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ABSTRACT
Emerging patterns are patterns whose support significantly differs
between two databases. We study the problem of listing emerg-
ing patterns with a multiple testing guarantee. Recently, Terada et
al. proposed the Limitless ArityMultiple-testing Procedure (LAMP)
that controls the family-wise error rate (FWER) in statistical associ-
ation mining. LAMP reduces the number of “untestable” hypothe-
ses without compromising its statistical power. Still, FWER is re-
strictive, and as a result, its statistical power is inherently unsatis-
fying when the number of patterns is large. On the other hand, the
false discovery rate (FDR) is less restrictive than FWER, and thus
controlling FDR yields a larger number of significant patterns. We
propose two emerging pattern mining methods: the first one con-
trols FWER, and the second one controls FDR. The effectiveness of
the methods is verified in computer simulations with real-world
datasets.
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1 INTRODUCTION
Finding differences between two datasets is of fundamental impor-
tance in many scientific fields. Many tasks, such as binary clas-
sification, feature selection, change point detection, and concept
drift learning, boil down to finding good discriminative features
that explain the differences. When the structure of the problem is
simple, it suffices to consider each single feature separately. How-
ever, when the problem is not straightforward, the combinatorial
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effect of multiple features can be fundamentally important. Since
the number of possible combinations is exponential to the number
of features, this task is inherently challenging.

Emerging pattern mining (EPM) [10] is an approach that lists
the patterns where the difference between two datasets is larger
than a given threshold. One of the greatest advantages of EPM
lies in that it can naturally find combinatorial features: each com-
binatorial feature corresponds to an itemset in pattern mining. Al-
though there are many studies on EPM (for a detailed list of these
papers, see Dong and Bailey [9]. Moreover, for similar concepts
such as contrast set mining and subgroup mining, see Novak et
al. [22]), the standard formulation of EPM lacks a statistical assess-
ment, which induces a risk that a significant fraction of found pat-
terns are just false positives; that is, the patterns may have only
been found because of the random nature of data and are actually
insignificant. Statistical testing is widely used to control such risks.
In particular, a procedure of listing patterns can be verified within
the framework of multiple hypothesis testing by considering each
itemset to be a hypothesis.

Undoubtedly, we would like to find as many patterns as possible
for a given level of risk. The study of multiple testing is somewhat
paradoxical: the larger the number of patterns to test is, the less
powerful the test becomes. This is because that the risk of finding
false discoveries rises as the number of patterns to test increases.
Since the number of possible patterns is 2ℓ to the number of the
item ℓ, testing all the patterns is unlikely to result in many pat-
terns. Moreover, testing all possible patterns is computationally
prohibitive. In order to avoid this “combinatorial explosion curse”,
we would like to determine a set of patterns to test before conduct-
ing multiple testing. Unfortunately, most of the existing data min-
ing approaches that take multiple testing into consideration are
not principled when it comes to determining the patterns to test:
they choose the minimum support by using implicit knowledge. If
one selects a set of hypotheses by looking into the database, that
can cause a selection bias that devastates the entire testing pro-
cess. A recently proposed method called Limitless-Arity Multiple-
testing Procedure (LAMP) [28] avoids this pitfall and enables us to
select the patterns to test in a principled way; it effectively reduces
the number of patterns without prior knowledge and alleviates the
combinatorial explosion curse.

There are two different targets to control in multiple testing.
Namely, the family-wise error rate (FWER) and the false discov-
ery rate (FDR) [4]. The former value is the probability of a false
discovery among the found patterns. The aforementioned LAMP
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is designed to control FWER. Although control of FWER is crucial
in some areas such as genome association studies, where a false
discovery can cause severe harm, the restrictive nature of FWER
often limits the statistical power. We hence argue that, in many
cases, some number of false discoveries is tolerable. For example,
feature selection is not harmed much when insignificant features
are added. Moreover, E-commerce data is often analyzed with the
hope of making discoveries that can boost revenue; a certain num-
ber of false discoveries would be tolerable in this case as well. For
such applications, a more modern notion of FDR, i.e., is the prob-
ability of false discoveries among all discoveries, is less restrictive
and would empower one to make discoveries. Unfortunately, there
is as yet no pattern mining method for controlling FDR with an
ability to choose an appropriate set of patterns to test.

The statistical pattern mining is essentially comprised of two
stages: the first stage selects a set of patterns to test, and the sec-
ond stage tests the selected patterns. While LAMP is dependent
on Tarone’s exclusion principle [26] that excludes “untestable” pat-
terns, there is no corresponding notion in FDR, and thus, one must
devise a principledway to reduce a set of patterns. In this paper, we
describe a way to control FDR (Table 1). The key notion for testing
FDR is ”quasi-testability”. The quasi-testability takes the adaptive
nature of FDR into consideration, and hence, it effectively reduces
the hypotheses that are very unlikely to be significant.

The contributions of this paper are as follows. We formalize the
problem of statistical emerging pattern mining (SEPM). We pro-
pose LAMP-EP, a version of LAMP for SEPM, which effectively
lists patterns while controlling FWER. Moreover, we propose QT-
LAMP-EPwhich controls FDR in SEPM.Note that the quasi-testability
based method is not only for emerging patterns and possibly be
applied to any pattern mining method. To verify the performance
of the methods, computer simulations were conducted with eight
real-world datasets. The exhaustive set of simulations shows that
tolerance to a predefined FDR can lead to a significantly larger set
of discoveries.

