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ABSTRACT
Recent advances in storage technology make it possible to
store a series of large Web archives. It is now an exciting
challenge for us to observe evolution of the Web. In this
paper, we propose a method for observing evolution of web
communities. A web community is a set of web pages cre-
ated by individuals or associations with a common interest
on a topic. So far, various link analysis techniques have
been developed to extract web communities. We analyze
evolution of web communities by comparing four Japanese
web archives crawled from 1999 to 2002. Statistics of these
archives and community evolution are examined, and the
global behavior of evolution is described. Several metrics are
introduced to measure the degree of web community evolu-
tion, such as growth rate, novelty, and stability. We devel-
oped a system for extracting detailed evolution of commu-
nities using these metrics. It allows us to understand when
and how communities emerged and evolved. Some evolution
examples are shown using our system.

Categories and Subject Descriptors
H.5.4 [Information Interfaces and Presentation]: Hy-
pertext/Hypermedia; H.3.m [Information Storage and
Retrieval]: Miscellaneous

General Terms
Experimentation, Measurement, Algorithms

Keywords
Web, Link analysis, web community, evolution

1. INTRODUCTION
Recent advances in storage technology make it possible to

store and keep a series of large Web archives. It is now an ex-
citing challenge for us to observe evolution of the web, since
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it has experienced dramatic growth and dynamic changes in
its structure. We could see a lot of phenomena in the Web
that correspond to social activities in the real world. For
example, if some topic becomes popular in the real world,
many pages about the topic are created, then good quality
pages are pointed to by public bookmarks or link lists for
that topic, and these pages become densely connected.
In this paper, we propose a method for observing the evo-

lution of web communities. A web community is a collection
of web pages created by individuals or associations with a
common interest on a topic, such as fan pages of a base-
ball team, and official pages of computer vendors. Recent
research on link analysis [7, 8, 10, 11, 12, 13, 15] shows that
we can identify a web community on a topic by extracting
densely connected structure in the web graph, in which nodes
are web pages and edges are hyperlinks. The web commu-
nity slightly differs from a community of people, for example,
a web community may include competing companies.
Since a web community represents a certain topic, we can

understand when and how the topic emerged and evolved
in the Web. Such information is important in the following
situations:

• Answering historical queries about topics on the Web.
For example, how many and what kinds of web pages
have been created related to the terrorist attack on
America on September 11, 2001?

• Tracking and analyzing user communities of consumer
products. For example, there are several groups of
user sites on major PCs. Statistics, such as how many
members (URLs) have appeared and disappeared, will
be useful information. Marketing people can further
examine individual pages of interesting communities
to understand reputation of their products.

• Observing and tracking social and cultural trends over
time would be interesting topics for sociological re-
search. Actually, we are currently examining the gen-
der movement in the Web with professors of a women’s
university in Japan.

• Observing the emergence of quality web communities
on a specific topic. Finding emergent web communities
according to users’ interest is challenging task for new
search services.

For extracting such information, we analyze evolution of
web communities using four Japanese web archives crawled
from 1999 to 2002 with 119 million pages in total. Statistics
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Figure 1: Typical graph of hubs and authorities

of these archives and community evolution are examined.
From these results, we describe the global behavior of web
community evolution. For describing evolution behaviors,
we introduce several evolution metrics for communities that
measure the degree of evolution, such as growth rate, nov-
elty, and stability.
By using such metrics, users can extract detailed evolu-

tion of target communities. To examine their feasibility,
we developed a system for extracting communities based on
the evolution, which is composed of two parts. The first
component extracts whole communities and their relevance
from each web archive. It is based on our previous work of
web community chart [17] that is a graph of communities, in
which related communities are connected by weighted edges.
The main advantage of our web community chart is exis-
tence of relevance between communities. We can navigate
through related communities, and locate evolution around
a particular community. The second component is a web
community evolution viewer for browsing how communities
evolved through three years. It provides various ways for
locating the evolution of communities such as emerged and
growing. With some examples, we demonstrate that we can
easily locate interestingly evolving communities by combin-
ing evolution metrics and relevance.

1.1 Prior Work
Most research on web communities is based on the no-

tion of authorities and hubs proposed by Kleinberg [13]. An
authority is a page with good contents on a topic, and is
pointed to by many good hub pages. A hub is a page with
a list of hyperlinks to valuable pages on the topic, that is,
points to many good authorities. HITS [13] is an algorithm
that extracts authorities and hubs from a given subgraph of
the Web with efficient iterative calculation. Figure 1 shows
an example graph structure extracted by HITS. Authorities
are major computer companies such as IBM, TOSHIBA,
and SONY. They are densely connected by hubs (link lists
of computer companies). As shown in this graph, HITS ex-
tracts frequently co-cited pages as authorities. HITS has
been improved and refined [4, 7, 8] by exploiting anchor
texts, edge weighting, document similarity, and Document
Object Models. Dean and Henzinger tailored HITS for find-
ing related pages. They proposed a related page algorithm,
Companion [10], which takes a seed page as an input, and
outputs related pages to the seed, and improved the preci-
sion by considering the order of links in a page.
A set of authorities and hubs was regarded as a community

