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Abstract—How can recommender systems help people improve
their skills? As a first step toward recommendation for the
upskilling of users, this paper addresses the problems of modeling
the improvement of user skills and the difficulty of items in
action sequences where users select items at different times. We
propose a progression model that uses latent variables to learn the
monotonically non-decreasing progression of user skills. Once this
model is trained with the given sequence data, we leverage it to
find a statistical solution to the item difficulty estimation problem,
where we assume that users usually select items within their skill
capacity. Experiments on five datasets (four from real domains,
and one generated synthetically) revealed that (1) our model
successfully captured the progression of domain-dependent skills;
(2) multi-faceted item features helped to learn better models that
aligned well with the ground-truth skill and difficulty levels in
the synthetic dataset; (3) the learned models were practically
useful to predict items and ratings in action sequences; and (4)
exploiting the dependency structure of our skill model for parallel
computation made the training process more efficient.

I. INTRODUCTION

Everyone is inexperienced at first. A person’s experience or
skill in a particular domain improves over time as they take
actions such as repeated practices and exposure to many items.
For example, a language learner would need to read/write
short, simple texts to get familiar with the target language
before he/she can read/write longer, more complicated texts.
A person learning cooking, as another example, would first
cook a simple dish. After mastering basic cooking skills,
he/she could try more elaborate dishes requiring more steps,
a longer time, and special kitchenware and/or ingredients.
The skill improvement in user actions occurs in many other,
if not all, real-world domains, including playing musical in-
struments, tasting sophisticated beers/wines, and appreciating
classic/complicated movies.

How can we help people improve their skills? As an
answer to this question, we envision a recommender system for
upskilling users. Such a system would estimate the skill of a
target user and recommend to him/her an item with appropriate
difficulty for upskilling. There are three main challenges to
overcome in achieving this goal. First, we need to estimate the
user’s current skill level: what may indicate this? Second, we
need to know the difficulty of each item: what makes an item
difficult? Third, we need to find items suitable for upskilling
the user: how can we personalize the recommendation in
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Fig. 1: Two problems we address in achieving recommendation for
upskilling: modeling skill improvement and item difficulty.
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terms of what, when, and how to present him/her? In this
work, we focus on the first two challenges and leave the
third for future research. Considerable effort has been devoted
to developing sophisticated recommender systems that take
into account many concepts (e.g., interest [1], freshness [2],
serendipity [3], popularity [4], and explainability [5]). As
upskilling is complementary to these concepts, we believe that
the knowledge we derive on user skills and item difficulty has
a great potential to provide a new perspective on information
recommendation.

Given action sequences in which users select items at
different times (e.g., user histories of dishes cooked in the
past), we address the problems of modeling user skills (and
their improvement over time) and item difficulty as illustrated
in Figure 1. For the first problem, we use a progression model
to learn the monotonically non-decreasing dynamics of user
skills. Unlike the existing model [6], which relies solely on
item IDs, we utilize multi-faceted features shared by items
for making our model robust against rare items. To solve the
second problem, we assume that users usually, if not always,
select items within their skill capacity (e.g., skilled people
cook both easy and difficult dishes while novices typically
cook the former). Under this assumption, we use the learned
skill model to estimate the difficulty of each item as the degree
of skill of typical users who select it.

We conducted experiments using five datasets, of which
four were from real domains (language learning, cooking,
beer tasting, and movie watching) while one was generated
synthetically. The main findings from our experiments are the
following: (1) our model successfully captured the progression
of domain-dependent skills; (2) multi-faceted item features
helped to learn better models that aligned well with the
ground-truth skill and difficulty levels in the synthetic dataset;
(3) the learned models were practically useful to predict



item selections and user ratings in action sequences; and (4)

exploiting the dependency structure of our skill model for

parallel computation made the training process more efficient.
In summary, this work makes the following contributions:

o Formalizing skill improvement and item difficulty as core
problems to address as a first step toward recommendation
for upskilling, which can provide a new perspective on
information recommendation;

« Utilizing multi-faceted item features to develop a skill model
that is robust against sparse data, and using the learned
model to estimate the difficulty of items with the same scale;

o Conducting qualitative and quantitative experiments with
five datasets, which demonstrated the interpretability of our
skill model, the accuracy of estimated skill and difficulty
levels, the usefulness of our models for practical recommen-
dation tasks, and the efficiency of our training algorithm.

II. RELATED WORK

Sequence modeling. Temporal dynamics has been stud-
ied as a key factor for modeling sequence data. This line
of research can be roughly divided into two main classes:
changes in a whole community (e.g., fashion trends [7]) and in
individuals (e.g., acquired tastes [8], disease progression [9]),
of which the latter is relevant to this work as described below.

Progression modeling [6], [8], [10] aims at inferring the
dynamics of invisible states that affect observable outcomes.
As the skill improvement and disease progression problems
have things in common (e.g., the monotonicity of user skills
and disease stages, the sequentiality of item selections and
disease treatments), we adopt this approach in this work.
McAuley and Leskovec [8] developed a model that consists
of multiple recommender systems conditioned on latent vari-
ables representing users’ experience levels. Their model has a
limitation of only being applicable to sequence data with user
ratings (e.g., review scores). Yang et al. [6] proposed a more
general model that can work for sequence data without the
rating information. Their model can be viewed as an extension
of hidden Markov models in that it requires state transitions to
satisfy a monotonicity constraint. We take Yang et al.’s model
as a basis for learning the improvement of user skill. As their
model describes a generative process for each item represented
as a distinct categorical value (i.e., ID), its learning does not
work well for domains with many rare items. To deal with this
issue, we utilize the multi-faceted features shared by items.

Sequential recommendation [11], [12] models the ordering
patterns of action sequences by using Markov chains, neural
networks, efc. Despite its similarity with our goal, sequential
recommendation focuses on predicting items that a user will
select next. We instead focus on quantifying the time-varying
skill of users and the difficulty of items. While beyond the
scope of the present work, fusing these complementary studies
has a potential to recommend items that both interest users and
improve their skills with convincing reasons (Figure 1).

Experience, expertise, and skill. The three terms, experi-
ence, expertise, and skill, have been used in the literature to

refer to similar concepts on people’s ability and knowledge
(see Section III for our definition of skill).

In the human computation field, the skill (or ability) es-
timation [13], [14] is essential in improving the quality of
crowdsourcing. Thus, it has been studied intensively with the
following assumptions: (1) each worker has a fixed skill level
per domain; and (2) a task response (e.g., an answer to a
task question) is obtained from each user (or each team [14]).
Similarly, knowledge tracing [15], [16], which models the
knowledge of students interacting with exercises, has also
been studied for years in the education field. This problem
takes as input whether students correctly answered exercises
in the past. While the problems above seem similar to ours,
we consider a complementary situation where (1) the skill of
each user can improve over time and (2) each action consists
of a triple of the time, user, and item (i.e., no user response).

In the information retrieval field, two types of user expertise
have received great attention: search expertise (i.e., familiarity
with search systems) and domain expertise (i.e., knowledge on
search domains). For both types, the past studies based on log
analysis [17], [18] revealed a behavioral difference between
experts and non-experts. Building on this finding, we let our
skill improvement model have distinct parameters for each
skill level, so that it can capture the difference in item selection
behavior between skilled and unskilled users.