2 RELATEDWORK
Some studies are based on distributional assumptions. Kirsch et
al. [14] developed a multiple testing procedure that identifies the
best support threshold such that the pattern will be significant by

Table 1: Comparison of methods for controlling FWER and
FDR in pattern mining. LAMP is a statistical association
mining (SAM) method that controls FWER by applying the
Bonferroni method [7] to testable patterns. This paper pro-
poses LAMP-EP and QT-LAMP-EP that control FWER and
FDR in the SEPM problem. QT-LAMP-EP applies the step-
up method [6, 13] to quasi-testable patterns.

LAMP LAMP-EP QT-LAMP-EP
Mining target SAM SEPM SEPM

Multiple Testing FWER FWER FDR
Pattern Reduction Testable Testable Quasi-Testable
Testing method Bonferroni Bonferroni Step-up

assuming the supports of patterns are Poisson-distributed. Low-
Kam et al. [18] proposed a mining method that measures the sig-
nificance of a pattern by the deviation from the null model. In this
paper, we do not assume such models; the only essential assump-
tion we rely on is the i.i.d. property of the transactions.

Unlike most of the existing work, the LAMP algorithm [28] does
not require a stringent distributional assumption and is capable of
determining the minimum support threshold. Some subsequent
studies were inspired by LAMP: Sugiyama et al. [25] considered
statistical association in subgraph mining. Terada et al. [27] and
Felipe et al. [17] integrate the Westfall-Young permutation method
[32] into the pattern selection and showed that it empirically yields
more discoveries than LAMP.Note that theWestfall-Youngmethod
exploits subset pivotality of SAM [20] and not applicable to EPM.
Papaxanthos et al. [23] extended LAMP to cases where categorical
covariates exist. Webb et al. [31] studied association rule mining
and proposed two methods to control the error rate. One method
uses explanatory and holdout datasets: the explanatory dataset is
for pattern discovery and the holdout dataset is for pattern test-
ing. Although this method is only for association rule mining,
our method is partly inspired by theirs in that it uses several in-
dependent datasets. Riondato and Vandin [24] studied the asso-
ciation rule mining. They conducted a statistical learning theory
based analysis that is distribution-free and derived a guarantee
that is similar to FWER. Their analysis requires a minimum sup-
port threshold. Hanhijärvi [12] proposed a procedure to adjust the
Bonferroni correction factor to control FWER by using randomiza-
tion under the assumption of subset pivotality. Lallich et al. [15, 16]
proposed a bootstrap-based algorithm for association mining that
controls a version of FWER that tolerates a fixed number of false
discoveries.

3 PROBLEM SETUP
In this section, we first briefly review the frequent pattern min-
ing (FPM) and emerging pattern mining (EPM) problems. Then, we
propose a new problem called statistical emerging pattern mining
(SEPM), which is an extension of EPM that assesses the chance of
a discovered pattern being a true discovery.

3.1 Frequent Pattern Mining (FPM)
Let D be a database, which is a set of transactions. Each trans-
action is a tuple (x ,y), where x is a pattern and y ∈ {0, 1} is a
label of pattern x . Each pattern x is a subset of ℓ items indexed as
I = {1, 2, . . . , ℓ}; namely, x ∈ 2I . A pattern with a label 0 (resp. 1)
is said to be negative (resp. positive). Given a dataset D, we use
D+ and D− to denote sub-datasets of D that consist of positive
and negative patterns; namely,

D+ = {(x ,y) ∈ D : y = 1}, (1)
D− = {(x ,y) ∈ D : y = 0}. (2)

We assume that each transaction (x ,y) ∈ D is an i.i.d. sample from
an unknown joint distribution P[x ,y] on 2I × {0, 1}; namely, D is
a random variable. All probability and expectations in this paper
are taken on this distribution.

Given a database D and a pattern e ∈ 2I , the occurrences of e
comprise a set of transactions inD that contains e . The support of e



Statistical Emerging Pattern Mining with Multiple Testing Correction KDD ’17, August 13-17, 2017, Halifax, NS, Canada

is the number of occurrences of e . We use Occ(e;D) and Sup(e;D)
to denote the occurrences and the support of e:

Occ(e;D) = {(x ,y) ∈ D : e ⊆ x}, (3)
Sup(e;D) = |Occ(e;D) |. (4)

Given a datasetD and a minimum support τ (τ = 0, 1, . . . , |D|),
a frequent pattern (FP) is a pattern that appears τ or more times in
D. We use EFP(τ ;D) to denote the set of all frequent patterns:

EFP(τ ;D) = {e ∈ 2I : Sup(e;D) ≥ τ }. (5)

The goal of the frequent patternmining (FPM) [1, 3] is to find EFP(τ ;D)
given τ and D. An item i ∈ I is said to be redundant in D if
Occ({i};D) = D; in other words, i appears in all transactions
in D. In this paper, we assume that the given dataset D con-
tains no redundant item. Consequently, the only pattern e ∈ 2I
that satisfies Occ(e;D) = D is the empty pattern e = φ; namely,
EFP(|D|;D) = {φ}.

3.2 Emerging Pattern Mining (EPM)
Whereas FPM does not consider the labels of patterns, the goal
of emerging pattern mining (EPM) [10] is to list all patterns which
frequently appear inD+ but not inD−. Let GR(e;D) be the growth
rate of pattern e that is defined as follows:

GR(e;D) =

0 (Sup

(
e;D+

)
= 0 and Sup(e;D−) = 0),

∞ (Sup
(
e;D+

)
, 0 and Sup(e;D−) = 0),

Sup(e ;D+)
Sup(e ;D−) (otherwise).

