Early Experience of Utilizing Persistent Memory for Database Bulk Loading

Tsuyoshi Ozawa Ryoji Kawamichi Yuto Hayamizu Kazuo Goda Masaru Kitsuregawa
Yy YOJ Y g
UTokyo UTokyo UTokyo UTokyo UTokyo & NII
1 Introduction 10000 = sDID
% sPiD zzzzza
. ) . a) sDiP
Persistent memory is a non-volatile and byte-addressable 8000 % sPiP ]
memory device, being much faster than NAND flash mem- = %
ory and offering larger memory capacity at a lower cost than E£6000¢ § %
DRAM. Since Intel’s Optane launched, early papers have S ‘§ %
been reporting its performance properties from a variety of 34000 §§ %
aspects [4-7]. This article reports our latest experience of u §§ %
utilizing persistent memory for bulk loading as a typical sce- 2000 §§ %
nario of database record processing. Bulk loading is a process §§ % ’ 7 g
of inserting a bunch of record contents (often given in text o N ‘A b gfhreads 54 T 96

files) into database stored in secondary storage. This is usu-
ally composed of multiple steps; a former step transfers its
intermediate result to its next step by using memory space
(i.e., DRAM) or secondary storage space (e.g., flash memory
and magnetic disks.) Persistent memory is potentially a new
promising device for this intermediate memory space. Experi-
mentally understanding the performance of this use case helps
future software design.

2 Experiment and analysis

A typical process of database bulk loading is (1) iteratively to
read a block from given text files into sort buffer, interpret and
sort records in the block, and stores the block into intermediate
space; (2) to merge all the blocks from and store the records
into a data structure (e.g., leaf nodes of B+ tree) in database;
and (3) to arrange the data structure (e.g., internal nodes of
B+ tree.) We compared four configuration scenarios: sDiD
(using DRAM for the sort buffer and the intermediate space,)
sPiD (using persistent memory for the sort buffer and DRAM
for the intermediate space,) sDiP (using DRAM for the sort
buffer and persistent memory for the intermediate space,) and
sPiP (using persistent memory for both.)

The experiment was performed on a four-socket machine
with four Intel Xeon 6252 processors (each having 24 cores at
2.1 GHz) with 768 GB DRAM, 2048 GB persistent memory
(Intel Optane 2,666 MHz,) and four flash SSDs, running
Ubuntu Linux 20.04. We utilized our home-grown multi-

Figure 1: Execution time spent for bulk loading with DRAM
and persistent memory.

threaded database engine [2] and TPC-H (scale factor: 100) [1]
datasets. The dataset was initially stored as text files in btrfs [3]
space striped on the flash SSDs and finally inserted into the
database organized in another block space striped on the space
SSDs.

Figure 1 summarizes the total execution time spent for bulk
loading with different configurations. We observed 2.2 times
longer execution time on persistent memory than DRAM when
the bulk loading was single-threaded. This observation seems
different from other micro-benchmarking reports [6], which
reported moderate performance degradation. Our current
analysis is that the processing of variable-length records
tends to exhibit this phenomenon in particular, but further
study is necessary. By contrast, when the bulk loading was
more intensively multi-threaded, the performance gap became
smaller, reaching 1.3 times at 96 threads.

Persistent memory is potentially promising, but still emerg-
ing. We would like to further investigate the reality of its
performance properties for a variety of data-intensive use
cases.



References

(1]

[6]

Transaction Processing Performance Council. TPC-
H benchmark specification. http://www.tpc.org/
tpch/, Last accessed on Jan 21, 2021.

Kazuo Goda, Yuto Hayamizu, Hiroyuki Yamada, and
Masaru Kitsuregawa. Out-of-order Execution of Database
Queries. Proc. VLDB Endow., 13(12):3489-3501, 2020.

Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS:
The Linux B-Tree Filesystem. ACM TOS, 9(3):9:1-9:32,
2013.

Xingda Wei, Xiating Xie, Rong Chen, Haibo Chen, and
Binyu Zang. Characterizing and Optimizing Remote
Persistent Memory with RDMA and NVM. In Proc.
USENIX ATC 2021, pages 523-536, 2021.

Michele Weiland, Holger Brunst, Tiago Quintino, Nick
Johnson, Olivier Iffrig, Simon D. Smart, Christian Herold,
Antonino Bonanni, Adrian Jackson, and Mark Parsons. An
early evaluation of Intel’s Optane DC persistent memory
module and its impact on high-performance scientific
applications. In Proc. SC 2019, pages 76:1-76:19, 2019.

Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steven Swanson. An Empirical Guide to
the Behavior and Use of Scalable Persistent Memory. In
Proc. USENIX FAST 2020, pages 169-182, 2020.

Jinfeng Yang, Bingzhe Li, and David J. Lilja. Exploring
Performance Characteristics of the Optane 3D Xpoint
Storage Technology. ACM TOMPECS, 5(1):4:1-4:28,
2020.


http://www.tpc.org/tpch/
http://www.tpc.org/tpch/

	Introduction
	Experiment and analysis

