyms
that maps variants of venue names to a formal name using
Wikipedia’s redirect data. After tokenizing the matched posts
by MeCab [13] and removing stop words, we used the 5,000
most frequent words to obtain the bag-of-words vector.

Baselines. We compared our method with two baselines:
AR (same as in our preliminary experiment in Section III)
and long short term memory (LSTM) [14]. For LSTM, we
followed the default hyperparameters of PyTorch’s implemen-
tation [15]. Note that these baselines did not use the microblog
posts. They predicted the crowd size for the next 24 hours in
an autoregressive manner (taking the previous output as input).

Evaluation Metrics. We evaluated the effectiveness of our
model in two scenarios: a coarse-grained one and a fine-
grained one.

The coarse-grained evaluation determined whether a given
model can identify event days. As mentioned in Section IV,
however, the official event schedule is not always available for
many venues. Thus, we predefined a threshold for each venue
and regarded the date as an event day if the peak crowd size
exceeded the threshold and a non-event day otherwise. The
threshold was defined as m+5000, where m is the median of
the daily peaks of the crowd sizes in the training data. Table II



TABLE III
PERFORMANCE (PRECISION AND RECALL) OF EVENT-DAY DETECTION.

AR LSTM Ours
Venue Precision Recall Precision Recall Precision Recall
Nissan Stadium 0.00 0.00 0.00 0.00 0.73 0.80
Tokyo Dome 0.67 0.61 0.80 0.38 0.86 0.91
Ajinomoto Stadium 0.00 0.00 1.00 0.03 0.96 0.71
Jingu Baseball Stadium 0.61 0.48 0.73 0.21 0.75 0.86
Yokohama Stadium 0.65 0.51 0.87 0.16 0.90 0.91
Chichibunomiya Rugby Field 0.00 0.00 0.00 0.00 0.82 0.47
Pacifico Yokohama 0.59 0.26 0.54 0.14 0.70 0.60
Yokohama Arena 0.75 0.14 0.00 0.00 0.55 0.40
Nippon Budokan 0.62 0.12 0.67 0.03 0.56 0.37
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TABLE IV
PERFORMANCE (PRECISION AND RECALL) OF NON-EVENT-DAY DETECTION.

AR LSTM Ours
Venue Precision Recall Precision Recall Precision Recall
Nissan Stadium 0.97 1.00 0.97 1.00 0.99 0.99
Tokyo Dome 0.67 0.72 0.62 0.91 0.91 0.87
Ajinomoto Stadium 0.90 1.00 0.91 1.00 0.97 1.00
Jingu Baseball Stadium 0.81 0.88 0.76 0.97 0.94 0.89
Yokohama Stadium 0.87 0.92 0.81 0.99 0.98 0.97
Chichibunomiya Rugby Field 0.95 1.00 0.95 1.00 0.97 0.99
Pacifico Yokohama 0.89 0.97 0.88 0.98 0.94 0.96
Yokohama Arena 0.90 0.99 0.88 1.00 0.92 0.96
Nippon Budokan 0.83 0.98 0.82 1.00 0.87 0.93

“Konzatsu-Tokei ®” ©ZENRIN DataCom CO., LTD.

shows the threshold and the number of event days in the test
data for each venue. Based on this criterion, we evaluated
the results with precision and recall as a binary classification
problem.

The fine-grained evaluation assessed the degree of predicted
congestion. For this scenario, we used the mean absolute error
(MAE):

MAE =
1

N

N∑
t

|X̂t −Xt| , (2)

where Xt and X̂t are respectively the actual and predicted
value at a time step t, and N is the total number of time steps
evaluated.

B. Q1: Event-or-Not Prediction

First, we report the results of the coarse-grained evaluation.
Table III shows the performance of event-day detection of each
method, where the event days are considered to be positive
examples. The recall values of the AR model and the LSTM
model were nearly zero for many venues. This implies that
they failed to predict the presence of almost all of the events.
As well, the precision and recall values of the AR / LSTM
model were zero for some venues. These uncommon low
values are partly explained by the small numbers of event
days at these venues (Table II). Since few events took place at
these venues, the input time series of the last week was likely
to be a sequence of days when few people gathered and it did
not contain any useful clues to forecast the time series on the

event days. In contrast, our model consistently achieved much
higher performance. By utilizing microblog posts referring to
future events as an additional clue, our model successfully
distinguished event days from non-event days.

Comparing the results for the different types of venues, it
can be seen that our model achieved higher performance on
baseball stadiums, namely Tokyo Dome, Jingu Baseball Sta-
dium, and Yokohama Stadium, while it had lower performance
on concert halls like Yokohama Arena and Nippon Budokan.
A possible reason for this difference is that different types of
events are held at each venue. For example, baseball games are
predominantly held at baseball stadiums. The microblog posts
that refer to the games typically contain characteristic words,
such as the team name whose home stadium is the target
venue. This led to our method having higher performance at
sports venues. At concert halls, however, the posts that refer
to concerts contain various proper nouns, such as performer
names. Consequently, our model had poorer performance on
concert halls. Later, we will present our feature importance
analysis, whose results support this explanation.

