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Abstract. We study a distributed training of a linear classifier in which the data is

separated into many shards and each worker only has access to its own shard. The

goal of this distributed training is to utilize the data of all shards to obtain a well-

performing linear classifier. The iterative parameter mixture (IPM) framework

(Mann et al., 2009) is a state-of-the-art distributed learning framework that has a

strong theoretical guarantee when the data is clean. However, contamination on

shards, which sometimes arises in real world environments, largely deteriorates

the performances of the distributed training. To remedy the negative effect of the

contamination, we propose a divergence minimization principle for the weight

determination in IPM. From this principle, we can naturally derive the Beta-IPM

scheme, which leverages the power of robust estimation based on the beta diver-

gence. A mistake/loss bound analysis indicates the advantage of our Beta-IPM

in contaminated environments. Experiments with various datasets revealed that,

even when 80% of the shards are contaminated, Beta-IPM can suppress the influ-

ence of the contamination.

1 Introduction

A linear classifier is one of the most fundamental concepts in the field of machine learn-

ing. Online learning algorithms [20, 5, 6] are able to train linear classifiers effectively.

An online algorithm sequentially processes data points, and thus, it requires all data to

be accessible from a single machine. While the training on a single machine is of its

own importance, training in distributed environments has attracted increasing interest

[1, 10, 16]. In such environments, data is divided up into disjoint sets of shards and each

worker has access to only one shard.

Iterative Parameter Mixture (IPM) [16, 17] is a state-of-the-art distributed training

framework, which involves a master node and worker nodes. Advantages of IPM lies in

its communication efficiency and simplicity: in each epoch, each worker trains a model

in parallel on his own shard, and the master mixes the training results (Fig. 1).

IPM implicitly assumes that each shard is noiseless. However, it is not always the

case: there can be some adversarially or randomly labelled data in some distributed

learning scenarios. For example, web mail systems possibly involve some users who
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Fig. 2. Illustrative example of KL-IPM and Beta-IPM. Each horizontal line represents a parameter

space, and each vertical line represents a parameter returned by a worker, the height of which is

proportional to the mixing weight. While KL-IPM equally weights all the parameter vectors,

Beta-IPM adaptively weights each parameter as described later.

adversarially labels spams and non-spams, or incorrect data formats [9] lead to cor-

rupted classification result. Let us call such flawed data contamination. We verified

that, the performance of the trained classifier is deteriorated by contamination.

Meanwhile, IPM has freedom in how to weight the individual workers’ results. If

some shards are known to be contaminated, we can avoid the effect of these shards by

setting their weights to zero. However, it is unlikely that there will be prior knowledge

about which shards are contaminated, and thus, the strategy we should take is to weight

seemingly contaminated results less on the basis of their statistical anomalousness.

With this in mind, we propose a weight determination principle based on a di-

vergence minimization criterion. This criterion reinterprets the most straightforward

choice, which is to weight each worker equally, as the minimization of the Kullback-

Leibler divergence (KL-IPM). On the other hand, the beta divergence, which is the

extension of the KL divergence, provides robust inference against contamination. We

propose the weight determination formula by minimizing the beta divergence (Beta-

IPM). Moreover, We prove a mistake/loss bound of IPM. This theoretical result shows

that, by weighting less heavily to contaminated shards with Beta-IPM we can suppress

the upper bound of losses over training. The difference between KL-IPM and Beta-IPM

is illustrated in Fig. 2. Finally, an empirical evaluation on various datasets confirms that

Beta-IPM remedies the effect of contamination.
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2 Related Work

2.1 Distributed training of linear models

Distributed training frameworks for linear models have been studied in the literature.

Asynchronous updates are sets of models in which all workers simultaneously operate

on shared parameters. There is a long line of work related to asynchronous updates from

the 1980s [22] onwards [24, 12]. A problem of the shared memory resource it that, it

does not scale with many shards because the communication cost is proportional to the

number of updates.

The distributed gradient method [4] is a distributed extension of the gradient de-

scent method, which optimizes some smooth function by taking steps proportional to

the negative gradient. In the distributed gradient method, individual workers compute

partial gradients based on their shards, which are then summed to make an update.

In the IPM method, each worker operates independently and shares parameters after

each worker finishes an iteration. A master mixes the parameters of the workers with

weights whose sum is normalized. IPM is used in many linear and regression models,

such as logistic regression [16], structured perceptron [17], etc. McDonald et al. [17]

proved that IPM with perceptron has mistake bound in a linearly separable case (i.e.,

the case in which every data point is correctly classified by some classifier). Moreover,

Hall et al. [14] empirically compared the asynchronous updates, the distributed gradi-

ent method and IPM using large-scale click-through data. The results show that IPM

combined with the perceptron [20] performed the best.

2.2 Robust training against flawed data

Detection of spam and malicious activities is an important problem in the highly dis-

tributed web industry [18, 7]. In addition, poorly formatted data [19, 9] causes a con-

siderable problem in distributed training. Despite significant efforts made at removing

such flawed data, there still is a need for robust models. Robust models are used in many

fields, including multi-task learning [13, 23] and sensor networks [3].

The problem of contamination in distributed data can be broken down into two

cases: the first case is when the contamination is scattered across every shard, and the

second case is when some shards are clean while others are contaminated. Studies on the

robustness of online learning algorithms [5, 6, 15] have mainly dealt with the first case,

which considers a single data repository affected by noise. In this case, the clean data

are hard to distinguish from the noise. Instead, we consider the second case and show

that a significant improvement is possible by putting less importance on statistically

extraordinary shards which are likely to be wrongly labeled or corrupted.

