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Aa About Paper

Original Paper

* A system description paper for The 4t Workshop on Asian
Translation (WAT 2017)

Summary

* Proposed novel tricks for Neural Machine Translation (NMT)
- Model-independent
- Easy to apply

* Apply all the possible tricks to a vanilla NMT system

e Outperformed best score of WAT 2016



As System Overview
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Task:
ASPEC En-Ja Translation

Model:

Seq2seq model with attention
[Bahdanau+, 2015]

+ Model Independent Tricks



Ra Approaches

* Trick used when:
— Training the model
* Adam Optimization [Kingma and Ba, 2015]
e Sub-word Translation (SentencePiece)
[ « Embedding Layer Initialization

* Large Batch Size ] Novel Tricks

— Prediction
 Exhaustive Ensemble Search
e Beam Search
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Ao Novel Tricks for a Better Optimum

— Embedding Layer Initialization:

Good initialization should lead to fast convergence
to a good local optimum

— Large Batch Size:
Tested improvements for sizes up to 512 sents



As Novel Tricks for a Better Optimum

— Embedding Layer Initialization:
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Aa Embedding Layer Initialization

Encoder

Decoder
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« No additional resources
« Very quick pretraining




As Novel Tricks for a Better Optimum

— Large Batch Size:
Tested improvements for sizes up to 512 sents



Aa Small Batch makes Update Noisy

In a step of SGD (and its variance):

1. Take small portion of data (batch) 37
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2. Compute gradient of weights on batch
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Aa Small Batch makes Update Noisy

llllllllllllllllllllllllllllllll

In a step of SGD (and its variance): :  ~64 sentences

1. Take small portion of data (batch) = ‘eteemsrriin 3
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2. Compute gradient of weights on batch
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As Experiments

1. Effect of Initialization Methods:
Will the proposed method speed up convergence and
improve translation quality?

2. Effect of Large Batch Size:
Will large batch sizes (32 to 512) improve translation
quality?



As Experiment Setup

—Tralning
» 200k steps (save checkpoint at every 2k)

e Checkpoint with highest BLEU score (in dev) is
used in evaluation

— Evaluation
* KyTea segmentation to compute the BLEU score
* Greedy search for experiments



Aa Experiments

1. Effect of Initialization Methods:
Will the proposed method speed up convergence and
improve translation quality?



A3 Effect of Initialization Methods

— Purpose:
Investigate the effect of embedding layer initialization
using CBOW embeddings

Best performance among: h
CBOW [Mikolov+ 2013]
Skip-gram [Mikolov+ 2013]
GloVe [Pennington+ 2014]
— Compare: f SI-Skip-gram  [Bojanowski+ 2017])

« CBOW embeddings
e Random initialization (Gaussian Distribution)
* Random initialization (Uniform Distribution)



A3 Effect of Initialization Methods: Results

Training curves for different initialization methods
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A3 Effect of Initialization Methods: Results

Training curves for different initialization methods

45
401 Faster startup 35.50
35] e ‘._VA_', a-‘-.’:‘-‘-';.-.';'--“..--'-.7'-‘---‘77.-‘-
vill 7 T 33.71
(@)
O 25
@ 20
m 15] —— Initialized by CBOW
101 Initialized by Gaussian
s\ |+ 0 e Initialized by Uniform
0~ 0k 50k 100k 150k 200k

The number of steps



A3 Effect of Initialization Methods: Results

Training curves for different initialization methods
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Aa Experiments

2. Effect of Large Batch Size:
Will large batch sizes (32 to 512) improve translation
quality?



A Effect of Large Batch Size

— Purpose:
Investigate the effect of large batch size

—Compare:
e Batch sizes: 32, 64,128, 256, 512
* |nitialization methods: CBOW, Gaussian



Aa Effect of Large Batch Size: Results

Performance at highest BLEU for each model
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Larger batch size leads to higher BLEU score until 256



Ra Effect of Large Batch Size: Results

Performance at highest BLEU for each model
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+8.45 BLEU

Larger batch size leads to higher BLEU score until 256



Ra Effect of Large Batch Size: Results

Performance at highest BLEU for each model
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Aa Tradeoff of Large Batch Size

* Pros:
— Better translation performance

e Cons:

— Higher memory consumption
 Titan X/Xp (12GB RAM) not enough for batch size 512

— Slower convergence

* Training of 512 batch size takes 7 days
(c.f. batch size 256: 3 days)

e Rule of thumb: 256 performs well and trains in an
acceptable time



Aa BLEU Gains by Two Tricks

BLEU Score

Gaussian 23.83
32 CBOW 27.05 +4.86
256 Gaussian 34.20 +10.37
256 CBOW 35.50 +11.67

By combining these two tricks, we gained +11.67 BLEU score
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A3 Prediction Tricks

To further improve translation quality, we implemented these
techniques for prediction:

— Exhaustive Ensemble Search:
Search all combinations of models for the best performance
when combined

— Beam Search:
Keep multiple hypothesis sentences to get the best prediction
on the model ensemble



A Summary of Approaches

* Impact of tricks on the BLEU score

: BLEU

Baseline (existing tricks) 23.83
+ Embedding Layer Initialization 27.05
+ Large Batch Size 35.50
+ Exhaustive Ensemble Search 38.00
+ Beam Search (width=256) 39.03

+3.22
+11.67
+14.17
+15.20

Tricks have an additive effect on translation quality

\%



A Summary of Approaches

* Impact of tricks on the BLEU score

BLEU :

System Performance -
_|_ o
N BLEU (KyTea) (Test) 38.93 67
+ Human Evaluation 68.000 17
+ ] 37U ¥15.20

Tricks have an additive effect on translation quality




A3 Transition of best score in WAT

50
44 .94
42.8
40 - 38.17 38.2
376}2 e
. Our result
5 30 A
@
o
-
m 20 7
101 Seg2Seq
with attention Transformer
O T T T T T
2014 2015 2016 2017 2018

year



Asian

Universities
Alliance

folp

Conclus




A3 Conclusion

 Demonstrated improvements with:
— Training the model
 Adam Optimization
e Sub-word Translation

* Embedding Layer Initialization
* Large Batch Size

Novel tricks: leads to a better local optimum
— Prediction

e Exhaustive Ensemble Search
e Beam Search

Improves upon proposed tricks