To confirm that our model could predict the crowd size on
non-event days that composed the majority of the test data, we
report evaluation results focusing on non-event days. Table IV
shows the detection performance of non-event days of each
method, where the non-event days are considered to be positive
examples. Our model again had high performance for most
venues. This shows its practicality.
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C. Q2: Crowd Size Prediction

Next, we report the fine-grained results. Fig. 4 shows
prediction performance for crowd size measured on all of the
test data. Our model had lower errors than the baselines did
for all venues. The improvement was larger for sports venues
than concert halls, which is consistent with the event-or-not
classification experiment reported in Section V-B.

To further investigate the ability of our model, we conducted
the same prediction task under different settings.

Length of Historical Congestion Information. In this
experiment, we changed the value of the hyperparameter n
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(Section IV-B), i.e., the number of days for which the historical
time series was used. Fig. 5 shows the result for n = 1. By
comparing this result with the result for n = 7 (Fig. 4), we
can see that the model performed slightly better when the last
seven days of the time series vector was fed to it.

Event Day and Non-Event Day. Since most of the test
data consisted of non-event days, the evaluation on the whole
test data leads to an underestimation of errors. Therefore, we
evaluated the prediction performance on event days (Fig. 6)
and non-event days (Fig. 7) separately. Although it was more
challenging to predict the crowd size during event days, our
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model again outperformed the baseline models for all venues.
The difference was smaller on non-event days. Nevertheless,
our method performed the best on all except one venue.

Forecast Horizon. To test if our model can predict con-
gestion for longer forecast horizons, we changed the amount
of available information prior to prediction. Fig. 9 shows the
results for different forecast horizons. For the d-day ahead
prediction, only the posts that were posted d or more days

before the target day were used. Similarly, only the historical
time series d or more days before the target day was used.

For all venues, the longer forecast horizon resulted in a
higher error. In particular, the gap between one-day and two-
day ahead prediction was the largest. This suggests that the
important posts that provide clues to future events tend to be
posted on the eve of the events. Another possibility is that
the one-day-ahead prediction setting was able to leverage the
historical time series to identify the increase in the number of
people gathering at the venue on the eve of the event while
the earlier prediction settings could not do so.

Number of Posts. To check if the number of posts has
an impact on prediction performance, we randomly sampled
posts in the training and test data at a constant rate and trained
the model with the sampled data. Fig. 8 shows MAE with
the reduced number of posts. The experiment where 100% of
the posts were used is the same as the experiment shown in
Fig. 6. When 0% of the posts were used, only the historical
time series vector was fed to the model. Conversely, “Only
posts” indicates when only the bag-of-words vector was fed
to the model.

It can be seen from the table that the more posts there were,
the lower the errors became. The errors were highest when the
posts were not used at all, suggesting that the microblog posts
contain information that is useful for crowd-size prediction.
Another interesting observation is that the “100%” condition
performed better than the “Only posts” condition for most
venues. The results presented here demonstrate that historical
congestion information and event-related posts have comple-
mentary roles in the future congestion prediction. Therefore,
our idea of using these two types of information is promising.



TABLE V
TEN MOST IMPORTANT FEATURES FOR FIVE PREDICTION TIME SLOTS AT TOKYO DOME

([h @ d DAY(S) AGO] REPRESENTS THE CROWD SIZE OF THE VENUE d DAY(S) AGO AT h). NOTE THAT THESE FEATURES ARE TRANSLATED.

12 PM 2 PM 4 PM 6 PM 8 PM
14 14 14 Tokyo Dome 18
[10 AM @ 1 day ago] kyojin 18 18 Giants
[3 PM @ 1 day ago] 18 probable pitcher Giants Tokyo Dome
[11 AM @ 1 day ago] Giants Giants winning 14
day probable pitcher kyojin Paul McCartney ticket
hometown [11 AM @ 1 day ago] [4 PM @ 1 day ago] seat Paul McCartney
[8 PM @ 1 day ago] [4 PM @ 1 day ago] Tokyo Dome tomorrow Pasela
kyojin [10 AM @ 1 day ago] [10 AM @ 1 day ago] 14 [8 PM @ 2 days ago]
[11 AM @ 2 days ago] [8 PM @ 1 day ago] tomorrow exchange winning
schedule [2 PM @ 1 day ago] [8 PM @ 1 day ago] kinki Southern All Stars
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TABLE VI
TEN MOST IMPORTANT FEATURES FOR FIVE PREDICTION TIME SLOTS AT NIPPON BUDOKAN

([h @ d DAY(S) AGO] REPRESENTS THE CROWD SIZE OF THE VENUE d DAY(S) AGO AT h). NOTE THAT THESE FEATURES ARE TRANSLATED.