We also note that, Daumé III et al. [8] proposed a distributed learning algorithm

with adversarially distributed data. Their definition of adversarially distributed data is

different from our adversarial noise: while they considered separable data with an adver-

sary who can generate an arbitrary imbalance among shards, we consider an adversarial

attacker that can harm the separability assumption by maliciously labelling.
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Algorithm 1 Iterative Parameter Mixture (IPM)

1: Shards: T1, ..., TM , w(avg,0) = 0

2: for n = 1, ..., N do

3: w
(i,n) = SingleIterationTrain(Ti,w

(avg,n−1))
4: w

(avg,n) =
∑

i
αi,nw

(i,n)

5: end for

3 Problem Setup

We consider a binary classification. Let X ∈ R
d be the input space and Y = {−1, 1}

be the output space. A data point is defined as an input-output tuple (x, y) ∈ X ×Y . A

linear classifier with parameter vector w predicts an output as ŷ = sign(w ·x). The goal

of our distributed training framework is to find the parameter vector w which explains

the whole data most.

In distributed training, the training data is divided into M non-overlapping subsets

(shards), and a shard is assigned to each worker. There also is a master who integrates

the results of workers. Training based on IPM (Algorithm 1) goes as follows. In each

epoch n = 1, 2, ..., N , each worker i independently does a single iteration of training

its own parameters w(i,n), which are then sent to the master. The master waits until all

workers finish their training before it computes a mixed parameter w(avg,n), which is

a weighted sum of the trainers’ parameters. The weight αi,n of each worker i in each

epoch n can be chosen arbitrarily as long as it is normalized (i.e.
∑M

i=1 αi,n = 1).

Later in Section 4 we propose weight determination formulas that we call KL-IPM and

Beta-IPM. At the end of the epoch, the mixed parameters w
(avg,n) are sent back to

the workers, who in the next epoch start the new single iteration training based on the

received mixed parameter. After N epochs have been completed, the master outputs the

final parameter vector (a linear classifier).

3.1 IPM combined with online algorithms

We use online learning algorithms in single iteration training (“SingleIterationTrain” in

Algorithm 1). We specifically deal with the perceptron [20] and the Passive Aggressive

(PA) method [5]. Section 5 describes that, IPM combined with perceptron and PA is

able to extend the theoretical guarantee of these single-machine online algorithms.

4 Divergence Minimization Principle

In this section, we describe our main proposal, which is how to determine the weights

based on the divergence minimization principle. Section 4.1 describes our statistical

assumptions and the divergence minimization principle. Section 4.2 describes the KL

and beta divergences, and Section 4.3 shows KL-IPM and Beta-IPM formulas. Section

4.4 demonstrates the behavior of KL-IPM and Beta-IPM with a simple example.
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4.1 Statistical assumption and divergence minimization principle

The statistical assumption is as follows: the parameters returned by the workers in each

epoch n should be drawn from a Gaussian distribution Qn. Our proposal is that, in

each epoch n the mixed parameter vector w(avg,n) is determined to be the mean of the

Gaussian Qn. However, the parameters are actually drawn from Pn, which possibly

contains contamination. Namely, w(i,n) ∼ Pn. The mean µ and covariance Σ of Qn

are determined in such a way as to minimize the divergence:

arg min
µ,Σ

D(Pn||Qn(µ,Σ)), (1)

where D is the divergence between Pn and Qn. If we use a robust divergence that

suppresses the influence of contamination, we are able to estimate the true µ and Σ.

4.2 KL and beta divergences

The KL divergence is the most basic measure that indicates the deviation of a distribu-

tion from another distribution. The KL divergence between two probability distributions

P and Q on R
d is defined as

DKL(P ||Q) =

∫

P (w) log
P (w)

Q(w)
dw, (2)

which is non-negative and equal to zero if and only if P = Q almost everywhere. While

the KL divergence is of fundamental importance in information theory, it is not robust

to the contamination of outliers.

The beta divergence, which was introduced by [2] and [11], is parameterized by a

real parameter β > 0. The beta divergence between P and Q is defined as

Dβ(P ||Q) =

∫ {

P (w)
P β(w)−Qβ(w)

β

}

− P β+1(w)−Qβ+1(w)

β + 1
dw. (3)

When β → 0, the beta divergence is consistently defined as limβ→0 Dβ(P ||Q) =
DKL(P ||Q). Therefore, the beta divergence can be considered as an extension of the

KL divergence. One of the main motivations of investigating the beta divergence is to

devise a robust inference against contamination. That is, the beta divergence between

two distributionsP andQ remains undisturbed by some fraction of the contamination in

P . β is a trade-off parameter. The bigger β is, the more robust and less computationally

effective the divergence becomes.

4.3 KL-IPM and Beta-IPM

KL-IPM: KL-IPM is a weight determination formula in IPM that equally weights each

worker. Namely,

αi,n =
1

M
. (4)

However, if flawed data contaminate some of the shards, the performance of KL-IPM

deteriorates. To remedy this problem, we derive Beta-IPM that minimizes the beta di-

vergence.
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Fig. 3. Illustration of a two-dimensional example. Each of the 100 crosses represents the param-

eters w ∼ P . The 80 crosses are from the true distribution (Gaussian with µ = (0, 0)⊤ and

Σ = diag(1, 1)). The other 20 crosses are contamination and generated from a false distribution

(Gaussian with µ = (20, 0)⊤ and Σ = diag(2, 2)). The large red circle is the simple mean of all

parameters, determined by KL-IPM (Equation (4)). The large blue square is the mixed parameter

determined by Beta-IPM with β = 0.1 (Equation (6)).

