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Needs for resources in deep learning

Improvements in various tasks by deep learning
® Task-specific representation learning needs more data

Translation performance (DE->EN) [Sennrich+ 2019]
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Gaps In available resources across langs

Among 7097 languages in the world [simons+ 2018],
massive resources are obtainable only in few

® Universal dependencies project covers only 76
[Nivre+ 201X]

Large gap in model performances among languages

Can we exploit resources of resource-rich languages
for training in resource-poor languages?



Problem settings of this study

Available resources:

® Labeled data for training in the source language
® Raw corpora in both languages
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Preliminary:

Cross-lingual word embeddings (CLWE)

Language-independent representation of words
[Mikolov+ 13]

® Words from two lang. are represented in a shared space
® Similar words from different languages are close
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Existing multilingual models

Fix the emb. layer to general CLWE during training
[Duong+ 17, Chen+ 18]
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Related work:

Task-specific CLWE with specialized dict.

Utilize task-specific bilingual dict. to obtain CLWE

[Gouws+ 15]
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Related work:

Task-specific CLWE with specialized dict.

In this study:
Obtain task-specific CLWE without relying on
any cross-lingual resources




Proposal.
Multilingual model with task-spec emb.

Project general CLWE to the emb. layer optimized
for the task by cross-task embedding projection
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Locally linear mapping:

ldea: local topology of embeddings

Assumption:

® Words adequately close in the general CLWE are also
close in task-specific space
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Locally linear mapping: .
Step 1: selecting nearest neighbors

For each target word (ien), select k-nearest neighbors
In the general CLWE
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Locally linear mapping: '
Step 2: local topology in general space

In general CLWE, learn linear combination of nearest
neighbors that reconstructs the the target word
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Locally linear mapping:

Step 3: task-specific word embeddings

Compute task-specific word emb. of the target word
as the linear combination with the induced weights
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Proposal.
Hyperparameter search

Dev. set in the target language is required to tune
the hyperparameter k (size of nearest neighbors)

Tuning to the task (no additional resources)
Assume the best k is independent of language

Apply LLM to the embeddings of the source language
and evaluate on the dev. set of the source language

(Tuning to the task/language)

Utilize small development set (100 examples)
of the target language




Experimental setup (1/2)

Goal:

® Does out task-specific word embeddings improve
the multilingual model?

Task:

® Topic classification task (and sent. analysis)
Languages:

® Source language: English (en)

® Target languages:
® Danish (da), ltalian (it), French (fr), Swedish (sv)

Datasets:
® RCV1/2 dataset (four topics)



Experimental setup (2/2):
Models to compare

Compare the following two models to evaluate
the effect of task-specific CLWE

® Experiments on more models on the paper
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Results: o .
Topic classification task

Classification accuracies in four languages

____ Method | k-tuning en-da en-it | en-fr len-sv_

CLWE fixed - 0.621 0.535 0.772 0.816
CLWE opt (Proposed) task  0.672 0.623 0.885 0.831
CLWE opt (Proposed) task/lang 0.687 0.615 0.879 0.830

® CLWE opt outperforms the baseline
® Tuning k for task and language is not necessary



Conclusion and future work

Conclusion

® Proposed a method to build a multilingual model
with task-specific word embeddings

® Evaluated our method on real tasks
and confirmed its effectiveness

Future work

® Evaluate this method on wider range of tasks, languages,
and models

® Further improve the quality of locally linear mapping