12 PM 2 PM 4 PM 6 PM 8 PM
[12 PM @ 1 day ago] JSDF Marching Festival Seiko Matsuda ticket [8 PM @ 1 day ago]
August 15 [1 PM @ 1 day ago] [8 PM @ 3 days ago] those who ticket
[1 PM @ 1 day ago] [12 PM @ 1 day ago] [5 PM @ 1 day ago] seat [7 PM @ 6 days ago]
akb48 full of Wakayama [8 PM @ 1 day ago] piece
All Japan Championship tournament [6 PM @ 1 day ago] gate [8 PM @ 6 days ago]
[10 AM @ 1 day ago] Taemin those who [8 PM @ 6 days ago] seat
[7 AM @ 3 days ago] [12 PM @ 3 days ago] very alfee eric
tournament stage hall July 9 book
[11 AM @ 2 days ago] Seiko Matsuda [7 AM @ 4 days ago] concert [8 AM @ 4 days ago]
[11 AM @ 1 day ago] All Japan Championship concert [7 PM @ 1 day ago] adjustment
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D. Q3: Feature Importance

Finally, we report features useful for predicting future
congestion around venues. Our model (GBR) is based on a
decision tree, and thus, the importance of each feature can be
computed [16]. Thus, for each hour, we analyzed words in the
microblog posts or slots of the historical time series that were
significant for predicting the crowd size at that hour. Tables V
and VI show the ten most important features for five prediction
time slots at Tokyo Dome and Nippon Budokan, respectively.

At Tokyo Dome, the word “Giants” (a professional baseball
team whose home stadium is Tokyo Dome) ranks high for
most hours. This word characterizes the baseball games, which
compose the majority of events held there. The words “14”
and “18” are important for hours from 12 p.m. to 6 p.m.
These words represent the start time (e.g., “The game starts
at 18:00...”) of baseball games or concerts.

At Nippon Budokan, the sports-related phrases “All Japan
Championship” and “tournament” rank high for the early
hours. These sports tournaments usually start in the morning.
Thus, our model focuses on these words to identify the event
type and the start time. For the late hours, concert-related
words, “concert”, “ticket”, and “seat”, rank high. These words
are used to identify concerts. However, specific performer
names (in analogy with the word “Giants” at Tokyo Dome)
do not rank high for the late hours, which means our model
did not focus on such words for concert halls. This is because
there are numerous performers and it is rare that a performer
repeatedly holds concerts at the same venue.

This analysis partly explains why the prediction errors at
concert halls were higher than those at baseball stadiums.

VI. CONCLUSION

We tackled the problem of forecasting congestion around
large venues. First, we showed that historical congestion infor-
mation alone is insufficient for forecasting, as it cannot capture
the surge of people caused by non-recurrent events. To find
clues about events, we leveraged microblog posts mentioning
the target venues and the target days as additional features
for training a congestion prediction model. Experimental re-
sults on real-world traffic and Twitter data demonstrated the
superiority of our model over the baseline models.

The experiments showed that, our model had lower perfor-
mance when few posts referred to the future events. Thus,
in the future, we will consider using knowledge acquired
from the venues mentioned in many posts to improve the
prediction of crowd sizes at venues mentioned in few posts.
There is still room for improvement of the matching conditions
(Section IV-A). Some of the posts that meet these conditions
may be noisy. For example, a post that says “The DVD of our
Tokyo Dome concert will be released tomorrow!” meets these
conditions, but it does not suggest any information about the
size of the crowd at Tokyo Dome tomorrow. On the other hand,
posts that do not meet these conditions can also be useful.
Additionally, we plan to devise a sophisticated method of data
fusion to pick up important information from noisy posts and
apply our model to more venues of various event types.
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[7] A. Jatowt, É. Antoine, Y. Kawai, and T. Akiyama, “Mapping temporal
horizons: Analysis of collective future and past related attention in
Twitter,” in Proceedings of the 24th International Conference on World
Wide Web, pp. 484–494, IW3C2, 2015.

[8] M. Onishi and S. Nakashima, “Mutual interaction model between the
number of people in real space and the number of tweets in virtual
space,” in Proceedings of the 23rd International Conference on Pattern
Recognition, pp. 2073–2078, IEEE Computer Society, 2016.

[9] J. He, W. Shen, P. Divakaruni, L. Wynter, and R. Lawrence, “Improving
traffic prediction with tweet semantics,” in Proceedings of the 23rd
International Joint Conference on Artificial Intelligence, pp. 1387–1393,
AAAI Press, 2013.

[10] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, 2001.

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and Édouard
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