Beta-IPM: Let µc and Σc are respectively the empirical mean and covariance of the

parameter vectors {w(i,n)} defined as

µc =
1

M

M
∑

i=1

w
(i,n), and Σc =

1

M

M
∑

i=1

(w(i,n) − µc)(w
(i,n) − µc)

⊤. (5)

Beta-IPM is defined as a weight determination formula in IPM that in each epoch n
chooses weight αi,n as follows:

αi,n =
expS(w(i,n)|µc,

1
βΣc)

∑M
j=1 expS(w

(j,n)|µc,
1
βΣc)

, (6)

where S(w(i,n)|µ,Σ) = −(1/2)(w(i,n) − µ)⊤Σ−1(w(i,n) − µ) is the exponent part

of the Gaussian. Namely, each weight of a shard is determined by the distance of the

parameter vector from the mean. Beta-IPM is parameterized by β ≥ 0 and is equivalent

to KL-IPM when β → 0 because the covariance (1/β)Σc in (6) becomes infinitely

large. The KL-IPM and Beta-IPM formulas above are derived in Appendix A.1. Note

that the problem of minimizing the beta divergence is non-convex, so we have made

some approximations in order to derive (6).

4.4 Example of KL-IPM and Beta-IPM

Fig. 3 is a two-dimensional example that displays the behaviors of KL-IPM and Beta-

IPM. While KL-IPM equally weights each parameter vector, Beta-IPM weights the

vector farther from the mean less, and in this way it suppresses the influence of con-

tamination. As a result, the mixed parameter vector chosen by Beta-IPM is closer to the

true center (=(0, 0)⊤) than that by KL-IPM.
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5 Mistake / Loss Bound in IPM

This section provides a theoretical viewpoint for the weight determination by Beta-IPM.

We first discuss the separable mistake bound of IPM with a single iteration perceptron

(IPM-perceptron) in Section 5.1, then goes to the corresponding loss bound of IPM

with a single iteration PA (IPM-PA) in Section 5.2. With these bounds, we discuss

about Beta-IPM as a suppressor of weights in contaminated shards in Section 5.3.

5.1 Mistake bound of IPM-perceptron

The following theorem, which is proven by McDonald et al. [17], is an extension of the

well-known mistake bound of the single machine perceptron to IPM,

Theorem 1. (Mistake bound of IPM-perceptron in the separable case) [Theorem 3 in

[17]] Assume all the training data is separable by a margin γ. Suppose that ||x|| ≤ R
holds for any training input x, and let ki,n be the number of mistakes in shard i during

the nth epoch of training. For any number of epochs N , the number of mistakes during

the training in the IPM-perceptron is bounded as

N
∑

n=1

M
∑

i=1

αi,nki,n ≤ R2

γ2
. (7)

Theorem 1 states that the IPM-perceptron with separable data has a finite number

of misses, which guarantees it converges to parameters that correctly classify the entire

data.

In contrast, when some fraction of the dataset is non-separable, there are no param-

eters that perfectly classify all the data. Yet even in this case, we can bound the mistake

in terms of the loss of the possible best classifier (parameter vector) u.

Theorem 2. (Mistake bound of IPM-perceptron in the non-separable case) Let ki,n be

the number of mistakes in shard i during the nth epoch of training. Furthermore, let u

be an arbitrary normalized parameter vector u ∈ R
n(||u|| = 1) Let ξ = max{0, γ −

y(u · x)} and Ξi =
∑

t′ ξ, where the index t′ runs over all data points in shard i. For

any number of epochs N and any γ ≥ 0, the following inequality holds:

N
∑

n=1

M
∑

i=1

αi,nki,n ≤ R2

γ2
+

2

γ

N
∑

n=1

M
∑

i=1

αi,nΞi. (8)

Theorem 2 is proven by the combination of the technique for the IPM loss bound

[17] and an ordinary technique for the non-separable mistake bound of perceptron. The

proof of Theorem 2 is in a full version of this paper. Notice that, ξ is the distance

from the margin with a data point (x, y), which indicates how the classification with

a classifier u fails for this data point. Therefore, Ξi, the sum of ξ over shard i, can be

considered as a cumulative loss if u is run on shard i. From inequality (8), the number of

mistakes of IPM-perceptron is bounded in terms of the cumulative loss of an arbitrary

vector u.
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5.2 Loss bound of IPM-PA

Here, we describe the loss bound of IPM with the Passive Aggressive algorithm (IPM-

PA). As in the case of IPM-perceptron, we can obtain separable and non-separable loss

bounds. The proofs of the bounds are in Appendix A.2.

Theorem 3. (Loss bound of IPM-PA in the separable case)

Let there be a parameter vector u that suffers no loss for any data point (x, y) in

the training data set. Suppose that ||x|| ≤ R holds for any input x. Then,

N
∑

n=1

M
∑

i=1

αi,nLi,n ≤ ||u||2R2, (9)

where Li,n is the cumulative squared loss which worker i suffers in epoch n.

Theorem 4. (Loss bound of IPM-PA in the non-separable case)

Assume ||x|| = 1 holds for any data point. Then, for any parameter vector u,

N
∑

n=1

M
∑

i=1

αi,nLi,n ≤



||u||+ 2

√

√

√

√

N
∑

n=1

M
∑

i=1

αi,nL∗
i





2

, (10)

where L∗
i is the cumulative squared loss of parameter vector u with data on shard i.

