
Papers CHI 99 15-20 MAY 1999 

Hyper Mochi Sheet: A Predictive Focusing Interface for 
Navigating and Editing Nested Networks through ia 

Multi-focus Distortion-Oriented View 

Masashi Toyoda and Etsuya Shibayama 
Department of Mathematical and Computing Sciences 

Tokyo Institute of Technology 
2- 12- 1 Oookayama, Meguro-ku, 

Tokyo 152-8552 JAPAN 
+8 l-3-5734-3870 

{toyoda,etsuya} @is.titech.ac.jp 

ABSTRACT 

Multi-focus distortion-oriented views are useful in viewing 
large information on a small screen, but still have problems 
in managing multiple foci during editing. The user may have 
to navigate information space by focusing and defocusing 
multiple parts to obtain multi-focus layouts that change ac- 
cording to various editing situations. As a result, it becomes 
haphazard to navigate and edit large nested networks such 
as hypertexts. We propose a user interface for quickly ob- 
taining desirable layouts. The interface uses two techniques: 
focus size prediction and predictive focus selection. These 
techniques are based on a user test and experiences in appli- 
cations. We also describe two example applications. 

Keywords 
distortion-oriented view, multi-focus, editing, navigation 

INTRODUCTION 

Multi-focus distortion-oriented views [ 14,10,1,4] are useful 
in viewing large information on a small screen. These views 
provide more flexible layouts of focused parts while preserv- 
ing the overall context compared to single-focus distortion- 
oriented views[8, 13, 12,7,5]. As such they seemingly have 
the potential for scalable editing of large networks such as 
visual programs and hypertexts. In reality, however, they 
have not yet supported efficient editing interfaces of large 
networks due to problems in managing multiple foci. More 
flexibility and freedom of multi-focus layouts often require 
more work by the user than in single-focus views, in which a 
change of layout involves only focus movement and change 
in magnification factor. Rather, in multi-focus views, the 
user may have to perform boring focusing and defocusing 
ouerations on multiple parts of the screen to obtain a layout 

‘%wkzht ACM 1999 0-201-48559-1/99/05...$5.00 

suitable for a particular editing situation, which changes fre- 
quently during editing. 

Before discussing the problems in detail, we show our objec- 
tive applications, which are editors that handle hierarchically 
nested networks with hyperlinks such as visual pro;grams, hy- 
pertexts, and file systems. In Figures 1 and 2, we show two 
concrete applications. 

Figure 1 shows the KLIEG visual programming environ- 
ment [ 151, which addresses the scalability problem. KJLIEG 
allows the programmer to edit multiple modules inI one view 
and to construct nested data-flow networks for programming 
in the large. In Figure 1, there are four modules at the top 
level (nqueens, combiners, master-workernqoeens, and 
dispatchers). In this case, to edit master-workernqueens 
referring combiners and dispatchers, the user magnifies 
these modules and shrinks nqueens. In addition, a program 
includes invisible hyperlinks from components to their defi- 
nitions and documents, and a document is also a hypertext. 
When the user follows a hyperlink, KLIEG automatically fo- 
cuses its destination and defocuses unnecessary foci. Using 
KLIEG, the user can easily drag-and-drop components be- 
tween modules and can navigate a program with hyperlinks. 

Figure 2 shows a novel presentation tool, which can handle 
hierarchically structured slides with hypedinks. In effect, it 
can be used as a 2D visual outline processor for hypertexts. It 
allows the creator to edit a presentation through multi-focus 
views. It can also simultaneously show multiple slides and 
their overview during presentation. Each picture in Figure 2 
is a different view of the same presentation. The top view 
is an overview, and the bottom view is a focus+context view 
in which a slide titled “Structure of Diagrams” is being fo- 
cused. With a single mouse operation, the presenter can fol- 
low a hyperlink from a slide to the next one, and the system 
automatically moves the focus to the next slide and adjusts 
slide sizes. The creator of the presentation does not have 
to explicitly designate these sizes during editing, ra.ther, the 
system predicts the sizes from a history of editing operations. 