(6)

Given a growth rate threshold a > 0, emerging patterns (EPs) are
defined as follows:

EEP(a;D) =
{
e ∈ 2I : GR(e;D) > a

}
. (7)

The EPM problem is to find EEP(a;D) given a and D. Because
listing the entire EEP(a;D) is often computationally prohibitive,
many algorithms for EPM [2, 10, 19] set a minimum support τ for
both Sup

(
e;D+

)
and Sup(e;D−); in other words, usually only pat-

terns e ∈ EEP(a;D) such that Sup
(
e;D+

)
≥ τ and Sup

(
e;D+

)
≥ τ

are enumerated.
The above formulation lacks a statistical assessment: for exam-

ple, howmany of the found EPs are reproducible when we conduct
an EPM with another dataset D ′ generated by the same process?
In the next section, we extend EPM to statistically assess the found
patterns.

3.3 Statistical Emerging Pattern Mining (SEPM)
We first define the true emerging patterns independently of the ob-
served datasetD. Let µe be the positive label probability of pattern
e ∈ 2I that is defined as follows:

µe = P[y = 1 | e ⊆ x] ∝
∑

e ′∈2I :e⊆e ′
P
[
y = 1,x = e ′

]
. (8)

Given a positive label probability threshold a ∈ (0, 1), we define the
true emerging patterns Etrue and false patterns Efalse as follows:

Etrue = {e ∈ 2I : µe > a}, (9)

Efalse = {e ∈ 2I : µe ≤ a}. (10)

Since µe is unobservable, we need to estimate whether or not each
pattern e lies within Etrue from the observed dataset D.

Here, we describe a new problem, called statistical emerging pat-
tern mining (SEPM), which is to find a fraction of the true emerg-
ing patterns Etrue from the given datasetD with a statistical error
bound. Ultimately, we would like to construct an algorithm that
exactly finds Etrue; however, this is impossible because of the ran-
dom nature of D. Instead of finding the whole Etrue, we attempt
to construct an algorithm that finds a set of appropriate patterns
Ealg ⊆ 2I and keeps its error rate under the given significance
level q ∈ (0, 1). We consider two types of error rate, the family-
wise error rate (FWER) and the false discovery rate (FDR), defined
as follows:

Definition 3.1 (FWER). Given a significance level q, an SEPM al-
gorithm is said to control FWER if

P
[
|Ealg ∩ Efalse | ≥ 1

]
≤ q. (11)

FWER is the probability that Ealg contains a false pattern e ∈ Efalse.

Definition 3.2 (FDR). Given a significance level q, an SEPM algo-
rithm is said to control FDR if

E

[
|Ealg ∩ Efalse |

|Ealg |

]
≤ q, (12)

wherewe define 0/0 = 0. FDR is the expected ratio of false patterns
in Ealg.

Note that an SEPMalgorithm that controls FWER at significance
level q also controls FDR at the same level q, but not vice versa. To
guarantee that an SEPM algorithm controls FWER or FDR, we for-
mulate this problem asmultiple hypothesis testing in the following
section.

4 MULTIPLE HYPOTHESIS TESTING
In this section, we first formulate an SEPM problem as multiple hy-
pothesis testing. We then discuss the Bonferroni method and the
step-up method for controlling FWER and FDR, respectively. After
that, we discuss the procedure for reducing the number of hypothe-
ses by testability, which we generalize into two-stage mining.

4.1 SEPM as Multiple Hypothesis Testing
4.1.1 Hypothesis. Section 3.3 formalized SEPM. Considering each

pattern as a hypothesis, SEPM naturally fits into the framework of
multiple hypothesis testing. In SEPM, a null hypothesis that corre-
sponds to pattern e is

H0
e : µe = a. (13)

Rejecting the null hypothesis H0
e implies that the following alter-

native hypothesis is supported:

H1
e : µe > a. (14)

The alternative hypothesis H1
e states that pattern e is considered

to be the true emerging pattern: e ∈ Etrue. Whether the null hy-
pothesis H0

e is rejected or not at a given significance level q is de-
termined by the p-value of pattern e . The p-value is described in
Section 4.1.2. Note that thanks to the monotonicity of the p-value,
the case of µe < a is also covered by evaluating its null hypothesis
H0
e .
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A discovered pattern e ∈ Ealg is called a true discovery if e is
a true emerging pattern: e ∈ Etrue. On the other hand, e ∈ Ealg
is called a false discovery, or Type I error, if e is a false pattern:
e ∈ Efalse. A true emerging pattern e ∈ Etrue that fails to be re-
jected (not discovered) is called a Type II error. Obviously, an al-
gorithm that rejects no hypothesis contains no false discovery and
always controls FWER and FDR at any significance levelq. Such an
algorithm is, however, utterly useless. In general, there is a trade-
off between the number of Type I errors and the number of Type
II errors. We are interested in a multiple hypothesis testing algo-
rithm that controls FWER or FDR at q and while providing high
statistical power, i.e., few Type II errors.

