
Compact Encoding of the Web Graph

Exploiting Various Power Laws

Statistical Reason Behind Link Database

Yasuhito Asano1, Tsuyoshi Ito2, Hiroshi Imai2,
Masashi Toyoda3, and Masaru Kitsuregawa3

1 Department of System Information Sciences, Tohoku University,
05 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579 Japan

2 Department of Computer Science, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan

3 Institute of Industrial Science, The University of Tokyo,
4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan

Abstract. Compact encodings of the web graph are required in order to
keep the graph on main memory and to perform operations on the graph
efficiently. Link2, the second version of the Link Database by Randall et
al., which is part of the Connectivity Server, represented the adjacency
list of each vertex by the variable-length nybble codes of delta values.
In this paper, the fact is shown that certain variables related to the web
graph have power distributions, and the reason is explained why using
variable-length nybble codes in Link2 led to a compact representation of
the graph from the statistical viewpoint on the basis of the relationship
between power distributions and generalization of the variable-length
nybble code. Besides, another encoding of the web graph based on these
fact and relationship is proposed, and it is compared with Link2 and the
encoding proposed by Guillaume et al. in 2002. Though our encoding is
slower than Link2, it is 10% more compact than Link2. And our encoding
is 20% more compact than the encoding proposed by Guillaume et al.
and is comparable to it in terms of extraction time.

1 Introduction

The world wide web has evolved at a surprisingly high speed both in its size
and in the variety of its content. The analyses of the structure of the web have
become more and more important for the information retrieval from the web.

While the text and markups in each page contain vast amount of information,
the structure of the hyperlinks among pages is often used extensively, both by
itself [3, 4] and in combination with the content of pages [5]. One of the reasons
the link structure is useful for the information retrieval is that the meaning of
links is usually independent of language: a link from a page u to a page v means
the author of u thinks v has relevant or valuable information to u.

The abstraction of how pages are linked together is the web graph. The web
graph is a directed graph whose vertices represent web pages and whose edges



hyperlinks among them. Among the studies on the structure of the web graph
are [1,3–5]. The strong component decomposition is one method to describe the
structure of the graph, and it requires the depth-first search of the graph. Other
methods also require the operations on the graph.

When designing an algorithm to treat a large data like the web graph, one
must be careful not only with its time complexity but also its space consumption.
Once it requires more than the amount of the main memory available on the
system, it usually requires much more time than when all the necessary data is
on the main memory, sometimes to the extent that the algorithm itself becomes
useless.

It is a good idea to encode the web graph in a compact format to keep it on
the main memory. Though general compression algorithms such as bzip2 or gzip
gives high compression ratio, they have one significant drawback: the extraction
of small fragments of the data is slow. Usually many small fragments of the graph
are needed for the operation on the graph such as the depth-first search. It is
better to use the encoding methods which support the extraction of fragments
as needed.

The web graph has several properties which distinguish itself from other
graphs. One of them is “power law” about the distribution of the out-degrees
and the in-degrees of vertices. By using these properties appropriately, a compact
encoding method is obtained.

Let us review two previous studies on efficient encodings of the web graph:
Link2 described in the citation [6] and the encoding proposed by Guillaume et
al. [2]. They had a common point that pages were numbered sequencially in
the lexicographical order of their URLs, and that the graph was represented
by the list of the adjacency lists of all the vertices. They were different in the
representation of the adjacency list of a vertex.

Now their difference will be described.
The Link Database [6] is part of the Connectivity Server which provides

access to a large web graph, and Link2 is the second version of the Link Database.
In Link2, each adjacency list was sorted in ascending order and represented by
the list of the delta values of its elements. The delta value of the first element of
the list is its difference from the source of the link, and the delta value of each of
the other elements is the difference between its previous element and itself. They
observed that the delta values tended to be close to zero, resulting from a kind
of locality of the web graph that the destinations of the links originating at the
same page are often near from each other. According to this observation, they
used variable-length nybble codes to represent the delta values in their encoding
of the web graph. By combining this representation with other techniques, Link2
encoded a graph in 11.03 bits per edge on average. The latest version Link3 used
some other techniques to compress the whole graph to achieve less than 6 bits
per edge. However, the compression techniques used in Link3 took longer time
to decompress.

Guillaume et al. [2] proposed another compact encoding of the web graph. In
their encoding, each element of an adjacency list was stored as a signed integers



representing the length of the link, which is defined as the difference between the
indices of the source and the destination pages of the link. The locality utilized
here is that many links are short, which is more restricted than that utilized in
Link2. They observed the length of a link had a power distribution. However, in
their encoding, the length of a link was represented in either a Huffman code,
16-bit integer or 32-bit integer according to its absolute value, and the property
of the power distribution was not utilized very much.

Our encoding utilizes the locality which is the same as that utilized by Link2,
and the exact relationship between the distribution of the delta values of the
adjacency lists and the optimal encoding of them.