504 



C H I  9 9  15-20 MAY 1999 Papers

I

To be more specific, our algorithm is intended to address the
following problems:

l The user can resize a node to arbitrary sizes during edit-
ing, but it is tedious to resize the node for focusing and
defocusing every time on editing its contents. It might be
useful if the system allows the user to focus and defocus a
node in simple operations. However, since a set of appro-
priate node sizes for focusing and defocusing is different
from each node, it is a tedious task to explicitly designate
these sizes for each node.

l A desirable layout after following a link may vary accord-
ing to the current editing situation. When the user follows
a hyperlink, it is always necessary to focus the destination
of the link, but the source and other foci may or may not
be necessary. On one hand, if the user still wants to edit
the source, both the source and the destination should be
focused. On the other hand, after the user finished edit-
ing the source, it is not necessary to retain the focus on the
source.

To address these problems, we propose a user interface that
allows the user to obtain easily desirable layouts for various
editing situations. We implemented this interface as a library;
Hyper Mochi Sheet. The interface uses the following predic-
tive techniques.

l Focus size prediction automatically determines a pair of
node size, one being used when the node is focused and
the other being used when the node is defocused. It is not
necessary for the user to explicitly set these sizes, rather,
our technique predicts appropriate sizes of nodes using a
history of editing commands.

l Predictive focus selection automatically selects necessary

foci and discards unnecessary foci during navigation with
hyperlinks. When the interface focuses and defocuses
nodes, it uses sizes predicted by the focus size prediction.
Since necessities of foci may depend on application se-
mantics, Hyper Mochi Sheet provides a default focusing
behavior that can be customized by the application pro-
grammer.

The next section discusses related work. Then we describe
the basic interface of Hyper Mochi Sheet. This is followed
by explanations of prediction techniques, and an evaluation.
Finally, we conclude.

RELATED WORK

There have been various user interfaces that handle hierarchi-
cal networks with multi-focus distortion-oriented views [10,
14, 1,4].  There have been, however, little research support-
ing automatic multi-focus management and hyperlink nav-
igation. Our approach is a new attempt to support them
using predictive techniques that are mainly used in PBD
(programming-by-demonstration) systems such as [9,6].

Layout-independent Fisheye  View[10] shows an algorithm
that can be used for navigating nested networks. However, it
describes merely an algorithm and there are few discussions
about the way to construct the user interface.



Papers CHI 99 15-20 MAY 1999 

Figure 3: A distortion view in Hyper Mochi Sheet 

The Continuous Zoom (CZ)[ 11 uses smooth animation dur- 
ing zooming, and supports efficient navigation through the 
hierarchy of a nested network. However, it neither supports 
navigation with hyperlinks nor editing graphs. The Intelli- 
gent Zoom[2] combines the CZ with intelligent supports in 
network supervisory control systems. It suggests opening 
(magnifying) a node in an alarm condition, and when the 
node is opened it automatically selects an appropriate rep- 
resentation from several aspects of the node such as a bar 
chart and a trend diagram. However, since it merely suggests 
opening and closing nodes, it does not reduce explicit focus- 
ing and defocusing. 

The rubber sheet approach[l4] and 3-dimensional pliable 
surface[4] put emphasis on interfaces that support flexible 
selection of a shape as a focal region. It is, however, difficult 
to access nodes deep in a hierarchy. The user must specify 
focal regions and stretch them repeatedly for accessing deep 
information. It is a tedious and boring task. 

Pad++[3] is a single focus and pan/zoom based interface. It 
supports multiple foci by multiple windows called portals. 
Since it does not perform automatic portal management, the 
user has to create, delete, and arrange multiple portals man- 
ually. Pad++ also supports hyperlink navigation in a single 
focus view, but it does not address multi-focus issues in hy- 
perlink navigation. 

PBD systems, such as Metamouse[B] and Eager[6], predict 
operations that the user will perform next. These systems 
automatically extract patterns of recurring operations from 
a history, and create macros by generalizing these patterns. 
However, in our approach, the purpose is to reduce explicit 
designation of sizes and necessary foci. Therefore it is of- 
ten necessary to predict operations that have never been per- 
formed. 

BASIC INTERFACE OF HYPER MOCHI SHEET 

To make distortion views, we use an approach similar to the 
Continuous Zoom[ I]. Figure 3 displays an application of our 
approach to a 2D grid graph. When some nodes are mag- 
nified in the left view, it becomes impossible to display all 
nodes in their desirable sizes on the screen. In this case, all 
nodes are compressed uniformly in the horizontal and verti- 

cal directions keeping relative positions of nodes. :as the right 
view. 