in [12, 14, 16]. Gibson et al. [12] investigated the charac-
teristic of communities derived by HITS. Kumar et al. [14,
16] extracted more than 100,000 cores of communities from
a huge web snapshot based on their graph evolution model.
A core was a small complete bipartite graphs that consist
of authorities and hubs. Lempel and Moran [15] proposed
another approach based on a random walk model for calcu-

lating authorities. Flake et al. [11] redefined a community
including given seed pages as a subgraph that is separated
from the Web using a maximum flow/minimum cut frame-
work. Although these techniques can automatically identify
individual communities, they have not considered relation-
ships between communities. The evolution of communities
has also not been examined using a series of web archives.
In this paper, we examine how these identified communities
evolve over time, and use relevance for locating evolutions
around a given community.
The change frequency and lifetime of web pages has been

studied in [5, 9]. They estimate frequency of web page mod-
ifications, and use the results for web crawlers to determine
timing for re-crawl. They are based on the page level analy-
sis. The site (or server) level analysis of web graph evolution
is also studied in [3]. Rather, we analyze the evolution of
communities in the Web. Recently, the Internet Archive be-
gan the Wayback Machine service [1] that allows us to see
past web pages stored in the Internet Archive’s web archive.
Its capability is still limited. That is, the user can only
specify a single URL, and see the past pages of that URL. It
is impossible to understand what topics are popular in the
past, which we are targeting in this paper.

1.2 Organization of the Paper
The rest of this paper is organized as follows. In Sec-

tion 2, we briefly describe the web community chart and its
browser. Section 3 introduces evolution of web communi-
ties, and evolution metrics that measure various changes in
communities. In Section 4, we describe the details of our
web archives, and the global behavior of community evolu-
tion. Section 5 demonstrates our web community evolution
viewer with examples of evolution. In Section 6, we dis-
cussed detailed issues, and future work. Finally, we conclude
in Section 7.

2. WEB COMMUNITY CHART
The web community chart is a graph that consists of web

communities as nodes, and weighted edges between related
communities. The weight of each edge represents the rele-
vance of communities at both ends. In this section, we first
explain intuition for underlying techniques, then briefly de-
scribe the algorithm for building the chart. Refer to [17],
for more detailed descriptions.

2.1 Intuition for Underlying Techniques
Our algorithm builds the web community chart from a

given set of seed pages. The main idea is applying a HITS [13]
based related page algorithm (RPA) to each seed, and then
investigate how each seed derives other seeds as related pages.
RPA first builds a subgraph of the Web around the seed, and
extracts authorities and hubs in the graph using HITS. Then
authorities are returned as related pages. Since existing
RPAs, such as HITS and Companion [10], provide insuffi-
cient precision, we use an improved algorithm, Companion–
[17]. We have gained a better precision by pruning error
prone parts of the subgraph used in HITS and Companion.
The algorithm of Companion– is given in Appendix.
To identify web communities and to deduce their relation-

ships, we put focus on relationships between a seed page and
related pages derived by Companion–. Figure 2 depicts an
example of these derivation relationships. In this example,
we use five seed pages, IBM, TOSHIBA, SONY, and two
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Figure 2: An example of derivation re-
lationships

Figure 3: A part of the web community chart

fan pages of SONY PC. In Figure 2, the graph (A) shows
how each seed is pointed to by hub pages, and the directed
graph (B) shows how each seed derives each other as related
pages.
In this situation, IBM, TOSHIBA, and SONY derive each

other as related pages by Companion–, since they are mainly
pointed to by link lists of electric companies. They are sym-
metrically connected to each other in the graph (B). In the
case of two SONY PC fans, they derive each other and
SONY as related pages, because they are mainly pointed
to by pages of SONY PC related links. As a result, these
fans derive SONY, but SONY does not derive these fans,
since the number of electric company lists is greater than
link lists of SONY PC. From the graph (B) in Figure 2, we
can see that symmetric derivation is a strong relationship,
and asymmetric derivation is a weak relationship. Under
these observations, we define that a community is a set of
pages densely connected by symmetric derivation relation-
ships, and two communities are related if there is an asym-
metric derivation relationship between members of them.