Difficulty. The difficulty of items is a research subject of
particular importance for educational and learning purposes.
Much effort has been devoted to this topic, including instruc-
tional design [19], text simplification [20], and personalization
by reading level [21]. As item difficulty is closely related
to user skill, these two concepts have often been jointly
modeled [22], [23]. Following those studies, we estimate the
difficulty of items by leveraging our skill model learned from
action sequences, under the assumption that more skilled users
can select more difficult items.

Recently, search as learning [24] has drawn great attention
in the information retrieval field [25]. Syed et al. [26] devel-
oped an algorithm to optimize a ranking of search results for
human learning by considering the document difficulty. While
their focus is textual documents, a successful model for item
difficulty in various action sequences has a potential to provide
searchers with a ranking of other types of items (e.g., cooking
recipes, movies, and music pieces) such that the difficulty and
ordering are optimal for them to improve their ability and/or
knowledge with minimum effort.

III. PROBLEM DEFINITION

Let U be a set of users. In this work, we consider a situation
where each user u € U takes a sequence of actions, A,, in a
given domain. The length of the action sequence can vary
among users. For example, an experienced user may have
taken many actions in the past, while a beginner may have
a short action sequence. Each action a € A, is denoted by a
triplet (¢, u, ), where ¢ is the time when u takes a, and 7 is the
item selected or used in a. While other types of actions, such as
modification and deletion, may also exist in some domains, we



leave them for future work to simplify our problem settings.
Without loss of generality, we assume that the actions in
each user’s sequence are sorted in chronological order. The
items depend on the actions domain. Examples of items
include recipes that cooks use, movies that critics watch and
write about, music pieces that musicians play, and educational
materials that students practice with. We denote a set of items
as 7 and assume that each item ¢ € 7 is represented by a tuple
of F' multi-faceted features: ¢ = (i1,...,ir). As examples of
features, a recipe may have ingredients, steps, efc., while a
movie may have a genre, directors, actors, efc. Given a set of
user action sequences A = J,, o, Au, We study two problems
in this work, as described below.

A. Skill Improvement

The first problem is to model the development of user skills.
Before describing this problem formally, we give a definition
of skill similar to the existing definition of experience [8]:

Definition 1. Skill is some quality of the ability and/or
knowledge a user gains over time through his/her actions.
For example, English learners gain speaking ability by at-
tending an English conversation class, and graduate students
gain research knowledge by reading papers relevant to their
fields. Following this definition, we represent the level of
skill with a positive integer whose range is S = {1,...,5},
where a higher skill level indicates a more skilled user. While
the integer-based skill representation facilitates the result in-
terpretation and moderates the computational cost, the skill
improvement at a high level of granularity can be modeled by
increasing the number of skill levels.

Formally speaking, the first problem that we study is to
determine the skill level s,,; of a user u at each time ¢ when u
takes an action a = (¢, u,4). As with the existing approach of
progression modeling [6], [8], [10], we assume that user skill
progresses monotonically: the skill level of each user remains
the same or increases as time passes. This places the following
constraint on the skill improvement problem:

t<t = su <suw (Vu,t,t'). (1)
In addition, we must address two more requirements, as
illustrated in Figure 1. First, users may not experience all
skill levels. Some users may have the highest skill level at
their first actions observed in given sequence data. It is also
possible that some users may not reach the highest skill level
no matter how many actions they take. Second, the speed of
skill improvement is user dependent. While some users may
take many actions to increment their skill by one level, others
may progress more quickly. These requirements suggest that a
naive solution that segments each user sequence into .S groups
of equal length to assign the skill level s € S to all actions in
the s-th group would not work well.

B. Item Difficulty

The second problem is to model the difficulty of each item
appearing in action sequences. Following Definition 1, we
intuitively define item difficulty as follows:

Definition 2. Difficulty is the degree of skill required for a
user to take satisfactory actions with an item.
The interpretation of satisfaction depends on the domain. In
the film domain, casual fans without much experience or
knowledge may not be able to fully appreciate cinematic
masterpieces. In the cooking domain, only those with enough
ability may succeed in cooking elaborate dishes. According
to this definition, we represent the difficulty level with a real
number whose range is [1,.5], where a higher level indicates
a more difficult item. This representation makes it easier to
compare users and items by using the same scale. For example,
we can say that items with the difficulty level S are suitable
only for users with the highest skill level, while items with the
lowest difficulty level can be handled by users with any skill
level. Representing difficulty levels with higher precision than
skill levels enables us to recommend items whose difficulty is
moderately challenging for users (e.g., d; = 3.1 for 5.+ = 3).

We formalize the second problem that we study as determin-
ing the difficulty level d; of each item ¢ € Z. Note that while
some items occur many times in action sequences, others are
infrequent. Thus, estimating the difficulty of such rare items
is a challenge in this problem.

IV. SKILL IMPROVEMENT

To learn the improvement of user skills, we introduce a
statistical model with latent variables. These variables are
intended to capture the underlying skill levels of users at
different times. Our model describes how action sequences
are generated through the latent progression of user skills. As
mentioned in Section II, our model builds on Yang et al.’s
one [6], but we utilize multi-faceted item features to improve
robustness against data sparsity.

A. Formulation

Given a skill level s,,; € S for a user v at a time ¢, our model
uses the following joint probability distribution to describe
the generative process of u’s action a for selecting an item
i=(i1,...,ip) at t:

F
a = (t>u7i) NP(Z.‘SUt) :Hf71 Pf(if |9f(8ut))7 2
where Py(if | 04(s)) is a probability distribution with a
parameter 6¢(s). This distribution models the likelihood that
the f-th feature iy of the item ¢ is common among the actions
taken by users with the skill level s. As the parameter value
can vary across different skill levels, this modeling enables
us to capture commonalities within the same skill level and
discrepancies between different levels. To make the parameter
estimation tractable, we assume in the generation process
above that each feature i; of the item 4 is independent and
identically distributed (iid) given the skill level s,;.

As different domains have different types of items, the
selection of probability distributions to model the generative
process of item features is domain dependent. Categorical
distributions can be used for features that have categorical
values (e.g., ingredients in a recipe). Features having natural
numbers (e.g., the number of steps in a recipe) can be modeled
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Fig. 2: To find skill assignments, we apply dynamic programming to
action-skill graph, subject to skill monotonicity constraint.

with Poisson distributions. For positive, real-valued features,
we can use gamma or log-normal distributions. Section VI-A
reports the actual distributions that we used in our experiments.

As mentioned in Section III-A, the skill level of each user «
is constrained to be monotonically non-decreasing with respect
to time. In this work, we consider two possibilities for the
skill progression between u’s two successive actions a,; and
aqyy: (1) maintaining the same level (i.e., sy = Syt), and (2)
moving up one level (i.e., Sy = Sy + 1) when s, < S. The
assumptions described above follow the base model [6], and
we demonstrate in Section VI that our model based on these
assumptions yields reasonable experimental results. While we
only consider the step-by-step skill improvement here for
simplicity, our model is flexible enough to incorporate more
complex progressions (e.g., skipping some levels) by introduc-
ing a probabilistic distribution for skill transitions [10].