The rest of this paper is organized as follows. Section 2 explains the fact
that integers which have a power distribution are encoded most efficiently in a
generalization of the variable-length nybble code. In section 3, the characteristics
of web graph are described which were obtained from observation of an actual
web graph, and the reason Link2 is efficient is explained. Section 4 proposes
another encoding of the web graph according to our observation in the previous
section. Sections 5 gives the details about and the results of the experiments to
show the usefulness of the proposed encoding. Section 6 concludes this study.

2 Power Distribution and Variable-length Block Codes

Let α > 1. A random variable which takes positive integer values is said to have
the power distribution of the exponent −α when its probability function f(n)
satisfies

f(n) =
1

cnα
(n ≥ 1) where c =

∞∑

n=1

1
nα

.

Integers which have a power distribution are encoded efficiently in a general-
ization of the variable-length nybble code, which we call a variable-length block
code. In the variable-length block code with k-bit blocks, a positive integer n is
first represented in the base 2k. Each digit in this base 2k number is represented
in k bits. This k-bit sequence is called a block. A bit 1 is appended for each block
except for the last block, for which a bit 0 is appended.

For example, an integer 92 is represented as 1011100 in binary, and it is
represented as 011011111000 in the variable-length block code with 2-bit blocks.

The variable-length block code with 3-bit blocks is called the variable-length
nybble code. A “nybble” means a 4-bit-long sequence. The name of the variable-
length nybble code comes from the fact that each block including the appended
bit is four bits long.

A positive integer n is represented in asymptotically
(
(k + 1)/k

)
log n bits

long in the variable-length block code with k-bit blocks.
The following fact is obtained from Kraft’s inequality about instantaneous

codes: when a random variable X has a probability function f(X), the instan-
taneous code which gives the minimum average codeword length when used
to represent X is the code in which the codeword for n is − log2 f(n) bit long.



Therefore, if X has the power distribution of the exponent −α, the most efficient
instantaneous code in terms of average codeword length is the variable-length
block code with 1/(α − 1)-bit blocks.

Note that Huffman encoding is the shortest instantaneous code only when
we do not count the space needed to store the code table.

3 Observation of Actual Web Graph and Reason Behind
Link2

We explained how delta values were used to encode the adjacency list of a vertex
in Link2. Note that there are two different kinds of delta values. The delta value
of the first element in a list is the difference between the source and the destina-
tion of the link, and the delta values of the rest are the differences between their
previous elements and themselves. We call the delta value of the first element ini-
tial distance, and the delta values of the rest increments. Because initial distance
and increment are different things, they may well have different distributions,
hence different optimal representations.

To observe how the initial distances and increments in our encoding are
distributed when used to represent an actual web graph, we analyzed Toyoda
and Kitsuregawa’s web graph [7] of pages in .jp domain collected in 2002, after
removing pages whose URLs do not look like HTML files. This graph consists
of 60,336,969 pages of 297,949 servers.

We extracted the subgraph representing each server from this graph, and
analyzed the distributions of the absolute value of initial distance and of the
value of increment independently. These subgraphs have 221,085,322 edges in
total.

Figure 1 shows that the absolute value of initial distance has the power
distribution with the exponent of about −7/6, and the increment has the power
distribution with the exponent of about −4/3.

These facts mean initial distances and increments will be represented effi-
ciently in the variable-length block codes with 6-bit and 3-bit blocks, respec-
tively.

Because most delta values are actually increments, it is a good approximation
to represent delta values altogether in the variable-length block codes with 3-bit
blocks, a.k.a. the variable-length nybble codes. This is why the encoding used
by Link2 is compact.

4 Proposed Encoding

As we saw in the previous section, the two kinds of delta values, namely initial
distances and increments, have the power distributions of different exponents.
By utilizing this fact and the distributions of other variables related to the web
graph, a new encoding of the web graph is obtained.

A high-level description of our encoding is the same as that of Link2: pages
are represented by sequence numbers in the lexicographical order of URLs, and



(a)

1

10

100

1000

10000

100000

1000000

10000000

1 10 100 1000 100001000001e+06

F
re

qu
en

cy

Absolute value of initial distance

Frequency
Exponent -7/6

(b)

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 10 100 1000 100001000001e+06

F
re

qu
en

cy

Value of increment

Frequency
Exponent -4/3

Fig. 1. The distributions of (a) initial distances and (b) increments. Both axes are in
logarithmic scale.



the graph is represented by the list of the adjacency lists of all the vertices,
where each adjacency list is sorted in ascending order and each element of an
adjacency list is represented by its delta value. The difference lies in the way
each delta value is represented.

According to the observation in the previous section, we propose the following
encoding of the web graph.

Encoding adjacency list of one vertex. Suppose a vertex v has out-degree d. Then
the adjacency list of v has one initial distance and the list of (d− 1) increments.
Consecutive 1s in the list of increments are compressed using the run-length
encoding.