2.2 Algorithm for Building Charts
Here we describe our algorithm for building charts. The

first step is selecting a seed set from a web archive. As
seeds, we select web pages that have inlinks from IN or more
different servers. Here, IN is a parameter to determine the
seed set. Only the number of different servers is counted,
and intra-server links are not considered, because links from
the same server are often made by the same author.
The second step is to build a directed graph that shows

how each seed derives other seeds by Companion–. Nodes
represent seeds in the seed set. Each directed edge, from a
node s to another node t, represents the fact that s derives
t as one of the related pages by Companion–. We create
directed edges between nodes by applying Companion– to
each seed, so that an edge from a node s to another node
t exists when s derives t as one of the top N authorities,
where N is a parameter. We call this graph the authority
derivation graph (ADG) in the following.
The third step is to extract a symmetric derivation graph

(SDG) from ADG, and to extract web communities from
SDG. In this step, we put focus on the symmetric deriva-
tion relationship, in which two nodes derive each other by
Companion–. SDG includes nodes in the seed set, and an

edge from s to t exists when s and t point to each other in
ADG. Then we extract densely connected subgraphs in SDG
as cores of web communities, and form cores into commu-
nities by adding remaining nodes to these cores. Although
cliques in SDG seem to be a good definition of cores, we
have found many communities sparser than cliques in SDG.
Therefore, we use a heuristic definition of the core. We use a
node triangle as a unit of extraction, and a core is defined as
a set of triangles that share edges in SDG. Note that a core
becomes a 1-connected subgraph of SDG, and may be a com-
plete graph with four or more nodes. In the following, we
explain the detailed extraction process. After finishing this
process, every connected node in SDG becomes a member
of a community. Note that communities become disjunctive
sets of nodes.

1. Extract all triangles of nodes from SDG. Then make
every core that is a subgraph consists of triangles shar-
ing edges. When two cores share some nodes, we tem-
porarily isolate them, and pass them to the next step.

2. Add each remaining node in SDG to a neighboring
core, if the node has edges connected to the core.
When there are multiple candidates, select one core
taking into account of directed edges in ADG. That is,
to select a core that has the most incoming edges from
the node in ADG. Each core then becomes a commu-
nity.

3. There remain connected components that do not form
triangles, such as lines of nodes. We also extract such
components as communities.

Finally, we construct a web community chart that can be
used to navigate from a community to other related commu-
nities. The chart is a directed graph that includes commu-
nities as nodes, and directed edges between related commu-
nities. Each edge has a weight that represents the strength
of relationships. We create a directed edge from a commu-
nity c to another community d with a weight w, when there
exists w directed edges in ADG from nodes in c to nodes in
d. In the following, we use the simplified weight that is the
sum of weights of directed edges between c and d ignoring
directions. This is because the semantics of the direction is
not yet clear. We call this simplified weight as the relevance
between communities at both ends.
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2.3 An Example of a Web Community Chart
Figure 3 shows a part of the web community chart built

from our web archive in 2002 (see Section 4 for details), using
our chart browser. Communities including keyword ”Com-
puter” are displayed in Figure 3. Each box with a label rep-
resents a web community, and edges represent relationships
between communities. The size of each node is determined
by the number of URLs and edges connected to the node.
The thickness of each edge represents the relevance value of
edges. Labels on communities are automatically attached
by selecting frequent keywords from anchor texts that point
to URLs in the community. When the user clicks one of a
community, its pages are displayed with a web browser as
shown in Figure 3.
Using this chart, the user can overview and navigate com-

munities related to computers. The community (a) includes
major computer companies in Japan, such as SONY and
NEC, and its contents are shown in the web browser. Around
the community (a), there are communities of related com-
panies. The community (b) includes Japanese pages of soft-
ware makers, such as Microsoft and Lotus. The community
(c) includes computer device and peripheral companies such
as Intel and Adaptec.

3. EVOLUTION OF WEB COMMUNITIES
This section explains how web communities evolve, and

what kinds of metrics can measure degree of the evolution,
such as growth rate and novelty. We first explain the details
of changes of web communities, and then introduce evolution
metrics that can be used for finding patterns of evolution.
Here we summarize the notations used in this section.

t1, t2, ..., tn: Time when each archive crawled. Currently, we
use a month as the unit time.

W (tk): The Web archive at time tk.

C(tk): The web community chart at time tk.

c(tk), d(tk), e(tk), ...: Communities in C(tk).

3.1 Types of Changes
We observe the evolution of communities from a series of

web archives by (1) building web community charts (C(t1),
C(t2), ..., C(tn)) from all web archives, and (2) investigating
differences between neighboring charts.
There are two ways to see the evolution of communities,

backward and forward. For simplicity, here we explain back-
ward examination. That is, first we select a web community
chart C(tk), and see how communities had been evolved
until time tk by comparing C(tk−1) and C(tk). We can do
the same thing for forward examination by comparing C(tk)
and C(tk+1). Here we show how communities change from
C(tk−1) to C(tk), such as growing and shrinking.