B. Training

Objective function. Given a set of (iid) action sequences,
A, and the number of skill levels, .S, our objective is to assign
a skill level to each user action. (We describe how to determine
S for each domain in Section VI-B.) To this end, we fit our
model to given sequence data by maximizing the following log
likelihood function, subject to the skill monotonicity constraint
(Section III-A):

F
L(©,%) = logP(ilsu) =Y _ > log Ps(if|0f(sur)),

(t,u,i)€A (tyu,i)€A f=1
€)]

where © = {0(s) | f € {1,...,F} As € S} is a set of
model parameters, and 3 = {sy¢ | (t,u,i) € A} is a set of
skill assignments.

Jointly optimizing © and ¥ is impractical because of the
complexity of the objective function. A workaround is using
the EM algorithm to alternately optimize each variable. EM
takes too long to complete, however, for this kind of prob-
lems [6], as it computes soft assignments for latent variables.
To make the model training efficient, we instead follow Yang
et al.’s hard assignment approach, which was reported to run
1,000 times faster than EM with comparable fitting quality [6].

To train our model, we first initialize the model parame-
ters with reasonable values. Then, we alternate the steps of
finding the assignments of skill levels and updating the model
parameters until convergence. Each step is described below.

Finding skill assignments. This step finds a set of skill
assignments, ¥, that maximizes the objective function £(©, X))
under the skill monotonicity constraint while keeping the
current parameter set © fixed. We follow Yang et al. [6] to ef-
ficiently find the best assignments via dynamic programming.

Figure 2 illustrates how to find the best skill assignments
for a user u’s sequence having |A,| = 8 actions, where we
consider S = 3 skill levels. In this figure, each row and
column represents a skill level and an action, respectively, and
each edge represents a possible path for a skill transition (i.e.,
to stay or improve). Let L(u,n,s) be the log likelihood of
u reaching the skill level s after taking his/her n-th action
an = (tn,u,i,) through the most likely progression path.
Then, L(u,n,s) can be calculated recursively as follows:

L(u,n,s) = max L(u,n—1,s—0)+1log P(in|Sut, ). (4)

6€{0,1}
The most likely skill level at the last action a4, can be
identified with sy, = argmax,cg L(u,|Au|, s) once we

calculate L(u,n,s) for all n and s. Then, the best assignments
can be obtained by backtracking along the progression path
from the node at the s,y , -th row and the |A,[|-th column.

Updating model parameters. This step finds a model
parameter set O that maximizes the objective function £(0, X)
while keeping the current skill assignment set X fixed. By
exploiting the conditional independence in our model, we can
optimize the model parameters separately with respect to each
feature f and skill level s. That is, we obtain the optimal value
for a parameter 6 (s) by maximizing the following likelihood:

LOf(s) =D lsur = 3] -log Py(is [ 04(s)), (5
(t,ui)eA
where 1 [p] is an indicator function that returns 1 if the
predicate p is true and O otherwise.

As mentioned in Section IV-A, we can use a categorical
distribution to model the generative process of a categorical
feature iy € {1,...,Cf} of each item i. The parameter
for the categorical distribution associated with a skill level
s is expressed as Of(s) = (0fi(s),...,0rc,(s)), where
> 0¢c(s) = 1. The optimal value for this parameter is given
in the following closed form:

Byu(s) = A+ uwiyea Llsu =sNip = ©
A-Cr+ Z(t,u,i)eA 1 [sut = $]
where we apply additive smoothing with a pseudo-count
hyperparameter A to avoid the zero-frequency problem. We
set A = 0.01 in our experiments, following Shin et al. [10].

Similarly, the single parameter of a Poisson distribution can
be estimated as follows;

Z(t,u,i)EA Lsue = s]-if
0;(s) = . (7)
Z(t,u,z‘)eA 1 syt = ]

Some probability distributions (e.g., gamma), however, do
not have closed-form expressions for the optimal parameter
values. For such distributions, we obtain approximate solutions
by applying numerical analysis approaches.

Initializing model parameters. Model initialization is nec-
essary to alternate the above-mentioned steps until conver-
gence. As our objective function is non-convex, a proper
initialization is crucial to finding a reasonable local optimum.
Thus, we adopt the following initialization approach that has
been reported to work well for progression modeling [6], [10].

Assuming that users having longer action sequences are
more likely to experience all skill levels, we first select users
U>n who have at least N actions. (Section VI-B reports its




actual values we used in our experiments.) We then split each
sequence of U> y into S groups uniformly with respect to time
and assign the skill level s € S to all actions in the s-th group.
The resulting assignments for those sequences are used to
initialize the model parameters. Once the model is initialized,
the sequences of all users are used to repeat the steps of finding
skill assignments and updating model parameters.

In some domains, however, several confounders affecting
user actions may exist. For example, people tend to watch
newly released movies more often than older ones. This
lastness effect causes the above-mentioned approach to assign
higher skill levels to newer movies during initialization. In
Section VI-C, we report the resulting unstable learning result
in the film domain and demonstrate that simple preprocessing
help resolve this issue.

C. Complexity and Speedup

The complexity of our training algorithm is as follows.
Initializing skill levels for all actions A requires ¢; = O(|.A])
operations. Given that the complexity of calculating P (i | Syt)
is linear in the number of features, finding the best skill
assignments for a user sequence A, via dynamic program-
ming requires O(|A,|FS) operations. Thus, the complexity
of the assignment step is ca = O(|A|FS). To update model
parameters, we first group actions by the assigned skill levels
(in O(J.A|) steps) and then estimate the parameters for each
feature and skill level (in O(F'S) steps). Thus, the complexity
of the update step is cy = O(|A| + F'S). Let N be the num-
ber of iterations required for model convergence. Then, the
complexity of the whole training process is ¢ + N (ca + cv),
which results in O(N|A|FS).

As with the base model [6], we can speed up the training
process by exploiting the dependency structure of our skill
model. In the assignment step, which would require the longest
computation time according to the complexity analysis above,
user sequences are independent of each other. Thus, we can
perform skill assignments for each user in parallel. Similarly,
as any two parameters 6;(s) and 6;(s’) are independent if s #
s', the update step can be parallelized for each skill level. Note
that our skill model has room for further parallelization. Unlike
the base model, ours considers multi-faceted item features.
Thus, the update step of our model can also be parallelized
for each feature. We report the effectiveness of these three
parallelization techniques in Section VI-F.

V. ITEM DIFFICULTY

To address the item difficulty problem, we assume that
users, taken as a whole, usually select items whose difficulty
level is not greater than their skill level. Under this assumption,
we estimate the difficulty of each item in a target domain by
leveraging our skill model learned for that domain. In this
work, we propose two approaches to this problem.

A. Assignment-based Estimation

The first approach leverages the skill levels that our model
assigns to each action in users’ sequences. It estimates the

difficulty of an item as the mean skill level of users who select
that item in their actions. Specifically, the difficulty level d;
of an item ¢ € 7 is calculated as follows:

4 Zwineal =11 su (8)
' Z(t,u,i’)EA L =]
For example, this approach estimates that the item ¢ has a
medium difficulty level d; = # if half of the users who
select ¢ have the lowest skill level while the other half have
the highest skill level.