5.3 Superiority of Beta-IPM from a theoretical perspective

The cumulative loss in (8) is weighted by αi,n. Suppose the shards are divided into

two categories: separable shards i = 1, ...,m which can be classified by u and non-

separable shards i = m+1, ...,M with no vector to correctly classify them. The smaller

the weights of the non-separable shards αm+1, ..., αM are, the smaller the weighted cu-

mulative loss
∑M

i=1 αi,nΞi we can obtain, and this means that it is very important to

reduce the weights corresponding to contaminated shards. The same argument goes

with PA. In general, Beta-IPM suppresses the weights of non-separable shards as de-

scribed in Section 4, and thus Beta-IPM is expected to have a smaller mistake count

than KL-IPM.

6 Empirical Evaluation

We conducted an evaluation with various datasets. The overall goal of these experiments

was to study how KL-IPM and Beta-IPM behave in contaminated environments.

6.1 Setup

Our experiments involved 16 datasets (Table 1). Zeta and ocr datasets are from the

Pascal large-scale learning challenge1, and the imdb and citeseer datasets are from Paul

Komarek’s webpage2. The other datasets are from the LIBSVM dataset repository3.

1 http://largescale.ml.tu-berlin.de/
2 http://komarix.org/ac/ds/
3 http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html
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Table 1. List of the binary classification datasets evaluated. The tasks of the datasets are CI

(census income prediction), DC (document categorization), HA (human answer prediction), IP

(involvement prediction of person to some contents), IR (image recognition), MD (malware /

suspicious contents detection), S (synthetically created problem), TC (toxicity categorization), or

TD (text decoding).

# of features # of data points task

ijcnn1.tr 22 49,990 TD

mushrooms 112 8,124 TC

a8a 123 22,696 CI

ocr 1,156 3,500,000 IR

epsilon 2,000 400,000 S

zeta 2,000 500,000 S

gisette 5,000 6,000 IR

real-sim 20,958 72,309 DC

# of features # of data points task

rcv1 47,236 20,242 DC

citeseer 105,354 181,395 IP

imdb 685,569 167,773 IP

news20 1,355,191 19,996 DC

url 3,231,961 2,396,130 MD

webspam 16,609,143 350,000 MD

kdda 20,216,830 8,407,752 HA

kddb 29,890,095 19,264,097 HA

Data shards: For each dataset, we used 80% of the data for training and 20% for

testing. Then, the training dataset is divided into 100 shards associated with workers.

Algorithms are trained with the training data and evaluated in terms of the classification

accuracy of the test data.

To study the proposed algorithms’ robustness against contamination, we studied the

clean setting (i.e. no contamination) and two following contamination settings. Note

that the contaminations are only on the training shards (the test data is always clean).

Setting 1 - adversarial labels: In this setting, 30 out of 100 shards are adversarial data:

the labels of the data are reversed. This setting models situations where the data in some

shards are maliciously labeled.

Setting 2 - random labels: In this setting, 80 out of 100 shards are assigned random

labels. Each data point in these randomly labeled shards is labeled yt ∼ Bernoulli(p),
regardless of its true label. The ratio of positive labels, p, varies from 0.1 to 0.9 among

workers. This setting models situations where data in most shards are corrupted.

Algorithms: We compared four algorithms: KL-IPM with a single-iteration perceptron

or Passive Aggressive (KL-IPM-perceptron and KL-IPM-PA, respectively) and Beta-

IPM with a single-iteration perceptron or Passive Aggressive (Beta-IPM-perceptron and

Beta-IPM-PA, respectively). All values of β were the best among {10−1, 10−2, ..., 10−8}.

Since our research includes high-dimensional datasets, we assumed that the Gaussian

in Beta-IPM was diagonal. The features with zero-variances were ignored in the weight

calculation. We normalized the parameter vector of each worker by using the l2-norm

when calculating the weights in Beta-IPM.

6.2 Results

The results for all datasets are shown in Table 2. The results of KL-IPM in the clean

setting can be considered to be the possible best performance of linear classifiers in our

distributed setting. As aforementioned, the performance of IPM is degraded by contam-

ination. Note that our main interest in these experiments is the extent to which Beta-IPM

can remedy the effects of contamination. First, let us compare the results of KL-IPM in
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Table 2. Accuracy of the algorithms in the clean/adversarial/random settings at the 50th epoch.

Boldface entries in the contamination settings are the best among the individual datasets.