In addition to the continuous zoom algorithm, our algorithm 
avoids overlapping of nodes by simply aligning nodes in the 
horizontal and vertical directions during moving and resizing 
nodes. To use screen space more efficiently, it al.so meshes 
adjoining rows or columns together. For example, in the right 
view of Figure 3, two columns in the left are meshed together. 

The user can focus and defocus nodes by stretching and 
shrinking them with handles that are shown as .s:mall black 
rectangles in Figure 3. The width and height of a node can 
be stretched independently to each direction. In addition the 
user can move nodes by dragging. 

We also use semantic zooming [ 111, which changes an amount 
of information of a node according to its size. For example, 
in Figure 2, when a slide is small, we can see only its title. 
When a slide is large enough, we can see details of the slide. 

FOCUS SIZE PREDICTION 
Focus size prediction automatically determines a pair of node 
size’ in the following. 

l Small size is used when the node is defocused. The node 
area of this size is smaller than the large size. It is possible 
to edit inside roughly in this size. 

l Large size is used when the node is focused. The user can 
edit inside details of the node. The node area of this size is 
larger than the small size. 

The system predicts these sizes from a history of editing 
commands. It is not necessary for the user to explicitly set 
these sizes during editing. Once the small and large sizes of 
a node are determined, the user can easily select one of these 
sizes by clicking a mouse button or by using a popup-menu. 
Changes to the large size and the small size perform instant 
focusing and defocusing, respectively. These commands are 
useful when the user edits one node repeatedly and when the 
user navigates edited networks. 

We do not provide any other intermediate sizes for the pre- 
diction, although they are useful in some situations. This 
decision simplifies size changing commands and makes the 
prediction easy but useful. Note that the determination of 
sizes is not trivial, because the user can resize nodes to ar- 
bitrary sizes in arbitrary orders during editing. For example, 
when the user stretches a node from its small size, it is diffi- 
cult to distinguish whether the user want to modify its small 
size or its large size. 

Preliminary User Test 
We performed a preliminary user test to investigate when the 
user determines small and large sizes during editing. We use 
the editor in which the user must set these sizes of e:ach node 
explicitly. By tracing command histories, we tried to find out 
typical sequences of commands around size setting. 

1 In the following, a size stands for a pair of width and height of a node. 

506 



CHI 99 15-20 MAY 1999 

Figure 4: The diagram Figure 5: The diagram 
used in the user test: that shows the detailed 
all rectangle sizes are view of the bottom- 
set to small right rectangles 

Method 

l System: We used a simple editor for drawing nested nodes. 
The editor provides typical editing commands such as adding, 
removing, resizing, and moving nodes. For node size set- 
ting, it provides SetSmall and SetLarge commands that 
store the current node size as the small size and the large 
size, respectively. The editor also provides Small and 
Large commands for changing a node to the correspond- 
ing size. 

l Subjects: Seven student volunteers and an instructor of 
computer science served as subjects in the user test. All 
subjects were familiar with typical window-based GUIs. 

l Task: Subjects were required to draw a diagram, which is 
shown in the left hand side of Figure 4, on the right blank 
area, and to set small and large sizes of all nodes. This di- 
agram consists of 13 nested rectangles2, and sizes of each 
node have been set. The default size of each node is its 
small size. Figure 5 shows the diagram in which bottom- 
right rectangles are changed to its large size. Each subject 
was instructed to set sizes immediately when he decided 
sizes, and to edit without hurry. In addition, we did not 
limit the time for the task. 

l Procedure: Before performing the task, subjects were given 
an explanation of the system and a practice trial on a part 
of the diagram. We spent about 10 minutes on this session. 

Result and Observations Tables 1 and 2 show patterns of 
command sequences around SetSmall and SetLarge respec- 
tively, and the number of times each pattern was used by each 
subject. A pattern begins when the node was in its small or 
large size after its creation3 or changing its size. This is the 
initial size in the pattern and is followed by a command se- 
quence performed on the node before the execution of set 
command. The pattern also includes a command performed 
after the set command. 