B. Generation-based Estimation

While the assignment-based approach mentioned above is
intuitive, it has a practical drawback; the difficulty cannot be
estimated for items that have not yet been selected by any user
(e.g., new products). Another drawback of this approach is the
estimation robustness for rare items that are selected by only a
few users. In an extreme case, the estimation could be based on
the skill level of a single user. As mentioned earlier, however,
skilled users can select both easy and difficult items. If an easy
item appears in the last action of a skilled user who has a long
sequence, this approach may mistakenly estimate this item as
difficult. Therefore, such a simplistic approach is inappropriate
for recommending new or rare items for upskilling.

To address this issue, we propose an alternative approach to
the item difficulty estimation, which takes item features into
consideration. Our basic idea is that the difficulty levels of
two items are comparable if they share similar feature values.
Instead of relying on the skill assignments, this approach
leverages the item generation process of our skill improvement
model. Specifically, it estimates the difficulty d; of an item
as the expected skill level that is assigned to the item:

di=) s-P(s|i), ©)
seS

where P(s|1) is the posterior probability of assigning a skill

level s to the given item ¢. Using Bayes’ theorem, we can

decompose this probability into two components:
pis|i) - PUL9)-Pls) __Plls) Pls)

P(i) Ywes Plils) - P(s)

where P(i | s) is the likelihood of observing ¢ in the actions

of users with the skill level s, and P(s) is the skill prior.

We can calculate P(i | s) with Equation 2 once we learn a
skill model. As for P(s), we consider two models.

1) Uniform: This model treats the prior as a uniform distribu-
tion: P(s) = %. In other words, it simplifies the posterior
as P(s|4) o P(i] s), similarly to the query likelihood
model [27] proposed in the information retrieval field.

2) Empirical: In reality, the number of skilled users may
differ greatly from the number of unskilled users. For
such domains where the skill distribution is skewed, the
simplification made by the uniform model may make the
item difficulty estimation inaccurate. To avoid this, our
alternative model empirically estimates the prior from the
skill levels assigned to each action in users’ sequences:

P(s) = Ztsmnea l=d

(10)



TABLE I: Dataset statistics after filtering.

Dataset Source #Users (|[U|)  #Items (|Z]) #Actions (|A|)
Language  Lang-8 51,644 248,009 248,009
Cooking Rakuten Recipe 6,012 37,092 115,337
Beer RateBeer 4,540 8,953 1,986,231
Film MovieLens 85,095 4,589 8,508,819

Synthetic ~ N/A 10,000 50,000 500,491

C. Complexity

We briefly describe the complexity of our difficulty esti-
mation approaches. The complexity of the assignment-based
estimation is O(|.A]). As for the generation-based approach,
the prior is calculated in O(1) steps for the uniform model and
O(|A]) steps for the empirical model. Calculating the posterior
requires O(F'S) operations. Thus, the uniform and empirical
models have complexities of O(FS) and O(|A| + FS),
respectively. Note that estimating item difficulty is much faster
than learning skill improvement since the former does not
require iterative computation.

VI. EXPERIMENTS

To evaluate our models proposed in Sections IV and V, we
conducted experiments using five datasets. Our experiments
were designed to answer the following questions:

Q1 Can our skill model capture domain-dependent skills?
Q2 How accurate are our skill and difficulty models?

Q3 How useful are our models for practical tasks?

Q4 How efficiently can we train our models?

A. Datasets

To cover a wide variety of action sequences, we prepared
four datasets collected from real domains and one dataset
generated synthetically. Table I lists the statistics of these
datasets. Note that the numbers in this table were obtained
after the filtering process explained in Section VI-B.

Language. As mentioned earlier, language is a typical
domain where learners develop their skills. For this domain,
we used the NAIST Lang-8 Learner Corpora [28] constructed
from Lang-8,' a social networking website for language ex-
change. Lang-8 users can post articles in languages that they
are learning. They can also make per-sentence corrections
for other users’ articles written in their native languages.
While Lang-8 supports many languages, for simplicity we
focused only on English learners in our experiments. More
specifically, we selected English articles written by those users
and corrections for their articles. As the corpora consist of
textual data (i.e., original sentences and corrected sentences
for each article), we calculated the following statistics as
item features: the number of sentences (modeled via Poisson
distributions), the mean number of corrections per corrector
(gamma), and the percentage of corrected sentences (gamma).
For categorical features, we extracted correction rules (e.g.,
from “a” to “the”) by finding word alignments that minimized
the Levenshtein distance between each pair of original and
corrected sentences.

Cooking. Cooking, where recipes correspond to items, also
requires skills. For this domain, we used a dataset released for

Thttp://lang-8.com/

research purposes.> This dataset consists of cooking activities
posted to Rakuten Recipe. The two types of actions exist
on this website: (1) creating new recipes and (2) reporting
existing recipes that users have cooked. In our experiments,
we focused only on the latter as the target actions for learning
the skill improvement because users who can create their own
recipes are likely to already have high cooking skills.* Each
recipe in the dataset includes the following: an ID, an category,
a class of cooking time (e.g., about 30 minutes), a class of
cooking cost (e.g., about JPY 1,000), a set of ingredients,
and a description for each cooking step. We used categorical
distributions for the ID, category, time, cost, and ingredient
features. In addition, we used Poisson distributions to represent
the numbers of ingredients and steps for each recipe.

Beer. We consider selecting beers to drink as actions that
may be affected by users’ skills of appreciation (or their
acquired tastes) [29]. For this domain, we used a dataset [8]
collected from RateBeer,” a beer review website. This dataset
contains all the website’s beer reviews from 2000, when it
was launched, to 2011. Each review includes the following
information for a beer: an ID, a brewer, a style, and an alcohol-
by-volume (ABV) value. To model the generation process of
beer instances, we used categorical distributions for all but the
ABYV feature. As the ABV feature has a positive, real-number
value, we used gamma distributions instead. We excluded
the rating information in each review (e.g., rating scores
and review text) from our features, because such subjective
information is inappropriate for the properties of items.

Film. As another domain for the appreciation skills, we also
consider actions of selecting movies to watch. For this domain,
we used a public movie review dataset [30] collected from
MovieLens.® As the dataset contains limited information about
movies (i.e., an ID, a title, and a set of genres for each), we
crawled MovieLens to collect directors and actors as additional
item information. We then used categorical distributions for the
ID, genre, director, and actor features to model the generation
process of each movie.

Synthetic. Last, for conducting quantitative experiments,
we consider a synthetic dataset with ground-truth skill and
difficulty levels.” This dataset was generated as follows.

1) We set up three probability distributions (categorical,
gamma, and Poisson) with distinct parameters to ensure
that the item features for different skill levels tended to have
different values. Specifically, the categorical distribution for
a skill level s was designed to have higher probabilities
of observing the n-th categorical value than other values,
where n = s (mod S). For the gamma and Poisson
distributions, we adjusted the parameters so that samples

Zhttps://www.nii.ac.jp/dsc/idr/en/rakuten/rakuten.html
3https://recipe.rakuten.co.jp/

4Actually, targeting only the former actions resulted in a model with little
difference between skill levels.