Clean Setting

ijcnn1.tr mushrooms a8a ocr epsilon zeta gisette real-sim

KL-IPM-perceptron 0.913 0.999 0.845 0.763 0.899 0.628 0.947 0.968

KL-IPM-PA 0.912 0.999 0.845 0.762 0.899 0.694 0.958 0.975

rcv1 citeseer imdb news20 url webspam kdda kddb

KL-IPM-perceptron 0.960 0.976 0.981 0.953 0.986 0.990 0.881 0.886

KL-IPM-PA 0.966 0.977 0.985 0.958 0.986 0.990 0.882 0.887

Contamination Setting 1: Adversarial Labels

ijcnn1.tr mushrooms a8a ocr epsilon zeta gisette real-sim

KL-IPM-perceptron 0.908 0.937 0.838 0.760 0.881 0.582 0.854 0.824

KL-IPM-PA 0.908 0.983 0.837 0.760 0.886 0.651 0.912 0.904

Beta-IPM-perceptron 0.908 0.998 0.846 0.763 0.898 0.665 0.935 0.961

Beta-IPM-PA 0.908 0.989 0.846 0.762 0.898 0.663 0.957 0.972

rcv1 citeseer imdb news20 url webspam kdda kddb

KL-IPM-perceptron 0.762 0.976 0.980 0.703 0.983 0.987 0.743 0.759

KL-IPM-PA 0.871 0.977 0.984 0.844 0.983 0.987 0.689 0.712

Beta-IPM-perceptron 0.955 0.976 0.981 0.945 0.986 0.991 0.876 0.882

Beta-IPM-PA 0.962 0.977 0.984 0.950 0.986 0.991 0.676 0.693

Contamination Setting 2: Random Labels

ijcnn1.tr mushrooms a8a ocr epsilon zeta gisette real-sim

KL-IPM-perceptron 0.886 0.858 0.820 0.750 0.737 0.516 0.698 0.680

KL-IPM-PA 0.855 0.942 0.817 0.674 0.758 0.545 0.827 0.741

Beta-IPM-perceptron 0.911 0.980 0.825 0.755 0.886 0.642 0.888 0.948

Beta-IPM-PA 0.913 0.999 0.830 0.723 0.890 0.624 0.942 0.958

rcv1 citeseer imdb news20 url webspam kdda kddb

KL-IPM-perceptron 0.600 0.657 0.611 0.644 0.971 0.951 0.739 0.734

KL-IPM-PA 0.701 0.685 0.684 0.730 0.971 0.960 0.761 0.757

Beta-IPM-perceptron 0.919 0.836 0.826 0.717 0.981 0.986 0.853 0.833

Beta-IPM-PA 0.910 0.916 0.943 0.730 0.985 0.985 0.868 0.868

the adversarial/random settings with those in the clean setting. The contamination neg-

atively affected the results on almost all datasets. On the random setting, where 80% of

the shards are contaminated, the damage to the results tended to be more severe than that

on the adversarial setting. Second, let us compare the performances of Beta-IPM and

KL-IPM in the adversarial/random settings. One can see that Beta-IPM outperformed

KL-IPM on almost all datasets. Indeed, one many datasets Beta-IPM performed almost

as well as KL-IPM under the clean setting; this confirms that Beta-IPM can remove the

influence of contamination.

Fig. 4 shows the classification results of Beta-IPM with a single iteration perceptron

for several values of β. The optimal value with this dataset was β = 10−5, and the

accuracy with this β value showed a steady rise in epochs. The accuracy after epoch
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of Beta-IPM with various al-

gorithms. The algorithms were

run with news20 in the adver-

sarial setting.
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racy of Beta-IPM and single
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The algorithms were run with

news20 in the adversarial

setting.

50 was nearly 95%. With a β value smaller than the optimal one (β = 10−6) and

with no beta (KL-IPM-perceptron), the algorithm failed to suppress the influence of the

adversarial workers. Conversely, with β values bigger than optimal (β = 10−3), the

regularization was so strong that even the influence of some of the correct workers was

suppressed. As a result, the learning rate with this beta value was very slow.

101 102 103 104 105 106 107 108

# of features

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1

op
ti
m
al
 b
et
a

Dataset dimension and optimal beta

Fig. 7. Number of features and optimal

value of beta in the adversarial setting.

Each point corresponds to a dataset.

Fig. 5 compares several different algorithms

with the best beta values. Given a proper value

of β, Beta-IPM with a perceptron or PA success-

fully learned the parameter vectors. However,

PA-I and PA-II4, the noise-tolerant version of PA,

did not perform well. These results indicate that

robustness in a distributed environment is essen-

tially different from that of single machine online

learning: while we assume some fraction of the

data is clean and the rest is contaminated, robust

learning in a single machine aims to learn in envi-

ronments where the clean and contaminated data

are mixed. A possible hypothesis is that, the reg-

ularization of the learning rate in PA-I and PA-II

obscured the difference between clean and con-

taminated shards, which made the accuracies of IPM with PA-I and PA-II poor.

Fig. 6 compares Beta-IPM-perceptron with a single machine PA-I or PA-II and

AROW [6]. The hyper-parameter C in PA-I and PA-II and r in AROW were optimized

in {10−4, 10−3, ..., 104}. The data of all 100 shards were put into a single shard in

the single machine experiments. The two Beta-IPM algorithms performed better than

the single machine algorithms. These results are empirical evidence that Beta-IPM can

reduce the weights of adversarial shards.

Fig. 7 shows the optimal value of beta as a function of the number of features.

Overall, in high-dimensional datasets, the value of beta tends to be small. The reason

4 The parameter C in PA-I and PA-II was set to be 0.001.
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for this is that the weight in Beta-IPM (Equation (6)) is a multivariate Gaussian, which

is a product of exponentials over all dimensions and thus is small at high dimensions.

7 Conclusion

We studied robust distributed training of linear classifiers. By minimizing the diver-

gence, we devised a criterion for determining the weights in IPM. Experiments revealed

that the performance of IPM is significantly recovered on many contaminated datasets

by determining the weights based on the beta divergence. An interesting direction of fu-

ture work is to remove the statistiscal assumption of Gaussian distribution, by allowing

more wider class of distributions, or non-parametric models.