We considered only resize related commands such as resizes 
(Shrink and Expand) and size changes (Small and Large), 
because we could not find distinctive regularity from other 
commands. Note that we treated consecutive resizes on a sin- 

2Some nodes are not displayed in Figure 4, because their parent nodes 
are. too small 

3A node is in small size at the creation time 

Papers 

Table 1: Command Sequences around SetSmall 

Stink: resize to a smaller size, Expand: resize to a larger size 
Small: change to the small size, Large: change to the large size 
+: one or more execution of the command 
-: the node was left 

Table 2: Command Sequences around SetLarge 

*: alternative sequence of commands that may be empty 

gle node as a single resize command, since such a sequence 
stands for a fine tuning of the size. 

We show observations of the result in the following. 

SetSmall occurs after repeated Shrink from the small size 
in most cases (See the first pattern in Table 1). 

SetSmall also occurs after a single Expand from the small 
size, and is mostly followed by Expand or Large (See the 
second pattern in Table 1). In some cases, SetSmall is fol- 
lowed by Small, but SetLarge occurs more frequently be- 
tween Expand and Small (See the first pattern in Table 2). 

SetLarge mostly occurs after Expand and before Small 
(See Table 2). Both SetSmall and SetLarge may occur af- 
ter Shrink from large size and before Small (See the third 
pattern in Table 1). 

Among six SetLarge commands performed by the subject 
5, three of them occur before Shrink. The subject first set 
the large size then shrunk and set the small size, though 
most subjects set the small size first. In the fourth pattern 
in Table 1, we can see this sequence before SetSmall. 

Prediction Algorithm 
Based on the above observations, we designed and imple- 
mented a size prediction algorithm. Our design policies are 
(1) to give a higher priority to patterns used by most subjects, 
(2) to satisfy subjects as fairly as possible, and (3) to keep the 
algorithm simple. 

507 



P a p e r s C H I  9 9  1 5 - 2 0  M A Y  1 9 9 9

Figure 6: A state transition chart for predicting size

The algorithm is based on state transitions on each node that
are shown in Figure 6. The state is changed when the user
performs a command on the node, and a label on an ar-
row represents the command. There are three states: small,
small.Ex, and large. The small and large states represent that
the node is in the corresponding sizes, and small.Ex repre-
sents that the node has been expanded repeatedly from the
small size. The small.Ex state is necessary, since the size
is uncertain when the node is expanded from the small size
(See the observation 2).

Size Correction Interface
Since prediction may be error-prone, manual correction is
necessary. We provide an interface to correct a size by choos-
ing a size from the size history of the node. When the user
performs a size changing command on a node, two buttons
appear near the node (Figure 7). The smaller button changes
the size to the next smaller size in the history and the larger
button the next larger size. If the predicted size is acceptable,
the user can ignore these buttons. This interface allows the
user to correct size precisely to a past size rather than using
handle interface.

PREDICTIVE FOCUS SELECTION
During navigation with hyperlinks, the system predicts foci
that will be unnecessary, and automatically discards these
foci. Focus selection enables the user to obtain almost de-
sirable layout only by following hyperlinks.

Hyperlink Navigation Examples
As an example, we show a simple navigation using a presen-
tation tool in Figure 8. In case of viewing slides one after
another, the focus on the current slide will become unneces-
sary when the user follows a hyperlink. In Figure 8 (b), the
system automatically shrinks the title slide when the user fol-
lows the hyperlink to the slide “Our Goal.” In Figure 8 (c),
the slide “Our Goal” is shrunken in the same way.

Figure 9 shows another navigation example in a visual pro-
gramming environment. In case of editing visual programs,
it is necessary to retain foci on nodes that are in the middle
of editing. In Figure 9 (a), the user is editing a data-flow di-
agram master at the center of the bottom-left module, and
intends to check the behavior of the pass-answers compo-
nent by following the hyperlink to its definition part. In this
case, the system can predict that master is still necessary
because there are unconnected components in the network.
Therefore, the system retains the focus on master when the
user follows the hyperlink (Figure 9 (b)).