Emerge: A community c(tk) emerges in C(tk), when c(tk)
shares no URLs with any community in C(tk−1). Note
that not all URLs in c(tk) are newly appeared in W (tk).
Some URLs in c(tk) may be included in W (tk−1), and
do not have enough connectivity to form a community.

Dissolve: A community c(tk−1) in C(tk−1) has dissolved,
when c(tk−1) shares no URLs with any community in
C(tk). Note that not all URLs in c(tk−1) disappeared
from W (tk−1). Some URLs in c(tk−1) may still be in-
cluded in W (tk) losing connectivity to any community.

Grow and shrink: When c(tk−1) in C(tk−1) shares URLs
with only c(tk) in C(tk), and vice versa, only two
changes can occur to c(tk−1). The community grows
when new URLs appear in c(tk), and shrinks when
URLs disappeared from c(tk−1). When the number of
appeared URLs is greater than the number of disap-
peared URLs, we consider that it grows. In the reverse
case, we consider that it shrinks.

Split: A community c(tk−1) may splits into smaller commu-
nities. In this case, c(tk−1) shares URLs with multiple
communities in C(tk). A split is caused by disconnec-
tions of URLs in SDG (see Section 2.2). Split commu-
nities may grow and shrink. They may also merge (see
the next item) with other communities.

Merge: When multiple communities (c(tk−1), d(tk−1), ...)
share URLs with a single community e(tk), these com-
munities are merged into e(tk) by connections of their
URLs in SDG. Merged communities may grow and
shrink. They may also split before merging.

3.2 Evolution Metrics
Our evolution metrics measure how a particular commu-

nity c(tk) has evolved. For example, we can know how much
c(tk) has grown, and how many URLs newly appeared in
c(tk). Our metrics can be used for finding various patterns
of evolution described in Section 3.1. To measure changes of
c(tk), we need to identify the community at time tk−1 corre-
sponding to c(tk). We define this corresponding community,
c(tk−1), as the community that shares the most URLs with
c(tk). If there were multiple communities that share the
same number of URLs, we select a community that has the
largest number of URLs.
We can reversely identify the community at time tk corre-

sponding to c(tk−1). When this corresponding community is
just c(tk), we call the pair (c(tk−1), c(tk)) a main line. Oth-
erwise, the pair is called a branch line. A main line can be
extended to a sequence by tracking such symmetrically cor-
responding communities over time. A community in a main
line is considered to keep its identity, and can be used for a
good starting point for finding changes around its topic.
The metrics are defined by differences between c(tk) and

its corresponding community c(tk−1). To define metrics, we
use following attributes representing how many URLs the
focused community obtains or loses.

N(c(tk)): the number of URLs in the c(tk).

Nsh(c(tk−1), c(tk)): the number of URLs shared by c(tk−1)
and c(tk).

Ndis(c(tk−1)): the number of disappeared URLs from c(tk−1)
that exist in c(tk−1) but do not exist in any community
in C(tk).

Nsp(c(tk−1), c(tk)): the number of URLs split from c(tk−1)
to communities at tk other than c(tk).

Nap(c(tk)): the number of newly appeared URLs in c(tk)
that exist in c(tk) but do not exist in any community
in C(tk−1).

Nmg(c(tk−1), c(tk)): the number of URLs merged into c(tk)
from communities at tk−1 other than c(tk−1).
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Then our evolution metrics are defined as follows.
The growth rate, Rgrow(c(tk−1), c(tk)), represents the in-

crease of URLs per unit time. It allows us to find most
growing or shrinking communities. The growth rate is de-
fined as follows. Note that when c(tk−1) does not exist, we
use zero as N(c(tk−1)).

Rgrow(c(tk−1), c(tk)) =
N(c(tk))−N(c(tk−1))

tk − tk−1
(1)

stability, Rstability(c(tk−1), c(t)), represents the amount of
disappeared, appeared, merged and split URLs per unit
time. When there is no change of URLs, the stability be-
comes zero. Note that c(tk) may not be stable even if the
growth rate of c(tk) is zero, because c(tk) may lose and ob-
tain the same number of URLs. A stable community on a
topic is the best starting point for finding interesting changes
around the topic. The stability is defined as follows.

Rstability(c(tk−1), c(tk)) =

N(c(tk−1)) + N(c(tk))− 2Nsh(c(tk−1), c(tk))

tk − tk−1
(2)

The novelty, Rnovelty(c(tk−1), c(tk)), represents the number
of newly appeared URLs per unit time. When the novelty
becomes high, we can say that c(tk) has grown mainly by
newly appeared URLs. We can find most emerged commu-
nities at time tk by sorting communities by the novelty. The
following is the definition of the novelty.