References

1. Aberdeen, D., Pacovsky, O., Slater, A.: The learning behind gmail priority inbox. In: LCCC:

NIPS 2010 Workshop on Learning on Cores, Clusters and Clouds (2010)

2. Basu, A., Harris, I.R., Hjort, N.L., Jones, M.C.: Robust and efficient estimation by minimis-

ing a density power divergence. Biometrika 85(3), 549–559 (1998)

3. Chouvardas, S., Slavakis, K., Theodoridis, S.: Adaptive robust distributed learning in diffu-

sion sensor networks. IEEE Transactions on Signal Processing 59(10), 4692–4707 (2011)

4. Chu, C.T., Kim, S.K., Lin, Y.A., Yu, Y., Bradski, G.R., Ng, A.Y., Olukotun, K.: Map-reduce

for machine learning on multicore. In: NIPS. pp. 281–288 (2006)

5. Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-aggressive

algorithms. Journal of Machine Learning Research 7, 551–585 (2006)

6. Crammer, K., Kulesza, A., Dredze, M.: Adaptive regularization of weight vectors. Machine

Learning 91(2), 155–187 (2013)

7. Curtsinger, C., Livshits, B., Zorn, B.G., Seifert, C.: Zozzle: Fast and precise in-browser

javascript malware detection. In: USENIX Security Symposium (2011)
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A Appendix

A.1 Derivation of KL-IPM and Beta-IPM

Derivation of KL-IPM We want to show that a mixed weight based on KL-IPM mini-

mizes the KL-divergence betweenP andQ based on the parameter vectors {w(1,n), ...,w(M,n)}.

The following lemma states that KL divergence minimization based on Gaussian distri-

butions preserves the mean and covariance.

Lemma 5. [Theorem 3.2 in [21]] Let P be an arbitrary probability distribution on R
d

with a well-defined mean µ
∗ and covariance matrix Σ

∗, where Σ
∗ is strictly positive-

definite. Let Q be a Gaussian distribution with mean µ and covariance matrix Σ. The

unique minimum value of DKL(P ||Q) is achieved when µ = µ
∗ and Σ = Σ

∗.

The inequality (4) follows by using Lemma 5 and the fact that the empirical mean

of P on the parameter vectors is (1/M)
∑

iw
(i,n).

Derivation of Beta-IPM Let the parameters of the workers be {w(1,n), ...,w(M,n)},

which is generated from a distribution P , and Q(µ,Σ) be a Gaussian distribution. We

would like to minimize the beta divergence, namely,w(avg,n) = arg min
µ

Dβ(P ||Q(µ,Σ)).

Then,

Dβ(P ||Q(µ,Σ)) (11)

= − 1

β

∫

P (w)Qβ(w|µ,Σ)dw +
1

β + 1

∫

Qβ+1(w|µ,Σ)dw +Const. (12)

= − 1

β
EP (w)[Q

β(w|µ,Σ)] +
1

β + 1

∫

Qβ+1(w|µ,Σ)dw + Const., (13)

where Const. is a term independent of µ and Σ, and EP (w) is the expectation un-

der the assumption that w follows the probability distribution P (w). Replacing the

expectation of the first term with an empirical expectation over the parameter vectors

{w(1,n), ...,w(M,n)} yields

(13) = − 1

β

M
∑

i=1

1

M

[

Qβ(w(i,n)|µ,Σ)
]

+
1

β + 1

∫

Qβ+1(w|µ,Σ)dw. (14)
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Algorithm 2 Single iteration Passive Aggressive

1: T = {(xt, yt)}, w
2: for t = 1, ..., |T | do

3: ŷt ← sign(w · xt)
4: lt ← max (0, 1− yt(w · xt))
5: τt ← lt/||xt||

2

6: w ← w + τtytxt

7: end for

The multivariate GaussianQ is explicitly written as Q(w|µ,Σ) = Z(Σ) expS(w|µ,Σ),
where Z(Σ) = 1/

√

(2π)d|Σ| and S(w|µ,Σ) = − 1
2 (w−µ)⊤Σ−1(w−µ). The sec-

ond term in (14) is, from the property of multivariate Gaussian distribution,

1

β + 1

∫

Qβ+1(w|µ,Σ)dw = Z(Σ)β(β + 1)−1−d/2, (15)

which is independent on µ. By using these facts, the first derivative of Dβ(P ||Q(µ,Σ))
is equivalent to the one of the first term in the RHS of (14), which is transformed as,

d

dµ

{

− 1

β

M
∑

i=1

1

M

[

Qβ(w(i,n)|µ,Σ)
]

}

=
Z(Σ)β

βM

{

− d

dµ

M
∑

i=1

expS(w(i,n),µ,
1

β
Σ)

}

.

=
Z(Σ)β

βM

{

M
∑

i=1

expS(w(i,n),µ,
1

β
Σ)(βΣ−1)(w(i,n) − µ)

}

=
Z(Σ)β

βM

{

βΣ−1
M
∑

i=1

expS(w(i,n),µ,
1

β
Σ)(w(i,n) − µ)

}

. (16)

Therefore, we obtain

d

dµ

{

− 1

β

M
∑

i=1

1

M

[

Qβ(w(i,n)|µ,Σ)
]

}

= 0 ⇔
M
∑

i=1

expS(w(i,n),µ,
1

β
Σ)(w(i,n) − µ) = 0

⇔ µ =

∑M
i=1 expS(w

(i,n),µ, 1
βΣ)w(i,n)

∑M
j=1 expS(w

(j,n),µ, 1
βΣ)

. (17)

RHS of (17) states that µ that minimizes Dβ(P ||Q) is a weighted mean of each

w
(i,n) with weight expS(w(i,n),µ, 1

βΣ). Unfortunately, the weight expS(w(i,n),µ, 1
βΣ)

on the RHS includes µ, and thus, an exact solution is unattainable. To get a reasonable

solution, we can approximate µ and Σ on the RHS of (17) by the mean and covariance

of the samples {w(1,n), ...,w(M,n)}, which finally yields (6).