Prediction Method
To realize such automatic focus management, Hyper Mochi
Sheet library provides each node with a boolean function
f(F), which returns true if the focused (large size) node F
is still necessary. Programmers can reflect application se-
mantics in their applications by defining customized f(F)
for each node. For example, in visual programming editor,



CHI 99 15-20 MAY 1999 P a p e r s



P a p e r s CHI 99 15-20 MAY 1999

Figure IO: Hyperlink structure

f(F) returns true if there exist unconnected ports in the node
F. The default implementation of f(F) returns false if all
child nodes in the F are in the small size.

When the user follows a hyperlink from an anchor (See Fig-
ure IO), the system changes the size of the destination to its
large size, and stores the source and the destination in the
focus list. Simultaneously, the system changes the sizes of
all the ancestor nodes of the destination to their large size
in parent-to-child order, so that the destination will be vis-
ible. After magnifying the destination, the system checks
whether each node except the destination in the focus list
satisfies f. If f returns false with a node in the list, the node
size is changed to its small size. Then the system changes the
sizes of ancestors in child-to-parent order. Before changing
the size of an ancestor A, the system checks f(A). If f(A)
returns false, A is changed to its small size, and if not, the
system stops changing sizes of upper ancestors.

In addition, the system animates transition from one layout
to another, so that the user is not confused even if the layout
drastically changes during navigation.

EVALUATION
In this section, we describe an experiment to evaluate the fea-
sibility of the focus size prediction technique. We leave eval-
uations of the predictive focus selection and integration of
two techniques for future work because of difficulties that are
caused by their application dependent characteristics. The
number of implemented applications is not enough to for-
mally evaluate all techniques, even though we consider that
they seem fine so far.

Method

cus size prediction function. Differences from the editor in
the preliminary user test are that a node has one line ed-
itable text inside, and that the editor does not provide size
setting commands (SetSmall and SetLarge). A text in a
node is not displayed when the node has child nodes and
the node is large enough4 to display its children.

l Subjects: Ten student volunteers served as subjects. Four
of them were also ones of the preliminary user test. All

_’

Figure 11: The table of contents used in the experi-
ment

subjects were familiar with typical window-based GUIs.
l Task: Subjects were required to edit a simple presentation

based on the table of contents shown in Figure 11. Each
subject was instructed (1) to represent the presentation hi-
erarchy as nested nodes like Figure 12, (2) to put some
empty text boxes as contents of each leaf section such as
“1 Introduction” and “2.2.1 Basic Usage,” (3) to arrange
nodes as you like, and (4) to edit without hurry and we did
not limit the time for the task, In addition, we did not force
for subjects to check node sizes during editing.

l Procedure: Before performing the task, subjects ‘were given
an explanation of the system and a practice trial on a part
of the presentation. We spent about 10 minutes on this
session. After each subject performed task, we checked
whether sizes of each section are along to the subject’s in-
tention. In this session, we asked subjects about correct-
ness of sizes using Large and Small commands..



CHI 99 15-20 MAY 1999 Papers 

Table 3: The number of use of the size correction 
interface and the number of prediction errors checked 
after the task 

I Subjects I 
12345678910 

#of size corrections) Small 1 4 1 0 3 1 0 3 4 3 

Result and Discussion 

Table 3 shows the number of the use of the size correction 
interface, and the number of prediction errors. The use of 
the size correction interface means that a subject found and 
corrected a wrong node size, which was not along to the sub- 
ject’s intention, during editing. An error was counted when a 
wrong node size was found during the check session after the 
task. Each number was counted for each size. Subjects 1 to 
4 were also ones of the preliminary user test, but there were 
no significant differences in the result from other subjects. 

In spite of the fixed algorithm, error rates are significantly 
small. The average error ratio after the task is 6% (the best 
is 0% and the worst is 11%). Even in total error ratio, the 
average is only 14% and the worst is 20%. 

Note that the prediction algorithm almost suits all subjects, 
though they edited the presentation in various manners. Some 
subjects resized nodes without using Small and Large com- 
mand, and some subjects used Small and Large command 
on about half of the nodes. In addition, some subjects first 
decided a large size of a node, and other subjects decided a 
small size first. 