Rnovelty(c(tk−1), c(tk)) =
Nap(c(tk))

tk − tk−1
(3)

The disappearance rate, Rdisappear(c(tk−1), c(tk)), is the num-
ber of disappeared URLs from c(tk−1) per unit time. Higher
disappear rate means that the community has lost URLs
mainly by disappearance. The disappear rate is defined as

Rdisappear(c(tk−1), c(tk)) =
Ndis(c(tk−1))

tk − tk−1
(4)

The merge rate, Rmerge(c(tk−1), c(tk)), is the number of ab-
sorbed URLs from other communities by merging per unit
time. Higher merge rate means that the community has ob-
tained URLs mainly by merging. The merge rate is defined
as follows.

Rmerge(c(tk−1), c(tk)) =
Nmg(c(tk−1), c(tk))

tk − tk−1
(5)

The split rate, Rsplit(c(tk−1, c(tk)), is the number of split
URLs from c(tk−1) per unit time. When the split rate is
low, we can know that c(tk) is larger than other split com-
munities. Otherwise, c(tk) is smaller than other split com-
munities. The split rate is defined as follows.

Rsplit(c(tk−1), c(tk)) =
Nsp(c(tk−1), c(tk))

tk − tk−1
(6)

By combining these metrics, we can represent some complex
evolution patterns. For example, a community has stably
grown when its growth rate is positive, and its disappearance
and split rates are low. Similar evolution patterns can be
defined for shrinkage.
Longer range metrics (more than one unit time) can be

calculated for main lines. For example, the novelty met-
rics of a main line (c(ti), c(ti+1), ..., c(tj)) is calculated as

Year Period Crawled pages Total URLs Links

1999 Jul. to Aug. 17M 34M 120M
2000 Jun. to Aug. 17M 32M 112M
2001 Early Oct. 40M 76M 331M
2002 Early Feb. 45M 84M 375M

Table 1: Details of our web archives
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follows.

Rnovelty(c(ti), c(tj)) =

Pj
k=i Nap(c(tk))

tj − ti
(7)

Other metrics can be calculated similarly.

4. ANALYSIS OF WEB ARCHIVES AND
EVOLUTION OF WEB COMMUNITIES

4.1 Web Archives and Graphs
For experiments, we used four web archives of Japanese

web pages (in .jp domain) crawled in 1999, 2000, 2001, and
2002 (See Table 1). We used the same web crawler in 1999
and 2000, and collected about 17 million pages in each year.
In 2001, the number of pages became more than twice of
the 2000 archive, since we improved the crawling rate. Our
crawlers collected pages in the breadth-first order.
From each archive, we built a web graph with URLs and

links by extracting anchors from all pages in the archive.
Our graph included not only URLs inside the archive, but
also URLs outside pointed to by inside URLs. As a result,
the graph included URLs outside .jp domain, such as .com
and .edu. Table 1 also shows the number of links and the
total URLs. For efficient link analysis, each web graph was
stored in a main-memory database that provided out-links
and in-links of a given URL. Its implementation was similar
to the connectivity server [2]. We implemented the whole
system on Sun Enterprise Server 6500 with 8 CPU and 4GB
memory. Building our connectivity database of 2002 took
about one day.
By comparing these graphs, we found that the Web was

extremely dynamic. More than half of the URLs disap-
peared or changed its location in one year. We first exam-
ined how many URLs in our web graphs were changed over
time, by counting the number of URLs shared between these
graphs. Figure 4 depicts the transition of URLs in our web
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Year Period Seeds Communities

1999 Jul. to Aug. 657K 79K
2000 Jun. to Aug. 737K 88K
2001 Early Oct. 1404K 156K
2002 Early Feb. 1511K 170K

Table 2: The number of seeds and communities
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graphs. Each bar shows the number of URLs, and is sepa-
rated into blocks according to life spans of URLs1. Blocks
with the same set of URLs have the same color, and lines are
drawn between these blocks, so that you can see when these
URLs appeared and how long they survived. As shown in
Figure 4, about 60% of URLs disappeared from both 1999
and 2000 graphs. From 2001 to 2002, about 30% of URLs
disappeared in four months. The number of URLs surviving
through four archives was only about 5 million. In [9], Cho
reported that more than 70% of pages survived more than
one month in their four month observation. This result is
close to our result from 2001 to 2002 (30% disappearance in
four months). Although it is not easy to estimate the rate
for one year from [9], we can say that our results does not
deviate so much.
We also examined the indegree distributions of our web

graph. Indegree of a URL stands for the number of URLs
pointing to the URL. Previous work, such as [6, 14, 16],
shows indegree distributions fit to a power law, in which the
probability of the positive integer value i is proportional to
1/ik for a small positive number k. The reported number
of k is 2.1. Indegree distributions of our graphs also exhibit
a power law. The exponent of the power law is around 2.2
for all graphs. It means that our graphs are slightly sparser
than ones of previous work.