Shttps://www.ratebeer.com/

Shttps://movielens.org/

"Note that we experimented with multiple synthetic datasets generated with
different settings, but we obtained similar trends across these datasets.
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drawn for higher skill levels had larger mean values.

2) We generated the same number of items for each skill level.
An item ¢ for a skill level s consisted of three features
drawn from the aforementioned probability distributions for
s. We set the difficulty level of this item to d; = s.

3) We constructed the action sequence .4, of each user u € U.

a) To determine the sequence length |A,|, we drew a
sample from a Poisson distribution with a mean of 50.

b) We selected the user w’s initial skill level s,;, from S
uniformly at random.

c¢) To decide u’s current (n-th) action, we randomly
sampled an item i, from {i € Z |d; = sy, } with
the probability p = 0.5, and from the easier item pools
otherwise, reflecting our assumption that users usually
select items within their skill capacity.

d) When d;, = 54, in the step (c), we set the next
skill level to sy¢,,, = Sut, + 1 with p = 0.1, and
t0 Sut, ., = Sut, Otherwise. When an easier item was
selected instead, we kept the current skill level because
the item was less likely to improve the user’s skill.

e) We repeated the steps (c) and (d) to obtain |.4,,| actions.

B. Experimental Setup

Filtering. As mentioned in Section IV-B, users with few
actions are less likely to experience more than one skill level.
To focus on action sequences where skill improvement is
more likely to occur, we filtered out short sequences from
the Beer and Film datasets. Specifically, we excluded users
whose action sequences contained less than 50 unique items.
For a similar reason, we also excluded items selected by less
than 50 unique users. These thresholds were taken from Yang
et al.’s settings [6]. We used the sequences of all the filtered
users when initializing our skill model for these datasets.

For the smaller Language and Cooking datasets, however,
this filtering process was too aggressive to keep sufficient
data (e.g., less than 500 users were left for the Language
dataset). Moreover, each item in Lang-8 (i.e., an article)
was always selected by only one user (i.e., the user who
wrote that article). For these reasons, we did not apply the
aforementioned filtering to these datasets. Instead, we only
used action sequences whose length was no less than 50
when initializing the skill improvement model (i.e., U>50 in
Section IV-B), following Shin ef al. [10]. The same setting
was applied to the Synthetic dataset.

Skill count. To learn the skill improvement in a given
domain, we need to set the number of skill levels S in
advance. This is possible for domains where one has prior
knowledge. As the beer and film domains have been studied
in the literature [6], [8], we followed the same setting (i.e.,
S = b5) for the Beer and Film datasets in our experiments.
As for a synthetic dataset, an arbitrary positive integer is
acceptable. We thus simply set S = 5 for the Synthetic dataset
for consistency with the datasets mentioned above.

In contrast, for domains where a proper value of S is
unknown a priori, we determined it in a data-driven manner,
as with Yang et al. [6]. Specifically, we first randomly split
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Fig. 4: Model components learned for language domain.

the whole dataset into a training dataset (90%) and a testing
dataset (10%). Then, for each different value of S, we learned
the model with the training dataset and measured the log
likelihood for the testing dataset. Finally, we selected the value
that maximized the likelihood. When measuring the likelihood
of observing an action in the testing dataset, we assumed that
the user’s skill level at the time of this action was the same
as that of the chronologically closest action in the training
dataset. Figure 3 shows the result of this procedure for the
Cooking dataset, from which we set S = 5 for this domain.
We set S = 3 for the Language dataset.

C. QI: Skill Interpretation

Skill plays different roles in different domains (e.g., the
ability to cook dishes, the experience to enjoy the taste of
beers). Capturing the improvement of such domain-dependent
user skills is essential to building recommender systems for
upskilling. To investigate the interpretability of our skill model,
we analyzed the model components learned from each dataset.

Language. First, we investigated how English learners im-
proved their foreign language skills. Figure 4 shows the results
for two features of the Language dataset. The sentence count
feature showed no noticeable trend between different skill
levels. The mean of the distribution for each s € {1, 2,3} was
10.837, 11.633, and 10.320, respectively. On the other hand,
the correction count feature tended to decrease as their skill
improved (the mean values were 5.062, 4.852, 2.640 for s = 1,
2, 3, respectively). Putting these results together, our model
was able to learn the tendency that novice language learners
are more likely to receive many corrections per sentence.

To dig into the difference between skilled and unskilled
users, we analyzed correction rules dominant in each user
group. To this end, we measured the difference in the prob-
ability of observing a given rule x as the f-th item feature
between the highest and lowest skill levels (i.e., Pr(iy =
x| 0¢(S)) — Ps(iy = x| 6f(1))). This follows McAuley and
Leskovec [8], who measured acquired tastes as the differences



TABLE II: Top 10 corrections dominated by unskilled and skilled
language learners, with stronger degrees of dominance indicated by
negative and positive scores, respectively.

(a) Users with lowest skill level (b) Users with highest skill level

Before After Score Before  After Score

“” “r —0.0038 € “the”  0.0014

3 “° —0.0022 € “ 0.0009

“english”  “English”  —0.0013 € “y” 0.0009

3 “a” —0.0012 “the” 5 0.0009

€ “r —0.0011 € “of” 0.0007

€ “my” —0.0007 “of” £ 0.0004

“r € —0.0007 e “ 0.0003

€ “English” —0.0006 € “ 0.0003

“r € —0.0006 “a” “the”  0.0003

“” € —0.0006 € “r 0.0002
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Fig. 5: Model components learned for cooking domain.

(b) Step count distributions

in the item bias terms of latent factor models [31] learned for
experienced and inexperienced users. Under this measure, it
can be said that a rule with a low/high score is dominated by
unskilled/skilled users.

Table II lists the top 10 correction rules dominated by
unskilled and skilled users. (Note that the symbol ¢ denotes a
missing or deleted word.) Problems with capitalization (e.g.,
“” — “I”) and punctuation (¢ — “.”) were typical corrections
for unskilled users. For skilled users, on the other hand, we
can observe several correction rules that insert parentheses or
brackets, which indicate the existence of comments, including
“(OK),” given by annotators [28]. Other common rules for the
skilled users concerned the use of English articles (e.g., “a” —
“the”). These kinds of errors have been reported as common
even for advanced Japanese students learning English [32].
Given that Japanese accounted for about one third of the users
in this dataset, this finding may suggest that the latent variables
in our model were successful in capturing the improvement of

the writing skill of English learners.

Cooking. To understand the progression of cooking skill,
we analyzed the probability distributions of the following two
features learned for the Cooking dataset: the cooking time,
and the number of cooking steps. Figure 5 summarizes the
learning results for this domain. For skill levels from s = 2 to
s = 4, all the distributions exhibited a common trend. That is,
users tended to select more complex recipes (requiring longer
time and more steps) as their skill improved. Interestingly, the
distributions for the lowest skill level turned out to have shapes
similar to those for the medium skill level. This suggests
that users without enough skill tended to select too complex
recipes in their early actions. A possible explanation for this
phenomenon is that they were unable to estimate whether the
difficulty of a selected recipe was beyond their cooking skill.
The result on this domain violates our assumption on item
selection, making the difficulty estimation inaccurate. This
calls for modeling user satisfaction in action sequences, which
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Fig. 6: Alcohol-by-volume (ABV) distributions for each skill level.