A.2 Proof of Theorem 3 and 4

The crux in the mistake/loss bound proofs in online classifiers is to find some value

that can be bounded from both the upper and lower side: in the case of PA we bound

the value ∆n = ||w(avg,n−1) − u|| − ||w(avg,n) − u||. By using these lower and upper

bounds we obtain Lemma 6, which leads to the proofs of Theorem 3 and 4.
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Lemma 6. Let the index t = 1, ..., ki,n denotes the data points on shard i that the

worker suffered non-zero losses, and (xi,t, yi,t) be the data point at that round. More-

over, let li,t be the corresponding loss of the worker, and τi,t = li,t/||xi,t||2, and l∗i,t be

the loss of any constant classifier u with the data point. Then,

N
∑

n=1







M
∑

i=1

αi,n

ki,n
∑

t=1

{

τi,t(2li,t − τi,t||xi,t||2 − 2l∗i,t)
}







≤ ||u||. (18)

Proof (Lemma 6). Consider shard i in epoch n. Let ∆i,n = ||w(avg,n−1) − u||2 −
||w(i,n) − u||2. Notice that the parameter vector is updated only when the loss is non-

zero, and For 1 ≤ t ≤ ki,n, let w([i,n]+t) be the parameter vector on shard i in epoch n
in the round just before the t-th loss occurred. Also, for t = ki,n + 1, let w([i,n]+t) =
w

(i,n). Notice that w([i,n]+1) = w
(avg,n−1). The update per single loss is,

||w([i,n]+t)− u||2 − ||w([i,n]+(t+1))− u||2

= ||w([i,n]+t)− u||2 − ||w([i,n]+t)− u+ yi,tτi,txi,t||2

= ||w([i,n]+t)) − u||2 −
{

||w([i,n]+t) − u||2 + 2yi,tτi,t(w
([i,n]+t) − u) · xi,t + τ2i,t||xi,t||2

}

= −2yi,tτi,t(w
([i,n]+t) − u) · xi,t − τ2i,t||xi,t||2. (19)

Since we assumed li,t > 0 with this data point, yi,t(w
([i,n]+t) · xi,t) = 1 − li,t and

l∗i,t ≥ 1− yi,t(u · xi,t) always holds. Thus, (19) can be bounded as,

(19) ≥ 2τi,t((1− l∗i,t)−(1− li,t))−τ2i,t||xi,t||2 = τi,t(2li,t−τi,t||xi,t||2−2l∗i,t). (20)

By using (20), ∆i,n is bounded as,

∆i,n = ||w(avg,n−1) − u||2 − ||w(i,n) − u||2

=

ki,n
∑

t=1

(

||w([i,n]+t)− u||2 − ||w([i,n]+(t+1))− u||2
)

≥
ki,n
∑

t=1

{

τi,t(2li,t − τi,t||xi,t||2 − 2l∗i,t)
}

. (21)

We now lower-bound ∆n as follows:

∆n = ||w(avg,n−1)− u||2 − ||w(avg,n)− u||2 = ||w(avg,n−1)− u||2 − ||
∑

i

αi,n(w
(i,n)− u)||2

≥
M
∑

i=1

αi,n

(

||w(avg,n−1) − u||2 − ||w(i,n) − u||2
)

=
M
∑

i=1

αi,n∆i,n

≥
M
∑

i=1

αi,n

ki,n
∑

t=1

{

τi,t(2li,t − τi,t||xi,t||2 − 2l∗i,t)
}

, (22)

where we have used
∑

i αi,n = 1 in going between the first and second line, and used

(21) at the last transformation.
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On the other hand, the sum of ∆n is upper-bounded as follows:

N
∑

n=1

∆n =

N
∑

n=1

(

||w(avg,n−1) − u||2 − ||w(avg,n) − u||2
)

= ||w(avg,0) − u||2 − ||w(avg,N) − u||2 ≤ ||u||, (23)

where the last inequality follows from the fact that the initial parameter vector is the

zero vector and ||w(avg,N) − u||2 ≥ 0. Using (22) and (23) yields (18).

⊓⊔
Proof (Theorem 3). By using the fact that l∗i,t = 0, li,t = τi,t||xi,t||2, Lemma 6 is

transformed as follows:

N
∑

n=1







M
∑

i=1

αi,n

ki,n
∑

t=1

(li,t)
2

||xi,t||2







≤ ||u||2. (24)

With the fact that ||xi,t|| < R, we finally obtain

N
∑

n=1







M
∑

i=1

αi,n

ki,n
∑

t=1

(li,t)
2







≤ ||u||2R2. (25)

Li,n, the cumulative squared loss the worker i suffers during epoch n, corresponds to
∑ki,n

t=1 (li,t)
2. Therefore, the inequality (25) is equivalent to (9).