4.2 Evolution of Web Community Charts
In this section, we describe the global behavior of commu-

nity evolution. From the above four web graphs, we built
four community charts using the technique described in Sec-
tion 2.2. To compare web community charts in the same
condition, we fixed values of parameters, IN and N , for the
chart building algorithm in Section 2.2. We used the value

1In Figure 4, we ignored a few million URLs that appeared
intermittently in our web graphs, e.g. URLs that appeared
only in 1999 and 2001
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tk−1: Aug. 99 Aug. 00 Oct. 01
tk: Aug. 00 Oct. 01 Feb. 02

# Branch lines at tk−1 28,467 32,490 41,501
# Main lines 26,723 34,396 83,771
# Branch lines at tk 29,722 41,752 44,305

Table 3: Number of main lines in split or merged
communities

3 as IN , that is, we selected seeds that have in-links from
three or more different servers. Using a larger value than 3
drastically decreased seeds, because of its power-law distri-
bution. We used the value 10 as N , that is, the top 10 results
by Companion– were used for calculating relevance between
seeds. We selected the value 10, because Companion– pro-
vided enough precision with top 10 authorities in our previ-
ous work [17], and members of major communities did not
change much from the value 9 to 112. It took about half
a day to build the chart for 2002. Most of the time was
spent on calculating related pages of seeds. Table 2 shows
the number of seeds and communities in the chart created
for each year. In the following, we show evolution statistics
of web community charts.

4.2.1 Size distribution
The size distribution of communities also follows the power

law and its exponent did not change so much over time. Fig-
ure 5 shows log-log plots of the communities size distribu-
tions for all charts. All four curves roughly fit to a power law
distribution with exponent 2.9 to 3.0. This result is similar
to distributions of connected components in the Web graph
reported in [6].

4.2.2 Types of Changes
Although the size distribution of communities is stable,

the structure of communities changes dynamically. Figure 6
shows how many communities are involved in each type of
change from tk−1 to tk. Each bar represents the number of
communities in charts at the time. Bars at 2000 and 2001
are split vertically, since they have the previous and the next
charts to be compared. Each block represents the number of

2Ideally, these parameters should be determined locally in
a chart depending on topics and density of the web graph.
It is future work to develop such adaptive algorithms.
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Figure 7: Distribution of split rate
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Figure 8: Distribution of merge rate

communities involved in a particular change. Dotted blocks
represent dissolved communities from tk−1, and white blocks
represent emerged communities. Gray blocks represent com-
munities that are involved in split or merge. Finally, black
blocks represent single communities that are not involved in
these changes, but may grow or shrink.
We can see that the structure of our chart changes mainly

by split and merge, in which more than half of communities
are involved. The number of single communities is small
(10% in 1999, 14% in 2000, and 25% in 2001). Since the
seed sets of the charts are stable parts in our archives, the
number of communities dissolved from each chart is rather
small. About 24% to 30% of communities are dissolved in
one year from 1999 to 2001, while 20% of communities are
dissolved in four months from 2001.
Changes by split and merge are complicated, since split

communities may be merged with other communities in the
next time. However, it is not totally chaotic. We can see
rather stable communities by extracting main lines (See Sec-
tion 3.2). Table 3 shows the number of main lines and
branch lines in each intervals. About half of survived (not
dissolved) communities in 1999 and 2000 are included in
main lines for one year, and about 66% of survived commu-
nities in 2001 are included in main lines for four months.
Note that the main lines include single communities. We
can use those main lines as a good starting point for finding
changes around the topic. In the following section, we show
the detailed behavior of each changes.
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Figure 9: Size distribution of emerged communities
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Figure 10: Size distribution of dissolved communi-
ties

4.2.3 Split and Merged Communities
We first show the distributions of the split rate and merge

rate in Figure 7 and 8. We plot the number of split or
merged communities as a function of the number of split and
merged URLs (Nsp and Nmg in Section 3.2) in the log-log
scale. Both distributions roughly follow the power law, and
show that split or merge rate is small in most cases. Their
shapes and scales are also similar. That is, when communi-
ties at tk−1 split with a split rate, almost the same number
of communities are merged at tk with the same rate as the
split rate. This symmetry is part of the reason why the size
distribution of communities does not change so much.

4.2.4 Emerged and Dissolved Communities
The size distributions of emerged and dissolved commu-

nities also follow the power law, and contribute to preserve
the size distribution of communities. Figure 9 and 10 show
these distributions for all periods in the log-log scale. In
most cases, the exponent of the power law is greater than
3.2, while the exponent of the whole chart is around 3.0.
This means that small communities are easy to emerge and
dissolve.

4.2.5 Growth Rate
Finally, we examine the distribution of the growth rate.

Figure 11 shows the number of communities as a function
of the growth rate. We use a log scale on the y-axis. For
simplicity, we only plot the growth rate of main lines in this
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Figure 11: Distribution of growth rate

graph. The growth rate is small for most of communities,
and the graph has clear y-axis symmetry. This is also part
of the reason why the size distribution of communities is
preserved over time.