TABLE III: Top 10 beer styles dominated by unskilled and skilled
users. Scores were calculated similarly to those in Table II.

(a) Users with lowest skill level (b) Users with highest skill level

Name Score Name Score
Pale Lager —0.123 Imperial/Double IPA 0.056
Premium Bitter/ESB —0.020 Imperial Stout 0.050
American Dark Lager —0.018 Sour Ale/Wild Ale 0.037
Porter —0.014 India Pale Ale (IPA) 0.035
German Hefeweizen —0.014 American Strong Ale  0.032
Amber Ale —0.014 Saison 0.028
Premium Lager —0.013 Barley Wine 0.024
Malt Liquor —0.011 Black IPA 0.019
Vienna —0.011 Belgian Strong Ale 0.014
Wheat Ale —0.010 Spice/Herb/Vegetable 0.013

we discuss further in Section VII.

Beer. Next, we present the learning result for the beer
domain, which may be involved with users’ appreciation skills.
Figure 6 shows the ABV distributions learned from the Beer
dataset. The distribution was more likely to generate high ABV
values as the skill level improved (e.g., the means for s = 1
and s = 5 were 5.846 and 7.460, respectively). In other words,
our model detected that skilled users tended to prefer high-
ABV beers, which is in line with past findings [8].

Similarly to our analysis for the Language dataset, we
also analyzed the difference in beer style preference between
unskilled and skilled users. Table III lists the top 10 beer
styles dominated by users with the lowest and highest skill
levels. As shown in bold in the table, unskilled users more
often selected lager beers (e.g., Pale Lager) while skilled users
tended to prefer stronger, more hoppy beers (e.g., India Pale
Ale). These trends are consistent with the findings of McAuley
and Leskovec [8]. Note, however, that our model does not
require rating scores, unlike their model.

Film. For the film domain, we analyzed the movies watched
by users with different skill levels. Table IV lists the top 10
frequent movies (in terms of the learned probability distribu-
tions of the movie ID feature) for the lowest and highest skill
levels. We can observe that most movies in Tables IVa and IVb
were released in the 1980s and 2000s, respectively. While not
shown in this paper due to space limitation, typical movies
for the medium skill level were mostly released in the 1990s.
As mentioned in Section IV-B, users in this domain tend to
watch recent movies. Thus, old/new movies are more likely
to appear at early/late positions in user sequences. Due to this
lastness effect, the model mistakenly regarded temporal drifts
as user skills in this domain.

To resolve this issue, we preprocessed the Film dataset
before learning our skill model. Specifically, we excluded
movies that were released after the earliest action in the whole
data (i.e., after min; ,, ;)c 4 t), which ensured that every movie
could be selected at any time. The result for the preprocessed
dataset is summarized in Table V. In contrast to Table 1V, the



TABLE IV: Top 10 frequent movies for lowest and highest skill levels

TABLE VI: Accuracy of skill assignment for Synthetic dataset.

(without preprocessing for mitigating lastness effect). Model Pearson’s r _ Spearman’s p _ Kendall's = RMSE
(a) Lowest skill level (b) Highest skill level Uniform 0.345 0.336 0279 1767
D [6] 0.499 0.496 0.417  1.652
Name Year Name Year ID+categorical 0.651 0.656 0.563  1.571
Star Wars: Episode IV - A New Hope 1977 The Dark Knight 2008 ID+gamma 0.676 0.680 0.584  1.527
Star Wars: Episode V - The Empire Strikes Back 1980 Iron Man 2008 ID+Poisson 0.759 0.775 0.677  1.427
Indiana Jones and the Raiders of the Lost Ark 1981 Avatar 2009 Multi-faceted 0.819 0.842 0.754 1.316
The Godfather 1972 V for Vendetta 2006
Back to the Future 1985 Batman Begins 2005 TABLE VII: Accuracy of difficulty estimation for Synthetic dataset.
Star Wars: Episode VI - Return of the Jedi 1983 WALLSeE 2008
Casablanca 1942 Juno 2007 Model ) o e,
The Silence of the Lambs 1991 Little Miss Sunshine 2006 S Fe— Pearson’s r Spearman’s p - Kendall’s 7 RMSE
Fargo 1996 Inception 2010 Y
The Princess Bride 1987 Casino Royale 2006 Uniform Assignment 0.501 0.516 0.389 1.234
TABLE V: Top 10 frequent movies for lowest and highest skill levels Assignment 0.641 0.653 0.505  1.111
. . e . D [6] Uniform 0.637 0.647 0.497  1.127
(with preprocessing for mitigating lastness effect). Empirical 0.649 0658 0507 1113
(a) Lowest skill level (b) Highest skill level Assignment 0.858 0.856 0.713  0.777
Multi-faceted ~ Uniform 0.920 0.921 0.800 0.620
Name Year Name Year Empirical 0.921 0.925 0.805 0.614
Pulp Fiction 1994 Rear Window 1954 . . .
Star Wars: Episode IV - A New Hope 1977 The Sound of Music 1965 generative process of items. We adopted three correlation
Star Wars: Episode VI - Return of the Jedi 1983 The Graduate 1967 ’ ’ ’
Star Wars: Episode V - The Empire Strikes Back 1980 It’s a Wonderful Life 1946 measures (Pearson s, Spearman § P and Kendall s T) and
Batman 1989 The Birds 1963 one error measure (root mean squared error, or RMSE) to
Dances with Wolves 1990 Gone with the Wind 1939 . . . .
Indiana Jones and the Raiders of the Lost Ark 1981 Psycho 1960 evaluate the accuracy of estimating skill and difficulty levels.
The Shawshank Redemption 1994 Casablanca 1942 .
True Lies 1994 Vertigo 1958 Skill improvement. Table VI summarizes the performance
Jurassic Park 1993 Citizen Kane 1941

list for the lowest skill level includes many light movies, such
as Star Wars, Indiana Jones, and Jurassic Park. On the other
hand, the list for the highest skill level contains movies that are
not necessarily widely appealing but are regarded as classics.
Such examples include Rear Window, Casablanca, and Citizen
Kane. A list for the medium skill level (omitted due to space
limitation) consists of a mixture of both sides (e.g., Star Wars
from the lowest and Casablanca from the highest).

D. Q2: Accuracy

We also evaluated the objective performance of our models
for skill improvement and item difficulty. As our real-world
datasets did not contain the ground truth about skill and
difficulty levels, we experimented with the Synthetic dataset
for this purpose.® For comparison with our skill model (here-
inafter denoted as Multi-faceted) proposed in Section IV, we
prepared two baselines:

o Uniform, which segments each user sequence into S groups
of equal length and then assigns the skill level s € S to all
actions in the s-th group.

o ID, which only uses the ID feature of each item as a compo-
nent of the skill improvement model. This is equivalent to
the existing progression model [6] except for the progression
class component, which was excluded from both this model
and ours for simplicity and fair comparison.