CONCLUSION 
We have proposed two prediction techniques for managing 
multiple foci of distortion-oriented views during navigation 
and editing nested networks. The focus size prediction auto- 
matically determines appropriate sizes of nodes. We showed 
reasonable accuracy of this technique with an experiment. 
The predictive focus selection automatically defocuses un- 
necessary foci during navigation with hyperlinks. Applica- 
tion programmers can reduce the error rate of this technique 
by customizing prediction methods for their applications. 

It is shown that our techniques are useful for a visual pro- 
gramming editor and a presentation tool. We believe that the 
techniques can be applied to other applications, such as hy- 
pertexts, file systems, and object-oriented software designs, 
with appropriate heuristics. We plan to implement these ap- 
plications and to construct a framework that allows the pro- 
grammer to introduce more application semantics as predic- 
tion keys. 

ACKNOWLEDGEMENTS 
We would like to thank Satoshi Matsuoka, Shin Takahashi, 
and the TRIP meeting members for their helpful advice. We 
also thank our test users for their participation. 

REFERENCES 
I. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

L. Bartram, A. Ho, J. Dill, and F. Henigman. The Contin- 
uous Zoom: A Constrained Fisheye Technique for Viewing 
and Navigating Large Information Space. In Proceedings of 
UIST ‘95, pages 207-2 15, November 1995. 

L. Bartram, R. Ovans, J. Dill, M. Dyck, A. Ho, and W. S. 
Havens. Contextual Assistance in User Interfaces to Complex, 
Time Critical Systems: The Intelligent Zoom. In Graphics 
Interface ‘94, pages 216-224, 1994. 

B. B. Bederson and J. D. Hollan. Pad++: A Zooming Graph- 
ical Interface for Exploring Alternate Interface Physics. In 
Proceedings of UIST ‘94, pages 17-26, November 1994. 

M. S. T. Carpendale, D. J. Cowperthwaite, and E D. Fracchia. 
3-Dimensional Pliable Surfaces: For the Effective Presenta- 
tion of Visual Information. In Proceedings of LUST ‘95, pages 
2 17-226, November 1995. 

W. Citrin and C. Santiago. Incorporating Fisheying into a Vi- 
sual Programming Environment. In Proc. 1996 IEEE Sympo- 
sium on Visual Languages, pages 20-27, 1996. 

A. Cypher. EAGER: Programming Repetitive Tasks by Ex- 
ample. In Proceedings of ACM CHI’91, pages 33-39, April 
1991. 

J. Lamping and R. Rao. Laying out and Visualizing Large 
Trees Using a Hyperbolic Space. In Proceedings of UIST ‘94, 
pages 13-14, November 1994. 

J. D. Mackinlay, G. G. Robertson, and S. K. Card. The Per- 
spective Wall: Detail and Context Smoothly Integrated. In 
Proceedings ofACM CHI’91, pages 173-179, 1991. 

D. L. Maulsby, I. H. Witten, and K. A. Kittlitz. Metamouse: 
Specifying Graphical Procedures by Example. In Proceedings 
of SIGGRAPH ‘89, volume 23, pages 127-136, July 1989. 

E. G. Noik. Exploring Large Hyperdocuments: Fisheye Views 
of Nested Networks. In ACM Conference on Hypertext and 
Hypermedia, pages 14-18, 1993. 

K. Perlin and D. Fox. Pad: An Alternative Approach to the 
Computer Interface. In SIGGRAPH 93 Conference Proceed- 
ings, pages 57-64, 1993. 

G. G. Robertson and J. D. Mackinlay. The Document Lens. 
In Proceedings of UIST ‘93, pages 101-108, November 1993. 

M. Sarkar and M. H. Brown. Graphical Fisheye Views of 
Graphs. In Proceedings of ACM CHI’92, pages 83-91, 1992. 

M. Sarkar, S. S. Snibbe, 0. J. Tversky, and S. P. Reiss. Strech- 
ing the Rubber Sheet: A Metaphor for Viewing Large Layouts 
on Small Screens. In Proceedings of UIST ‘93, pages 81-91, 
November 1993. 

M. Toyoda, B. Shizuki, S. Takahashi, S. Matsuoka, and 
E. Shibayama. Supporting Design Patterns in a Visual Par- 
allel Data-flow Programming Environment. In Proc. 1997 
IEEE Symposium on Visual Languages, pages 76-83, Septem- 
ber 1997. 

511 

d 