4.1.2 p-value. Under the null hypothesis H0
e , the labels corre-

sponding to pattern e follow a Bernoulli distribution with probabil-
ity a. Thus, the number of positive samples given the total number
of samples follows a Binomial distribution. We denote Ne and N+e
as the realized values of Sup(e;D) and Sup

(
e;D+

)
. Then, the p-

value of pattern e is defined as the probability that N+e or more
samples out of Ne samples have positively labeled under the null
hypothesisH0

e . We use pe to denote the p-value of e , which is com-
puted as follows:

pe = P
[
Sup

(
e;D+

)
≥ N+e | Sup(e;D) = Ne ,H

0
e
]

=

Ne∑
n=N +e

(
Ne
n

)
an (1 − a)Ne−n . (15)

Obtaining the abovepe requires an exponential computation in Ne
and is quite hard when Ne is large. Let µ̂e = N+e /Ne be the empir-
ical positive label probability of e . Then, pe can be approximated
by the following Chernoff bound:

pCe ≤
{
exp(−NedKL(µ̂e ,a)) (µ̂e > a),
1 (otherwise),

(16)

where dKL(p,q) = p log (p/q) + (1 − p) log((1 − p)/(1 − q)) is the
KL divergence between two Bernoulli distributions with their pa-
rameters p and q. Note that the exponential factor of the Chernoff
bound is optimal [8], and thus the approximation using the bound
is very tight for a sufficiently large value of |D|. In this paper, we
use the above pCe as a proxy of the true p-value pe when we need
to compute pe for |D| > 100.

In the case of single hypothesis testing, we reject the null hy-
pothesis H0

e if its p-value pe is lower than the given significance
level q; however, in the case of multiple hypothesis testing, we
need to correct the significance level q based on the basis of the
number of hypotheses.

4.2 Bonferroni Method for FWER
For a single null hypothesisH0

e , the probability of a false discovery
is upper-bounded by its p-value pe . However, the probability of
finding a false pattern (e ∈ Efalse) with pe smaller than any level q,
converges to 1 as the number of hypotheses increases. Therefore,
a multiple hypothesis testing correction is necessary for bounding
FWER.

Let e1, . . . , em be a set ofm patterns that we would like to test.
FWER can be controlled by adapting Bonferroni’s correction [7],

which simply divides the required significance level q by the num-
ber of patternsm. Then, the discovered patterns Ealg by the Bon-
ferroni method is

Ealg =
{
e ∈ {e1, . . . , em } : pe ≤ q

m

}
, (17)

and the Bonferronimethod correctly controls FWER at significance
level q.

4.3 The Step-Up Method for FDR
Unlike FWER, a simple correction factor, such asq/m, is not able to
control FDR appropriately because the ratio of the expected num-
ber of false discoveries depends on all p-values of the patterns to
test. For example, suppose we have tested some patterns and re-
jected k out of them. If all rejected patterns have low p-values, the
expected number of false discoveries in the k rejected patterns is
also low. In such a case, we can safely reject the next pattern even
if its p-value is not very low because the average p-value of the
rejected patterns is smaller than the given threshold. Conversely,
if some of the rejected patterns have high p-values, we have to re-
quire a small p-value for other patterns to be rejected so as to keep
the average p-value of the rejected patterns small. Consequently,
in the case of controlling FDR, whether or not to reject a pattern
depends on the p-values of the other patterns.

The step-up method [13] is widely used for controlling FDR.
Given m patterns e1, . . . , em and their p-values pe1 , . . . ,pem , we
use e(i) to refer the pattern with the ith smaller p-value and p(i) to
denote the p-value of e(i); namely, p(1) ≤ · · · ≤ p(m). Accordingly,
the step-up method outputs the following patterns as discoveries:

Ealg =
{
e ∈ {e1, . . . , em } : pe ≤ p(k)

}
, (18)

k = argmax
0≤i≤m

{
p(i) ≤

q

c(m)
i

m

}
, (19)

where c(m) is an adjustment function. The correction factor in the
step-up method is proportional the number of rejected hypotheses.

When each hypothesis is independent, setting c(m) = 1 suf-
fices to control FDR at a significance level q, which we call the
Benjamini-Hochberg (BH) method [4]. On the other hand, the
Benjamini-Yekutieli (BY) method [6], which uses c(m) = ∑m

i=1(1/i),
controls FDR when hypotheses have an arbitrary dependence.

4.4 Two-Stage Procedure for Improving the
Statistical Power

In SEPM, each pattern is naturally associated with a hypothesis,
and the number of possible patterns is exponential to the number
of items. The larger the number of patternsm to test is, the weaker
the power of finding significant patterns becomes, as indicated by
m in the denominator of (17) and (19). It may be the case that the
number of hypotheses is so large that a simple application of the
Bonferroni or step-up method yields no pattern.

In the context of statistical association mining, LAMP [28] con-
trols FWER and uses Tarone’s exclusion principle for improving its
statistical power.
Tarone’s ExclusionPrinciple [26]: a pattern e is said to be untestable
with respect to significance level q if the lower bound of its p-value
is greater than q. Untestable patterns do not increase FWER and
can be ignored before running a multiple hypothesis test.
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The notion of testability is generalized in the following two-
stage procedure:
Selection Stage: Find Eselect ⊆ 2I : each e ∈ Eselect is testable.
Testing Stage: Conduct a multiple hypothesis test on the selected
testable patterns Eselect and output Ealg ⊆ Eselect where e ∈ Ealg
is rejected at a corrected significance level.

Taking this into consideration, in the next section, we propose
two-stage methods for controlling FWER and FDR in SEPM. We
should point out that checking testability in FDR is not a trivial ex-
ercise because the correction factor of the step-upmethod depends
not only on the number of hypotheses but also on the p-values of
all patterns. To put it differently, we cannot judge whether the
lower-bound of the p-value is greater than the corrected signifi-
cance level or not in the selection stage. To solve this problem,
we put forward a new notion called quasi-testability and use it to
select a subset of patterns to test.