Following Yang et al. [6], we did not compare our model with

classic clustering methods that ignore the ordering of latent

variables. For the item difficulty evaluation, we compared
combinations of the above skill models and our three difficulty
models (Assignment, Uniform, and Empirical). Note that the

Uniform skill model cannot be combined with the Uniform

and Empirical difficulty models, as it does not model the

8While the existing work [6] focused on the stages of chronic kidney disease
for a similar experiment, their medical dataset is not the domain of skill
learning.

of the skill models. As expected, the simplest baseline, Uni-
form, performed most poorly. The performance improved
when we used the other baseline, ID, indicating that progres-
sion modeling is promising for this problem. Furthermore, we
can observe from the table that adding each item feature did
contribute to the performance improvement. When leveraging
all item features (i.e., Multi-faceted), we achieved the best per-
formance for all evaluation measures. The 95% CI of Pearson’s
r for Multi-faceted was [0.818,0.820], substantially higher
than [0.342,0.347] for Uniform and [0.497,0.501] for ID. A
Wilcoxon signed-rank test with the Bonferroni correction also
revealed that Multi-faceted significantly improved the squared
error (SE) over both baselines, with p < 0.01.

Item difficulty. Table VII lists the performance of the
difficulty models. As the item difficulty estimation depends
on the performance of the user skill assignment, we can
observe a trend similar to that in Table VI: Multi-faceted
performed best, followed by ID and then Uniform. As for
the difficulty estimation models, Assignment was slightly
better than Uniform for ID. In contrast, when focusing on
the result of Multi-faceted, Uniform outperformed Assign-
ment. This suggests that the generation-based estimation with
the uniform skill prior was not robust when we included a
small number of features in our skill improvement model.
In contrast, Empirical improved the performance in both
cases as it used the empirical skill prior (computed from
the assigned skill levels) to estimate the item difficulty. The
95% CI of Pearson’s r for our best model (Multi-faceted
with Empirical) was substantially higher than those for both
baselines ([0.920, 0.923] vs. [0.494,0.507] and [0.636, 0.646]).
This best model also achieved significantly smaller SE than the
baselines did (p < 0.01).

To assess our claim about the advantage of the generation-
based models (Section V), we also evaluated the difficulty
estimation performance for 291 rare items that appeared less
than three times in the Synthetic dataset. For these items,



TABLE VIII: Accuracy of skill assignment for Synthetic,,, . dataset.

Model Pearson’s »  Spearman’s p  Kendall’s 7 RMSE
Uniform 0.340 0.334 0.277 1.768
ID [6] 0.925 0.940 0.891  0.954
Multi-faceted 0.929 0.946 0.900 0.900

TABLE IX: Accuracy of difficulty estimation for Synthetic,,,,.
dataset.

Model Pearson’s »  Spearman’s p  Kendall’s = RMSE

Skill Difficulty
Uniform Assignment 0.794 0.799 0.648 1.162
Assignment 0.948 0.954 0.848 0.660
ID [6] Uniform 0.949 0.957 0.853 0.670
Empirical 0.948 0.954 0.848 0.665
Assignment 0.950 0.960 0.859 0.632
Multi-faceted  Uniform 0.932 0.927 0.808 0.539
Empirical 0.932 0.928 0.809 0.528

the RMSE scores for Assignment and Empirical were 1.131
(46% increase) and 0.833 (36% increase), respectively. This
demonstrates that, for rare items, the generation-based estima-
tion was more robust than the assignment-based estimation.

Data sparsity. To investigate the effect of data sparsity on
the modeling performance of user skills and item difficulty, we
conducted similar experiments with another synthetic dataset
(hereinafter denoted as Syntheticy,,.). The only difference
between the Synthetic,,, and Synthetic datasets are the
number of items: 10,000 for the former and 50,000 for the
latter. In other words, items in Syntheticy, .. is selected, on
average, five times more than those in Synthetic. Thus, if a
model M;’s improvement over another model My, is greater
in Synthetic than in Synthetic,,,., it can be said that M; is
robust against domains suffering from data sparsity.

Table VIII shows the performance of each skill model
for the Synthetic,.,. dataset. While the order of models in
terms of their performance was unchanged from Table VI,
the difference between the Multi-faceted and ID skill models
was smaller than that for the Synthetic dataset. Table IX shows
the performance of each difficulty model for the Synthetic,.
dataset. Similarly, while Multi-faceted outperformed ID, the
difference for this dataset was smaller compared with that
for the Synthetic dataset (Table VII). It is also worth noting
that when combined with the Multi-faceted skill model, the
Assignment difficulty model performed better than the Em-
pirical difficulty model for all except one (RMSE) measures,
which is contrary to Table VII. This result supports our claim
that Assignment does not work well for rare items.

In summary, we found a smaller improvement by our skill
and difficulty models when experimented with more dense
data. As described earlier, this finding indicates that our
approach is particularly beneficial to domains with many items
where data sparsity can be a serious issue.

E. Q3: Usefulness

For further quantitative evaluation, we investigated the prac-
tical usefulness of the learned skill and difficulty levels in the
context of user behavior analysis and recommender systems.
Specifically, we focused on two prediction tasks: items and
ratings.

Item Prediction. This task aims to predict items selected
by users. Following Yang et al. [6], we considered two task

TABLE X: Performance on predicting items at random positions.

Cooking Beer Film
Model Acc@10 RR  Acc@10 RR  Acc@10 RR
Uniform 0.023 0.011 0.019 0.011 0.095 0.044
ID [6] 0.050 0.024 0.025 0.014 0.102 0.046
Multi-faceted 0.073 0.035 0.029 0.016 0.109 0.049

TABLE XI: Performance on predicting items at last positions.

Cooking Beer Film
Model Acc@10 RR  Acc@10 RR  Acc@10 RR
Uniform 0.012 0.007 0.008 0.006 0.045 0.024
ID [6] 0.043 0.018 0.015 0.008 0.044 0.023
Multi-faceted 0.060 0.026 0.018 0.009 0.047 0.022

settings: predicting items at at a random position and the
last position in each sequence. The former is designed for
missing data recovery, while the latter measures the ability to
forecast the future. For each setting, we used one action from
each user sequence for testing and used the rest for model
training. As in our evaluation on accuracy (Section VI-D),
we used Uniform and ID as baselines. Note that ID has been
reported to outperform common prediction models based on
machine learning (i.e., logistic regression and hidden Markov
model) [6]. Among the four real datasets, the Language dataset
was excluded in this experiment, because each item in that
domain (i.e., each article) was selected (written) only once by
a particular user.

We used each model to make item predictions as follows.
(1) We inferred the skill level for each test action from its
nearest action in the corresponding training sequence (in the
same way that we estimated the skill count in Section VI-B).
(2) We selected the probability distribution of item IDs for
the inferred skill level. (3) We ranked the items in descending
order of probability. The resulting ranking was evaluated with
two measures: the top-10 accuracy (Acc@10), which returns
1 if the correct item is ranked in the top 10 and O otherwise,
and the reciprocal rank (RR), which returns the reciprocal of
the rank of the correct item.