5. EVOLUTION VIEWER AND EXAMPLES
So far, we have seen the global behavior of community evo-

lution. In this section, we demonstrate our evolution viewer
that displays the details of community evolution on a spe-
cific topic. Our viewer provides various means to extract
evolving communities as follows: (1) searching communities
by keywords or a URL; (2) Sorting and filtering communi-
ties by the evolution metrics defined in Section 3.2. Using
our viewer, the user can extract various kinds of evolving
communities, such as the most growing communities, and
the most emerging communities related to a specific topic.
Some evolution examples are shown with our viewer.

5.1 Visualizing Evolution of a Community
Our evolution viewer displays evolution of communities as

shown in Figure 12 and 14. Each community is represented
as a rectangle including the list of its URLs. URLs are
drawn by different styles according to their lifetime. URLs
written in italic style are newly appeared one, and others
appears in the previous chart. Each URL can be browsed
with a web browser by clicking it with the mouse. Labels
on communities are automatically attached by selecting fre-
quent keywords from anchor texts that point to URLs in
the community. Each column represents a time (the month
when each archive crawled).
Basically, the viewer displays main lines of communities.

Communities in a main line are arranged horizontally, and
lines are drawn between them, so that the user can easily
compare their differences. The thickness of each line repre-
sents the number of shared URLs between communities at
both ends. The viewer shows only a main line as default. If
the user needs more detailed view, the viewer shows a main
line and branch lines around it (See Figure 14).

5.2 Searching, Sorting, and Filtering
The user can select communities at a time by provid-

ing a URL or keywords. If the user provides a URL, the
viewer shows the community including that URL. If the user
provides keywords, the viewer shows communities including
pages with the keywords. In addition, the user can select
communities related to a specified community in the chart.

Figure 12: An emerged community around an Islam
information community

The system automatically extract main lines for selected
communities over the given time range. The time range can
be specified by the user. In our experiments, since we have
only four web archives, time range specification looks mean-
ingless, but when we have more series of web archives, it will
be important.
The number of selected communities might become large.

In such a case, the user can sort the communities and browse
the communities in a sorted order. The user can also specify
filtering condition and reduce the number of target commu-
nities. The metrics that is introduced in Section 3.2 is used
for both sorting and filtering. When the user does not se-
lect communities, all communities at the time are sorted.
Actually, sorting and filtering communities by the evolution
metrics are very powerful means to find the communities
with various evolving patters. In addition to the evolution
metrics, we can use the following metrics for sorting and
filtering: (1) Relevance between the given community and
neighboring communities; (2) Size of a community (the num-
ber of URLs in the community); (3) The number of shared
URLs between communities.
To realize those functions, the browser uses several in-

dices. For locating communities, a keyword index, a URL
index, and a relation index are prepared for each chart. The
keyword index allows us to retrieve communities including
pages with specified keywords. The URL index is used for
finding the community including the specified URL. The re-
lation index provides communities neighboring a given com-
munity in the chart.
We use an evolution index for each chart, for tracking

changes of communities and calculating metrics. This index
at time tk provides a lists of past communities at tk−1 and a
list of future communities at tk+1, which share URLs with a
given community at tk. Using this index, we can track main
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Figure 13: Emerged communities around a pacifist
community

and branch lines to the past and the future. To these lists,
we also attached evolution attributes such as the number
of shared URLs, split URLs, and merged URLs, which are
used for calculating the evolution metrics.

5.3 Examples
Firstly, we show a typical example to find emerged com-

munities around a topic using Figure 12. In this example,
we want to find emerged communities related to Islam after
the terrorist attack on America on September 11, 2001. Us-
ing our viewer, we first find a community of Islam in 2001
by the keyword ”Islam”. The main line of this community is
displayed on the top of Figure 12, which includes URLs such
as “islamcenter.or.jp” and “www.islamworld.net”. Next, we
list up communities related to that community. At this time,
we mainly obtain communities about other religions (not
shown in Figure 12). Then for finding emerged communi-
ties around Islam, we sort these related communities by their
novelty metrics from 2000 to 2001. Finally, we obtained Fig-
ure 12. There emerged a community of pacifist movements
against the retaliatory bombing, which includes URLs such
as “www.peace2001.org” and “www.9-11peace.org”.
We can recursively find emerging communities around one

of those related communities. Figure 13 depicts emerged
communities around the pacifist community in Figure 12.
The first one includes pages inviting donations for Afghanistan,
such as “www.donate-for-free.com” and “www.redcross.com”.
The second one includes pages about Afghanistan and Tale-
ban (most of URLs include the string “afghan”). It means
that such hubs were rapidly created after the terrorist at-
tack. (Note that our archive in 2001 was crawled in early
October.) This example shows that communities grow very
quickly when their topics has a great impact to the real so-
ciety.
Figure 14 shows a typical evolution pattern, in which a

web community gradually grows by absorbing various types
of related pages, and then it is refined by splitting into more
detailed communities. We can find such communities using
our evolution viewer by searching communities that stably
grew then largely split at the next time. In Figure 14, Com-
munities of biotechnology and biochemistry companies are