5 PROPOSED METHODS
We propose two SEPM algorithms: LAMP-EP to control FWER and
QT-LAMP-EP to control FDR. Both algorithms are based on the
two-stage procedure discussed above.

5.1 LAMP-EP for FWER
LAMP-EP is a version of LAMP for statistical emerging pattern
mining (SEPM). Testability is critical for reducing the number of
patterns to test: under Bonferroni’s correction, a pattern e is said
to be untestable if the lower bound of its p-value pe is greater than
the corrected significance levelq/m, whereq is a given significance
level and m is the number of patterns to test. In SEPM, from the
definition of the p-values shown in Equation (15), the p-value of
e can be lower-bounded as pe ≥ aSup(e ;D), where Sup(e;D) is
the number of occurrences of e in D. Let ψ (τ ) = aτ . Given q
andm, a pattern e is said to be testable with respect to q andm if
ψ (Sup(e;D)) ≤ (q/m). Furthermore, the untestable patterns can
be safely removed from the candidates thanks to Tarone’s exclu-
sion principle [26].

In the selection stage, we find Eselect ⊆ 2I that only consists
of testable patterns. As the support of a pattern determines its
testability, we want to find an appropriate threshold τ such that
EFP(τ ;D) contains no untestable pattern, and choose Eselect =
EFP(τ ;D). We here introduce the optimal selection thresholdτ ∗FWER
defined as follows:

τ ∗FWER = min
τ

{τ : ψ (τ ) ≤ δFWER(τ ;q,D)} , (20)

δFWER(τ ;q,D) = q

|EFP(τ ;D) | , (21)

where δFWER(τ ;q,D) is the corrected significance level. Choosing
Eselect = EFP

(
τ ∗FWER;D

)
is reasonable because it is the largest set

of frequent patterns that only consists of testable patterns. The
following proposition clarifies the optimization problem of τ ∗FWER.

Proposition 5.1. Given a datasetD and significance levelq such
that a |D | < q, there exists a unique τ ∗FWER such that

ψ (τ ∗FWER − 1) > δFWER
(
τ ∗FWER − 1;q,D

)
, (22)

ψ (τ ∗FWER) ≤ δFWER
(
τ ∗FWER;q,D

)
, (23)

Proof. Let LHS(τ ) = φ(τ ) and RHS(τ ) = δFWER(τ ;q,D). LHS(τ )
and RHS(τ ) are decreasing and increasing functions of τ , respec-
tively. Namely, if τ satisfies LHS(τ ) ≤ RHS(τ ), all τ ′ > τ also
satisfy the same inequation. For τ = 0, LHS(τ ) > RHS(τ ) holds be-
causeψ (0) = 1 and δFWER(0;q,D) ≤ q < 1. For τ = |D|, LHS(τ ) <
RHS(τ ) holds because ψ (|D|) = a |D | < q = δFWER(|D|;q,D),
where we have used the fact that |EFP(|D|;D) | = |{φ}| = 1 in the
last transformation. Combining the above facts, we see that there
exists the unique threshold value τ such that LHS(τ ) > RHS(τ ) and
LHS(τ + 1) ≤ RHS(τ + 1). □

It is easy to see that τ ∗FWER in Eq. (22) and Eq. (23) corresponds
the selection threshold defined in Eq. (20). Due to the monotonic-
ity of each side of the inequality, τ ∗FWER can be found by using a
bisection search.

Taking the above fact into consideration, we propose LAMP-EP
as the following two-stage procedure:
Selection Stage: Find τ ∗FWER and obtain Eselect = EFP

(
τ ∗FWER;D

)
by using a frequent pattern mining algorithm.
Testing Stage: Conduct amultiple test with the Bonferroni’smethod
for Eselect and output the rejected patterns as Ealg.

The LAMP-EP correctly controls FWER at a significance level q.

5.2 QT-LAMP-EP for FDR
In the case of FWER, thanks to Tarone’s exclusion principle, we are
able to remove untestable patterns from the candidate patterns and
conduct Bonferroni’s correction on the remaining patterns. Gilbert
[11] showed that a Tarone-like exclusion principle can also be used
for controlling FDR when the patterns are independent. However,
when the patterns are dependent, which is the case in SEPM, it
is not known whether the same principle applies or not. In or-
der to improve the statistical power under a controlled FDR, we
need a new exclusion principle that reduces the number of pat-
terns before conducting the step-up correction. In the following,
we propose an unbiasedness condition that is sufficient for control-
ling FDR. After that, we propose quasi-testability for optimizing
statistical power. Following the introduction of these notions, we
describe QT-LAMP-EP that controls FDR.

Let Eselect be a set of selected patterns in the selection stage.
Eselect is said to be unbiased with respect to dataset D ′ if, for any
transaction (x ,y) ∈ D ′,

P[y | e ⊆ x] = P[y | e ⊆ x , Eselect] . (24)

If an unbiased Eselect can be obtained in the selecting stage, we can
apply the step-up method for Eselect in the testing stage because
p-value conditioned on the selection is correctly controlled: the
resulting two-stage procedure always controls FDR.