Table X lists the mean Acc@10 and RR scores of each
model for the random setting. The proposed Multi-faceted
model consistently outperformed the two baselines. For all
cases, the improvement in RR over both baselines was sig-
nificant (p < 0.01). Note that our model performed much
better than random guessing, whose expected Acc@10 and RR
scores are 10/Z|~! and S| (i|Z]) =1, respectively. As shown
in Table XI, the last setting yielded a similar result except
for the Film dataset, where all models performed comparably
in terms of RR. A possible explanation for this exception is
that the dataset was not very sparse as it had fewer items
than other datasets. For both settings, Multi-faceted made the
largest improvement for Cooking, which has more items than
the other datasets (Table I). An increase in the number of items
can accelerate the sparsity of selected items, causing the ID
feature alone to be less informative. Exploiting features shared
by multiple items enabled our model to achieve the great
performance improvement, especially for domains suffering
from data sparsity.

Rating Prediction. This task aims to predict rating scores
that users provided to items. We considered the same pre-
diction settings as the item prediction task (i.e., random and



TABLE XII: Performance (RMSE) on predicting beer ratings.

Position U+I [31] U+I+S U+I+D  U+I+S+D
Random 0.572 0.569 0.569 0.568
Last 0.571 0.562 0.568 0.561

TABLE XIII: Running time (in hours) of skill model training with
different parallelization conditions on Film dataset.

Parallelized? Model
User Feature Skill ID [6] Multi-faceted
X X X 0.944 9.557
v X X 0.425 4.272
X v X N/A 8.305
X X v 0.901 8.224
/  /(XforlD) v 0374 2.814

last) and used Beer and Film since these are only the datasets
at hand that contain rating records. To make the rating scale
consistent across these datasets, we normalized all ratings to
[0,5]. We learned rating prediction models by using Field-
aware Factorization Machine (FFM) [33], an expressive model
that can take interactions between features into account. As a
baseline, we only used user and item IDs as features to learn an
FMM model, which is equivalent to matrix factorization with
user and item biases [31]. We investigated how the prediction
performance (measured by RMSE) would change by adding
skill and difficulty levels as additional features. We followed
Juan et al. [33] to select the parameters of FFM models.

Due to space limitation, we only show the prediction result
for the Beer dataset in Table XII. We can observe a consistent
trend for both settings. That is, the FFMs with either skill
levels (U+1+S) or difficulty levels (U+I+D) outperformed the
baseline (U+I). The best performance was achieved when we
added all features (U+I+S+D), suggesting that user skill and
item difficulty offer a complementary contribution to the rating
prediction. The difference between U+I and U+I+S+D was
shown to be significant for both settings (p = 0.01).

F. Q4: Efficiency

Training a skill model is the most time-consuming process.
As the final experiments, we investigated the efficiency of
our parallelization techniques for the model training described
in Section IV-C. For this purpose, we used the Film dataset,
which is the biggest one at hand.

Table XIII lists the running times of training skill models
using five threads with different parallelization conditions
(Section IV-C). When trained sequentially, our Multi-faceted
model took 8.5 hours more than the ID baseline, since the
former consisted of more probabilistic distributions. Among
the three techniques, the most effective one was parallelizing
assignments for each user, which is in line with our complexity
analysis (Section IV-C). The feature-based parallelization,
which is only applicable to our model, also contributed to
improving the efficiency. Enabling all parallelization tech-
niques reduced the runtime difference between Multi-faceted
and ID to less than 2.5 hours. We also changed the number
of threads when training skill models with all parallelization
techniques enabled. As shown in Figure 7, our Multi-faceted
model gained greater benefits from the parallelization with
more threads. We believe the reduced running time of Multi-
faceted to be acceptable, given its significant improvement
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Fig. 7: Running time (in hours) of skill model training with different
numbers of threads on Film dataset.

over ID in terms of accuracy and usefulness and the offline
nature of the skill improvement problem.

VII. DISCUSSION

Our approach has several limitations. While we assume the
independence of item features for simplicity, it may not hold
in some situations. The monotonicity of skill improvement is
another assumption we made. It is, however, possible that users
lose some skills if they have not taken actions for a while.
Thus, helping users recover forgotten skills is as important as
helping them acquire new skills. According to Ebbinghaus’s
forgetting curve [34], time and repetition play important roles
in memory retention, suggesting that the time gap between
consecutive actions and the number of actions selecting the
same item [35] could be useful to address this challenge. Other
interesting extensions include the consideration of user infor-
mation in the skill model and the joint optimization of the skill
and difficulty models. A user study is also worth conducting
to investigate whether the learned skill and difficulty levels
align with users’ perception.

In what follows, we discuss further steps that need to be
taken toward recommendation for upskilling.

How to model user satisfaction for their actions. Users in
some domains (e.g., cooking, as reported in Section VI-C) may
select too difficult items when they are inexperienced. A model
that learns such actions as being typical for unskilled users
would repeat the same mistake by recommending difficult
items to them. This calls for estimating whether users are
satisfied with their actions and incorporating user satisfaction
into the skill model. Lessons from the past work on modeling
searcher success [36] and satisfaction [37] would be valuable
to address this challenge.

How to combine our models with recommender systems.
While skill improvement and item difficulty are two major
concepts, modeling these alone is still insufficient to make
recommendation for upskilling. Recommended items should
not only have appropriate difficulty for a target user but also
match his/her interest. How can we combine our skill and
difficulty models with state-of-the-art recommender systems
to personalize the recommendation for upskilling? In Sec-
tion VI-E, we demonstrated our models’ potential to benefit
recommendation based on rating prediction. The question
above would be more challenging particularly for domains
where user ratings are not available.

When and how to recommend items for upskilling. This
question still remains unanswered even if the above-mentioned
two challenges have been solved. Recommending items for
upskilling would be effective only if they are presented at the



right time in the right manner. Otherwise, such recommen-
dation may merely confuse and/or frustrate users. How can
we detect appropriate timing? What interfaces, interactions,
and explanations are suitable for this recommendation? While
the present work considers the difficulty of individual items,
finding a ranking of items optimized for skill improvement
would be one interesting direction to explore [26].

VIII. CONCLUSIONS

This paper has proposed models that, given action se-
quences, learn the improvement of user skills and estimate the
difficulty of each item. To address the data sparsity problem in
real domains, our skill model extends the existing progression
model by considering the multi-faceted features shared across
multiple items. Once trained, the skill model is used to esti-
mate the difficulty level as the mean or expected skill level of
users who select each item. Experiments on four real datasets
and one synthetic dataset demonstrated the interpretability of
the captured domain-dependent skill improvement, the accu-
racy of the learned skill and difficulty levels, the usefulness
of our models for the item/rating prediction tasks, and the
efficiency of our training algorithm.

This work has taken a first step toward recommendation
for upskilling. Future directions to take further steps include
the following: modeling user satisfaction in action sequences
to prevent users from repeating the same mistake, combining
our models with recommender systems to find items that match
both the interests and skills of users, and studying the best time
and manner to present recommendations to users.
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