⊓⊔
Proof (Theorem 4). Next, we consider the case where l∗i,t is not necessarily zero. Let us

assume ||xi,t|| = 1. Notice that τi,t = li,t/||xi,t||2 = li,t. By these facts and Lemma 6,

N
∑

n=1







M
∑

i=1

αi,n

ki,n
∑

t=1

{

(li,t)
2 − 2li,tl

∗
i,t)
}







≤ ||u||2. (26)

Let

XN =

√

√

√

√

N
∑

n=1

M
∑

i=1

αi,n

ki,n
∑

t=1

(li,t)2, and YN =

√

√

√

√

N
∑

n=1

M
∑

i=1

αi,n

ki,n
∑

t=1

(l∗i,t)
2. (27)

Using the Cauchy-Schwarz inequality on the LHS of (26), we obtain X2
N − 2XNYN ≤

||u||2, which is a quadratic inequality of XN , and thus XN ≤ YN +
√

Y 2
N + ||u||2 ≤

||u||+2YN , where we used the fact that
√
a+ b ≤ √

a+
√
b for a, b ≥ 0. By explicitly

writing XN and YN we obtain
√

√

√

√

N
∑

n=1

M
∑

i=1

αi,n

ki,n
∑

t=1

(li,t)2 ≤ ||u||+ 2

√

√

√

√

N
∑

n=1

M
∑

i=1

αi,n

ki,n
∑

t=1

(l∗i,t)
2. (28)

The cumulative squared loss the worker i suffers in epoch n is Li,n =
∑ki,n

t=1 (li,t)
2.

Moreover,L∗
i ≥∑ki,n

t=1 (l
∗
i,t)

2 holds because the index t runs the subset of data on shard

i. Taking these into consideration, we finally obtain (10).

⊓⊔
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Algorithm 3 Single iteration perceptron

1: T = {(xt, yt)}, w
2: for t = 1, ..., |T | do

3: ŷt ← sign(w · xt)
4: if yt 6= ŷt then

5: w ← w + ytxt

6: end if

7: end for

A.3 Proof of Theorem 2:

Here, we prove the non-separable mistake bound of the IPM (Algorithm 1) com-

bined with the single iteration perceptron (Algorithm 3). Remember that, w(i,n) is the

parameter vector returned by the ith worker at the end of the nth iteration, w(avg,n)

is the mixed vector at the end of epoch n, ki,n is the number of mistakes occurring

in shard i during epoch n. Let index t = 1, ..., ki,n denotes the rounds on shard i
that the worker made a mistake5, and (xi,t, yi,t) be the data point at that round. and

ξi,t = max{0, γ − yi,t(u · xi,t)}. Let w[i,n]−k be the parameter vector of worker i in

the nth iteration k mistakes before w
(i,n). Notice that w[i,n]−ki,n = w

(avg,n−1). Just

like the case of the single-machine perceptron, we prove both the lower and the upper

bound of a norm. By definition, for any data point (xi,t, yi,t), we have

yi,t(u · xi,t) ≥ γ − ξi,t. (29)

We now bound (w(i,n) − w
(avg,n−1)) · u, which expresses how the parameter vector

changes in a single iteration with worker i.

w
(i,n) · u = (w[i,n]−1 + yi,txi,t) · u = w

[i,n]−1 · u+ yi,t(xi,t · u) (30)

≥ w
[i,n]−1 · u+ (γ − ξi,t) (31)

... ≥ w
[i,n]−ki,n · u+

∑

t∈mistakes on shard i

(γ − ξi,t), (32)

Since Ξi is the sum of ξ over all data points in shard i (including, but not only t-indexed

data points that the worker misclassified),

Ξi =
∑

t′∈shard i

ξi,t′ ≥
∑

t∈mistakes on shard i

ξi,t (33)

holds. By using (32) and (33), we obtain the following:

w
(i,n) · u ≥ w

[i,n]−ki,n · u+ ki,nγ − Ξi (34)

= w
(avg,n−1) · u+ ki,nγ − Ξi. (35)

By using (35) and the fact that w(avg,n) is the weighted sum of the vectors returned by

all workers, we obtain

w
(avg,n) · u ≥ w

(avg,n−1) · u+

M
∑

i=1

αi,n (ki,nγ − Ξi) . (36)

5 Note that the mistake of the worker is different from the mistake of constant classifier u.
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Moreover, by summing (36) over all epochs we obtain

w
(avg,N) · u ≥

N
∑

n=1

M
∑

i=1

αi,n (ki,nγ − Ξi) , (37)

where we have used the fact that w(avg,0) = 0.

So far, we have proven the lower bound. On the other hand, the upper bound in

the separable case (inequality (IH2) in [17]) also holds in our non-separable case. The

upper bound inequality is,

||w(avg,N)||2 ≤
N
∑

n=1

M
∑

i=1

αi,nki,nR
2. (38)

By using (37) and (38), as well as the fact ||u|| = 1 we obtain the bound:

(

N
∑

n=1

M
∑

i=1

αi,n (ki,nγ − Ξi)

)2

≤ (w(avg,N) · u)2 (39)

≤ ||w(avg,N)||2||u||2 ≤ ||w(avg,N)||2 (40)

≤
N
∑

n=1

M
∑

i=1

αi,nki,nR
2. (41)

By using XN =
∑N

n=1

∑M
i=1 αi,nki,n and YN =

∑N
n=1

∑M
i=1 αi,nΞi, (41) is trans-

formed as:

(γXN − YN )2 ≤ XNR2, (42)

or, equally,

γ2X2
N − (R2 + 2γYN )XN + Y 2

N ≤ 0, (43)

which is a quadratic inequality of XN . The possible maximum XN is

XN ≤ (R2 + 2γYN ) +
√

(R2 + 2γYN)2 − 4γ2Y 2
N

2γ2

≤ 2(R2 + 2γYN)

2γ2
=

R2 + 2γYN

γ2
. (44)

The explicit representation of (44) is the final inequality we obtain. That is,

N
∑

n=1

M
∑

i=1

αi,nki,n ≤ R2

γ2
+

2

γ

N
∑

n=1

M
∑

i=1

αi,nΞi. (45)

⊓⊔