To guarantee unbiasedness, we first split the given dataset D
into two sub-datasets: the calibration dataset Dcarib and the main
datasets Dmain. In the selection stage, we first compute a selec-
tion threshold τFDR fromDcarib and set Eselect = EFP(τFDR;Dmain).
Then, we conduct the step-upmethod for Eselect usingDmain in the
testing stage. This two-stage procedure satisfies the above unbi-
asedness condition with respect toDmain; because of the assumed
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i.i.d. property of the transactions in D, τFDR is determined inde-
pendent of the realization of the main dataset Dmain. Therefore,
whether or not a pattern e is selected is determined solely on its
support size. Since the p-value is defined by the conditional proba-
bility on Sup(e;D) = Ne (Section 4.1.2) and no information on the
labels of these pattern is exploited, thep-value correctly represents
the tail probability if e is a null hypothesis.

Inspired by testability, we propose a new notion called quasi-
testability: e is quasi-testable with respect to q, k̂ , and m̂ if

ψ (Sup(e;Dcarib)) ≤
q

c(m̂)
k̂

m̂
. (25)

If we can set k̂ = k and m̂ = m in Equation (19), quasi-testability
is a sufficient condition for the pattern not to be rejected by the
step-up method. We estimate these values from Dcarib. In the se-
lection stage, we find Eselect ⊆ 2I such that Eselect consists of only
quasi-testable patterns. Similar to the LAMP-EP (Section 5.1) that
selects the largest set of testable patterns, we would like to find
τ ∗FDR defined as follows:

τ ∗FDR = min
τ

{τ : ψ (τ ) ≤ δFDR(τ ;q,Dcarib)} , (26)

δFDR(τ ;q,Dcarib) =
q

c(|EFP(τ ;Dcarib) |)
k̂(τ ;Dcarib)

|EFP(τ ;Dcarib) |
, (27)

where k̂(τ ;Dcarib) is an estimator of k of Equation (19), which is
computed by conducting the step-up correction on EFP(τ ;Dcarib)
by usingDcarib, and δFDR(τ ;q,Dcarib) is the corrected significance
level. The following proposition clarifies the optimization of τ ∗FDR:

Proposition 5.2. Given a datasetDcarib and a significance level
q such that a |Dcarib | < q, there exists a threshold τFDR such that

ψ (τFDR − 1) > δFDR(τFDR − 1;q,Dcarib) (28)
ψ (τFDR) ≤ δFDR(τFDR;q,Dcarib) (29)

and τ ∗FDR defined by Eq. (26) is the minimum of such τFDR.

Proof. Let LHS(τ ) = φ(τ ) and RHS(τ ) = δFDR(τ ;q,Dcarib). Be-
cause ψ (0) = 1 and δFDR(τ ;q,Dcarib) ≤ q < 1 hold, LHS(0) >
RHS(0) holds. For τ = |Dcarib |, LHS(τ ) < RHS(τ ) holds because
ψ (|Dcarib |) = a |Dcarib | and δFDR(τ ;q,Dcarib) = q. From the above
facts, there exists at least one τ such that LHS(τ ) > RHS(τ ) and
LHS(τ + 1) ≤ RHS(τ + 1). By definition, τ ∗FDR is the minimum of
such τFDR. □

Note that the above τFDR is not necessary unique. This unique-
ness is due to the inherent nature of FDR: the corrected significance
level δFDR(τ ;q,Dcarib) is not monotone to the addition of patterns.
This non-monotonicity is closely related to the following fact. In
the step-up method, non-significant patterns can become signifi-
cant if we add more patterns with very small p-values. Unfortu-
nately, finding τ ∗FDR, which results a largest set of quasi-testable
patterns among the possibly non-unique values of τFDR, requires
an incremental search over τ [21, 25], which is not very efficient
when no early termination is applied. In practice, we observed that
τFDR is usually unique and thus corresponds to τ ∗FDR (see Figure 3
in Section 6). Here, therefore, we will look for one of τFDR instead
of the τ ∗FDR and use the found τFDR to select the patterns in the

selection stage. Note that a bisection search over threshold values
can be used for finding one of τFDR.

Finally, we propose QT-LAMP-EP as the following two-stage
procedure:
Selection Stage: Find τFDR by using calibration datasetDcarib and
obtain Eselect = EFP(τFDR;Dmain) by using a frequent pattern min-
ing algorithm.
Testing Stage: Conduct a multiple hypothesis test with the step-
up method for Eselect with dataset Dmain and output the rejected
patterns as Ealg.

The followingTheorem 5.3 states that QT-LAMP-EP strictly con-
trols FDR for a given error rate q.

Theorem 5.3. Assume that Eselect satisfies the unbiased property
(Ineq. (24)). With c(m) = ∑m

i=1(1/i), The FDR of QT-LAMP-EP is q
or smaller.

Proof. Let the total patterns be 2I . Let S ⊆ 2I be a subset of
patterns. LetQ = V /R be the rate of false discoveries, whereV and
R are the numbers of rejected true null hypotheses and rejected
null hypotheses, respectively. To prove Theorem 5.3, we use the
following lemma.

Lemma 5.4. (Theorem 1.3 in Benjamini and Yekutieli [6]) For ar-
bitrary δ ∈ [0, 1], if P[pe ≤ δ | Eselect = S] ≤ δ holds for a true
hypothesis, then E[Q | Eselect = S] ≤ q holds by applying the step-
up method with the BY correction at the second stage.

Note that P[pe ≤ q | Eselect = S] ≤ q holds if Eselect has the un-
biased property. Therefore, the FDR is bounded as follow:

FDR = E[Q] =
∑
S ⊆2I

E[Q | Eselect = S]P[Eselect = S]

≤
∑
S ⊆2I

qP[Eselect = S] (By Lemma 5.4)

= q.