Figure 14: Communities of biotechnology companies

gradually growing, as biotechnology become an important
business, and awareness of biotechnology is growing. Until
2000, it grows absorbing both Japanese and “.com” compa-
nies. From 2001, it splits into these two types of companies.
It means that many unsophisticated hubs are created when
the topic attracted popularity, then these hubs are gradually
refined, or a lot of more sophisticated hubs are created.

6. DISCUSSION AND FUTURE WORK
Our system takes about two days for building web graph

databases, web community charts, and an evolution index,
from a web archive (45M pages). Since it is significantly
shorter than the crawling time of the web archive, our sys-
tem can analyze evolution at the same interval of crawling.
We have shown a web community browser in Section 2, and a
web community evolution viewer in Section 5. Since, these
tools are separately developed, we plan to integrate these
tools, and realize seamless navigation through related com-
munities, and through past communities. Web archives used
in our experiments are small subsets of the entire Web, and
the crawling interval is still long. We are interested in apply-
ing our technique to larger archives, and investigating how
the results will be influenced by changing the archive. We
are also planning to crawl web pages more frequently, and
observe more fine-grained evolution.

7. CONCLUSIONS
We have proposed a method for observing the evolution of

web communities. Evolution metrics are defined to measure
the degree of community evolution. Our method is based on
our previous work of web community chart that is a graph
of communities, in which related communities are connected
by edges. The main advantage of our web community chart
is the existence of relevance between communities. Combin-
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ing evolution metrics and relevance, we can locate evolution
around a particular community. The experiments have been
performed against four Japanese web archives (in jp domain)
crawled from 1999 to 2002 with 119M pages in total, and
statistics of web graphs and community evolution are ex-
amined. We have found that the size distribution of com-
munities followed the power-law, and its exponent did not
change so much over time. This is because most of changes
in communities follow the power-law, and the changes are
symmetric between split and merge, and between growth
and shrinkage. Finally, we have shown a web community
evolution viewer for detailed examination of evolution on a
specific topic. Various means are available to find evolution
patterns using the evolution metrics. Using our viewer, we
demonstrated some example evolutions.
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APPENDIX

Algorithm: Companion–
Companion– takes a seed page as an input, then outputs re-
lated pages to the seed. It first builds a subgraph of the Web
around the seed, and extracts authorities from the subgraph
as related pages.
First, it builds a vicinity graph of a given seed, which is

a subgraph of the web around the seed. A vicinity graph
is a directed graph, (V, E), where nodes in V represent web
pages, and edges in E represent links between these pages.
V consists of the seed, a set of nodes pointing to the seed
(B), and an another set of nodes pointed to by nodes in
B (BF). When following outgoing links from each node in
B, the order of links in the node is considered. Not all the
links are followed but only R links immediately preceding
the link pointing to the seed, and R links immediately suc-
ceeding the link. This is based on an observation that links
to related pages are gathered in a small portion of a page.
In our experiments, we use the value 10 as R where result
authorities are stable around the value.
To each edge, it assigns two kinds of weights, an authority

weight and a hub weight for decreasing the influence of a sin-
gle server. The authority weight is used for calculating an
authority score of each node, and the hub weight is used for
calculating a hub score of each node. Companion– uses the
following weighting method proposed by Bharat and Hen-
zinger [4]: (1) If two nodes of an edge are in the same server,
the edge has the value 0 for both weights; (2) If a node has n
incoming edges from the same server, the authority weight
of each edge is 1/n; and (3) If a node has m outgoing edges
to the same server, the hub weight of each edge is 1/m.
Then it calculates a hub score, h(n) and an authority

score, a(n) for each node n in V . The following is the process
of the calculation, where aw(n, m) and hw(n, m) represent
the authority weight and the hub weight of the edge from n
to m, respectively.

Step 1. Initialize h(n) and a(n) of each node n to 1.
Step 2. Repeat the following calculation until h(n) and

a(n) have converged for each node n.
For all nodes n in V , h(n)←P(n,m)∈E a(m)× hw(n, m)

For all nodes n in V , a(n)←P(m,n)∈E h(m)× aw(m, n)

Normalize h(n), so that the sum of the squares to be 1.
Normalize a(n), so that the sum of the squares to be 1.

Step 3. Return the N highest authority nodes.
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