

A BAG OF USEFUL TRICKS FOR PRACTICAL NEURAL MACHINE TRANSLATION

M. Neishi*, J. Sakuma*, S. Tohda*, S. Ishiwatari (The University of Tokyo)

*Contributed Equally

N. Yoshinaga, M. Toyoda (IIS, the University of Tokyo)

RONTENT

- 1 Overview
- 2 Proposed Tricks
- 3 Experiments
- 4 Model with All Tricks
- 5 Conclusion

Overview

About Paper

Original Paper

 A system description paper for The 4th Workshop on Asian Translation (WAT 2017)

Summary

- Proposed novel tricks for Neural Machine Translation (NMT)
 - Model-independent
 - Easy to apply
- Apply all the possible tricks to a vanilla NMT system
- Outperformed best score of WAT 2016

System Overview

Task:

ASPEC En-Ja Translation

Model:

Seq2seq model with attention [Bahdanau+, 2015]

+ Model Independent Tricks

R Approaches

- Trick used when:
 - Training the model
 - Adam Optimization [Kingma and Ba, 2015]
 - Sub-word Translation (SentencePiece)
 - Embedding Layer Initialization
 - Large Batch Size

Novel Tricks

- Prediction
 - Exhaustive Ensemble Search
 - Beam Search

Proposed Tricks

Novel Tricks for a Better Optimum

– Embedding Layer Initialization:

Good initialization should lead to fast convergence to a good local optimum

– Large Batch Size:

Tested improvements for sizes up to **512 sents**

Rovel Tricks for a Better Optimum

– Embedding Layer Initialization:

Good initialization should lead to fast convergence to a good local optimum

– Large Batch Size:

Tested improvements for sizes up to 512 sents

R Embedding Layer Initialization

Rovel Tricks for a Better Optimum

- Embedding Layer Initialization:

Good initialization should lead to fast convergence to a good local optimum

– Large Batch Size:

Tested improvements for sizes up to **512 sents**

Small Batch makes Update Noisy

In a step of SGD (and its variance):

Take small portion of data (batch)

Compute gradient of weights on batch

Update weight by

$$w \leftarrow w - \frac{\partial L}{\partial w}$$
 Noisy update

sents

Noisy

gradient

Small Batch makes Update Noisy

In a step of SGD (and its variance):

Take small portion of data (batch)

~64 sentences [Morishita+ 2017]

sents

Compute gradient of weights on batch

Less noisy gradient

Update weight by

$$w \leftarrow w - \frac{\partial L}{\partial w}$$

Less noisy

Experiments

R Experiments

1. Effect of Initialization Methods:

Will the proposed method speed up convergence and improve translation quality?

2. Effect of Large Batch Size:

Will large batch sizes (32 to 512) improve translation quality?

R Experiment Setup

—Training

- 200k steps (save checkpoint at every 2k)
- Checkpoint with highest BLEU score (in dev) is used in evaluation

Evaluation

- KyTea segmentation to compute the BLEU score
- Greedy search for experiments

R Experiments

1. Effect of Initialization Methods:

Will the proposed method speed up convergence and improve translation quality?

2. Effect of Large Batch Size:

Will large batch sizes (32 to 512) improve translation quality?

Refrect of Initialization Methods

– Purpose:

Investigate the effect of embedding layer initialization

using CBOW embeddings

– Compare:

- CBOW embeddings
- Random initialization (Gaussian Distribution)
- Random initialization (Uniform Distribution)

Best performance among:

[Mikolov+ 2013]

Skip-gram [Mikolov+ 2013]

[Pennington+ 2014]

[Bojanowski+ 2017]

Results Effect of Initialization Methods: Results

Training curves for different initialization methods

Results Effect of Initialization Methods: Results

Training curves for different initialization methods

Results Effect of Initialization Methods: Results

Training curves for different initialization methods

R Experiments

1. Effect of Initialization Methods:

Will the proposed method speed up convergence and improve translation quality?

2. Effect of Large Batch Size:

Will large batch sizes (32 to 512) improve translation quality?

R Effect of Large Batch Size

– Purpose:

Investigate the effect of large batch size

– Compare:

- Batch sizes: 32, 64,128, 256, 512
- Initialization methods: CBOW, Gaussian

Results Effect of Large Batch Size: Results

Performance at highest BLEU for each model

Larger batch size leads to higher BLEU score until 256

Ho Effect of Large Batch Size: Results

Performance at highest BLEU for each model

Larger batch size leads to higher BLEU score until 256

Ho Effect of Large Batch Size: Results

Performance at highest BLEU for each model

Larger batch size leads to higher BLEU score until 256

R Tradeoff of Large Batch Size

- Pros:
 - Better translation performance
- Cons:
 - Higher memory consumption
 - Titan X/Xp (12GB RAM) not enough for batch size 512
 - Slower convergence
 - Training of 512 batch size takes 7 days (c.f. batch size 256: 3 days)
- Rule of thumb: 256 performs well and trains in an acceptable time

BLEU Gains by Two Tricks

Batch Size	Initialization	BLEU Score	Gain
32	Gaussian	23.83	-
32	CBOW	27.05	+4.86
256	Gaussian	34.20	+10.37
256	CBOW	35.50	+11.67

By combining these two tricks, we gained +11.67 BLEU score

Model with All Tricks

Prediction Tricks

To further improve translation quality, we implemented these techniques for prediction:

— Exhaustive Ensemble Search:

Search all combinations of models for the best performance when combined

– Beam Search:

Keep multiple hypothesis sentences to get the best prediction on the model ensemble

Summary of Approaches

Impact of tricks on the BLEU score

Tricks	BLEU (dev)	Gain
Baseline (existing tricks)	23.83	-
+ Embedding Layer Initialization	27.05	+3.22
+ Large Batch Size	35.50	+11.67
+ Exhaustive Ensemble Search	38.00	+14.17
+ Beam Search (width=256)	39.03	+15.20

Tricks have an additive effect on translation quality

Summary of Approaches

Impact of tricks on the BLEU score

Tricks have an additive effect on translation quality

Ransition of best score in WAT

Conclusion

R Conclusion

- Demonstrated improvements with:
 - Training the model
 - Adam Optimization
 - Sub-word Translation
 - Embedding Layer Initialization
 - Large Batch Size

Novel tricks: leads to a better local optimum

- Prediction
 - Exhaustive Ensemble Search
 - Beam Search

Improves upon proposed tricks