□

6 EXPERIMENTS
This section describes the results of computer simulations. First,
we show the results for a synthetic dataset on which we measured
the false discovery rate. Second, we show the results for eight real-
world datasets to verify the statistical power of our algorithms.

6.1 Hardware and Software
We used a Linux machine with two 12-Core 2.40GHz Intel Xeon
(E5-2620 v3) CPUs and 132GB of memory for running all the ex-
periments. LAMP-EP and QT-LAMP-EP each used an FPM algo-
rithm as a building block. We implemented our algorithms on top
of LCM++1, an open source C++ implementation of the LCM [29]
algorithm. LCM is an award-winning2 algorithm for frequent pat-
ternmining and is known as one of the fastest one for FPM. LCM++
is a little bit slower than the original implementation of LCM but
has improved readability; it enables each of our experiment that
involves from thousands to a half a million transactions to be com-
pleted within a day. For the ease of computation, we restricted our
1https://code.google.com/archive/p/lcmplusplus/
2http://fimi.ua.ac.be/fimi04/
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Figure 1: Number of discovered patterns. The horizontal
axis indicates the maximum size of the patterns to search,
where +∞ indicates a limitless procedure where all patterns
are searched.

interest to closed itemsets that had no superset of the same occur-
rence. We used a bisection search over threshold values to find
τ ∗FWER and τFDR for LAMP-EP and QT-LAMP-EP, respectively.

6.2 Experimental Settings
Throughout the experiments, the significance level q was set to be
0.05 for both FWER and FDR mining.

We compared the following algorithms as to their numbers of
discoveries and corrected significance levels: EPM is a traditional
emerging pattern mining algorithm for finding EEP(a;D); we set
its minimum support to 10 for the sake of a short enough compu-
tation. LAMP-EP and QT-LAMP-EP are our methods. We tested
the BH and BY corrections (i.e., c(m) = 1 and

∑m
i=1(1/i), resp.)

for QT-LAMP-EP. BH is the standard BH correction that where
the number of hypotheses m is all the possible patterns 2I . We
did not use the standard Bonferroni’s method that tests all the pat-
terns because it always finds the same number or fewer discover-
ies than BH does. In QT-LAMP-EP, we used 80% of D as the main
dataset Dmain. The calibration dataset Dcarib was resampled from
the other 20% ofD until its size reaches the size ofDmain. Namely,
we spend 20% of the dataset to determine an appropriate value of
τFDR. Although this splitting generated a randomness in the algo-
rithm, the randomness had little effect on the large databases. The
other algorithms used the entire D.

6.3 Synthetic Dataset
To show how many true and false discoveries were found by the
algorithms listed in Section 6.2, we conducted simulations with a
synthetic dataset. The dataset consisted of 100, 000 transactions
that involved itemsets with |I | = 100. 10% of the transactions
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Figure 2: Corrected significance level of algorithms. The
horizontal axis is the same as in Figure 1, and the vertical
axis is the significance level. The LAMP-EP results show the
corrected significance level. The QT-LAMP-EP results show
qk/(c(m)m), where k is the number of rejected hypotheses
among m ones. We omit presenting the significance of BH
because its significance level was too low to draw in the fig-
ure.

contained some of items {1, . . . , 10} and P[y | x] = 0.7 for these
transactions. The other 90% of the transactions contained items
{11, 12, . . . , 100} and P[y | x] = 0.5. The value of a was set to be
0.5, and thus, the patterns that contained items in {11, 12, . . . , 100}
were false patterns.

Table 2 shows the results of the experiment. EPM, which lacks
a statistical assessment, finds the largest set of true discoveries but
suffers a very high family-wise error rate. LAMP-EP controls both
FDR and FWER. QT-LAMP-EP with both BH and BY adjustments
factor maintains FDR at a level less than q.
Necessity of BY adjustment: The BY adjustment (i.e., c(m) =∑m
i=1 1/i) is theoretically required for controlling FDR. However,

in Benjamini and Yekutieli [6], it is noted that the BY adjustment
is “very often unneeded, and yields too conservative a procedure”.
This remark is consistent with our result that QT-LAMP-EP (BY)

Table 2: Performance of the procedures. TDs and FDs corre-
spond to true and false discoveries, respectively. The results
are empirical averages over 100 runs.

algorithms # of TDs # of FDs FDR FWER
EPM 516.50 3848.61 0.88 1.00

LAMP-EP 166.32 0.01 6.02e-05 0.01
QT-LAMP-EP (BH) 230.87 4.10 0.017 0.99
QT-LAMP-EP (BY) 184.10 0.40 2.13e-03 0.32
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Figure 3: Appropriateness of τFDR. The horizontal axis is
the minimum support τ of FPM, and the vertical axis is the
number of discovered patterns when we conducted the BH
method on the frequent patterns EFP(τ ;Dmain). The horizon-
tal line indicates τFDR that is optimized by QT-LAMP-EP.

hasmuch smaller FDR thanq: even on this synthetic dataset where
the correlation among patterns is very large, the BH adjustment
(i.e., c(m) = 1) alone is enough to control FDR.
Gap between the actual FDR and q: There are several reasons
for the gap between the actual FDR and q = 0.05: First, the step-up
method actually controls FDR at a level q(m0/m) ≤ q, where m0
is the number of true null hypotheses (i.e., insignificant patterns)
that are selected in the first stage [5]. Second, the discreteness of
the Binomial probability implies that P[pe ≤ δ ] is smaller than δ .
Third, since thep-values in our experiment were highly dependent,
the probability of having an extremely low p-value was not very
large. For these reasons, it is not surprising that the actual false
discovery rate of QT-LAMP-EP was smaller than q.

6.4 Real-world Datasets
The simulations involved eight datasets. Mushroom dataset was
obtained from the UCI repository3. The Splatoon4 dataset con-
sisted of the results of online multi-player games. We gathered
the results of about 400, 000 Splatoon matches on Stat.ink5 from
October 31, 2015 to January 30, 2016. We converted the players’
weapons, ranks, and the features related to the battle arena into
items. The other six datasets (A1a, Cod-RNA, Covtype, IJCNN1,
Phishing, and SVMGuide3) were obtained from the libSVM dataset
repository6. The real-valued features of some datasets were di-
vided into two classes by thresholding at the median, and each

3https://archive.ics.uci.edu/ml/datasets/Mushroom
4https://www.nintendo.com/games/detail/splatoon-wii-u
5https://stat.ink/
6https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

class was converted into an item. The statistics of the datasets are
shown in Table 3. We set the value of a to 0.3 for A1a, IJCNN1, and
SVMGuide3, 0.4 for Cod-RNA, 0.5 forMushroom, 0.55 for Covtype,
0.6 for Splatoon, and 0.8 for Phishing. These values are set so as
the number of the found patterns are modest.

Figure 1 shows the number of found patterns. The BH procedure
that takes all possible patterns into consideration performed worst.
This means our algorithms were effective at boosting the statisti-
cal power of finding patterns. For all datasets, when the maximum
size of patterns to search was large, QT-LAMP-EP with both the
BH and BY correction outperformed LAMP-EP. QT-LAMP-EPwith
the BH adjustment always finds more patterns than the QT-LAMP-
EP with the BY adjustment; this result is natural since the BH ad-
justment admits a larger significance level. The advantage of QT-
LAMP-EP is even larger in terms of the significance level (Figure
2). In the limitless case, QT-LAMP-EP (BY), which strictly controls
FDR (Theorem 5.3), admitted about a 102 to 103 times larger sig-
nificance level than that of LAMP-EP. QT-LAMP-EP (BH), which
is very likely to control FDR as shown in the synthetic data, even
admitted a 10 times larger significance level on many datasets.

6.5 Appropriateness of the SelectionThreshold
To verify the appropriateness of the selection threshold τFDR in
terms of its power to make discoveries, we varied the minimum
support τ and conducted a BH over all frequent patterns with τ .
Figure 3 shows the number of found patterns as a function of τ :
Here, the τFDR selected byQT-LAMP-EP does not alwaysmaximize
the number of patterns but was always a very close-to-optimal
choice of τ . This result empirically supports the proposed criteria
based on quasi-testability.

6.6 Sensitivity on the Value of a
We also conducted simulations with different values of the posi-
tive label probability threshold a and no maximum pattern sizes.
Figure 4 shows the results of that experiment. The definition of
SEPM means that it natural that the number of found patterns is
the decreasing as a increases. The fact that QT-LAMP-EP finds
more pattern than LAMP-EP is consistent with all the values of a
and datasets.

Table 3: Statistics of the datasets. |D| and |I | are the numbers
of transactions and items (features), respectively. Avg |x | is
the averaged number of items in a datapoint.

dataset |D | |I | Avg |x | |D+ |/ |D |
svmguide3 1,243 42 20.9 0.24

a1a 1605 174 13.9 0.25
mushroom 8,124 117 22.0 0.48
phishing 11,055 813 30.0 0.56
ijcnn1 49,990 44 13.0 0.10
codrna 59,535 16 8.0 0.33
splatoon 404,515 54 11.0 0.50
covtype 581,012 64 11.9 0.49
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Figure 4: Number of patterns found as a function of a. The
horizontal axis is the value of a, and the vertical axis is the
corresponding number of found patterns.

7 CONCLUSION
We studied the problem of finding emerging patterns that are sig-
nificant in the sense of multiple testing. We devised procedures,
called LAMP-EP and QT-LAMP-EP to control FWER and FDR.The
difficulty of multiple testing stems from the fact that the number of
hypotheses is exponential to the size of the itemset; this motivated
us to select a subset of patterns to test. In controlling FWER, as
is done in previous papers [25, 28], our procedure selects testable
hypotheses. For controlling FDR, we proposed the criteria of quasi-
testability that effectively eliminates most of the hypotheses by es-
timating the corrected significance level. Notably, ours is the first
method that controls FDR in combinatorial pattern mining with
adaptive selection of hypotheses. It is not very difficult to apply
our QT-LAMP-EP to other pattern mining tasks such as statistical
association mining. The following are important directions of fu-
ture works:
A cleverer data splitting: in deriving τFDR, we used a calibra-
tion dataset that is different from the main dataset. This restric-
tion comes from the requirement of unbiasedness (Ineq. (24)). If
one can fully utilize the entire dataset for the testing by relaxing
the requirement, it will increase the efficiency of how the dataset
is used.
A more efficient computation of τFDR: Sugiyama et al. [25] dis-
cussed that an incremental search with an efficient early termina-
tion rule runs faster than a bisection search. An incremental search
algorithm for QT-LAMP-EP, preferably with a one-pass modifica-
tion [21], would enable QT-LAMP-EP to be applied to datasets with
billions of transactions. Alternatively, a bisection search that starts
with an estimated lower bound [30] of τFDR can be much faster
since it can avoid computing FPs with low support thresholds.
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