We treat 1s in the list of increments specially because the increments of 1
appear frequently because they appear when a directory index page has links to
all the files in that directory.

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 10 100 1000 10000

F
re

qu
en

cy

Length of run

Frequency
Exponent -8/3

Fig. 2. The distributions of the length of the runs consisting of the increments of 1.
Both axes are in logarithmic scale.

From the actual data, the lengths of these runs have the power distribution
with the exponent of about −8/3 as shown in Figure 2. Because we now stick
to instantaneous codes for simple and fast decoding, the best we can do is to
represent them in the variable-length block code with 1-bit blocks.

As a result, this adjacency list is represented by its initial distance, followed
by mixture of actual increments and run-lengths of increments of 1, followed by
the end-of-list mark. The initial distance, the increments and the run-length are
represented in the variable-length block codes with 6-bit, 3-bit and 1-bit blocks,
respectively.



Encoding a whole graph. The number of vertices is represented in the variable-
length block code with 3-bit blocks, and the adjacency lists of the vertices are
represented using the encoding described above.

To make random access possible, a balanced binary tree T with each leaf
representing one adjacency list is used. Each subtree T ′ of this binary tree is
represented by the concatenation of the encodings of the left child tree of T ′ and
of the right child tree of T ′, preceded by the length of the first part represented in
the variable-length block code with 2-bit blocks. The whole graph is represented
by the representation of T . This way, the adjacency list of a given vertex can be
located in O(log n) time where n is the number of the vertices of the graph.

Note that our encoding have four parameters: the lengths of blocks to rep-
resent initial distances, increments, run-lengths of the increments of 1, and the
lengths of the representations of left-children of inner nodes of the binary tree
T . If another, slightly different graph has to be encoded, one can tune these
parameters according to the actual graph.

5 Experiments, Results and Discussions

Experiments were performed to see how compact the proposed encoding method
is and how efficient its decoding is.

The graphs used in them are Toyoda and Kitsuregawa’s web graph divided
into each server, as described in section 3.

5.1 Compression Ratio

The proposed encoding algorithm was implemented and the web graphs were
encoded. Guillaume et al.’s encoding with Huffman codes was also implemented
and the results were compared.

Figure 3 shows the result of the comparison. Our encoding produced 9.7 bits
per edge on average while Guillaume et al.’s produced 27.0 bits per edge. These
numbers have to be treated with care. In our method, the length of blocks of
variable-length block codes of integers were adjusted to produce the best result
for our dataset, while Guillaume et al.’s was used as it was with Huffman code
table adjusted to be optimal.

It may be fair to compare the number of bits our method produced per edge
for our dataset with the number of bits their method produced per edge for their
dataset. In the citation [2], their encoding with Huffman codes produced 12.3
bits per edge. Compared to this figure, our method gives 20% less number of
bits per edge than Guillaume et al.’s.

According to the citation [6], Link2 produced 11.03 bits per edge on average
when used to encode their dataset with 61 million vertices and 1 billion edges.
Compared to this, our encoding produces 10% shorter encoding.

From these observation, the proposed encoding successfully utilized a wide
range of locality the web graph has and the distributions of various variables
related to the web graph including initial distances and increments, and these



1

10

100

1000

10000

100000

1e+06

1e+07

1 10 100 1000 100001000001e+061e+071e+08

Le
ng

th
 in

 p
ro

po
se

d 
en

co
di

ng
 (

bi
ts

)

Length in Guillaume et al.’s encoding (bits)

Fig. 3. The comparison of the compactness of Guillaume et al.’s encoding with Huffman
codes and that of the proposed encoding. Both axes are in logarithmic scale.

facts resulted in a better compression ratio than Guillaume et al.’s method and
Link2.

5.2 Extraction Time

A corresponding decoding algorithm for the proposed encoding method was im-
plemented and the time taken by the depth-first search on the encoded web
graphs was measured. The comparison with the case using Guillaume et al.’s
encoding with Huffman codes was also performed.

For each graph, depth-first search starting from each vertex was performed
to visit every vertex at least once and follow every edge exactly once.

Benchmark program was written in C++, compiled with GNU C++ Com-
piler 3.0.1 and executed on Solaris 2.6 on Sun Ultra 60 with UltraSPARC-II
360Hz CPU and 1GB memory.

Figure 4 shows that Guillaume et al.’s and our method are comparable in
extraction time. Guillaume et al.’s method took 5.1 µsec. per edge and ours took
3.5 µsec. per edge.

This means that the use of variable-length block codes did not impact time
needed to decode adjacency lists of the vertices of the graph compared to Guil-
laume et al.’s method. It seems this is because most of the decoding time is taken
to find the adjacency list of an appropriate vertex in the balanced binary tree.

It is difficult to compare our encoding to Link2 in terms of the extraction
time because we have not executed the algorithm of Link2 on our environment.
However, at our best guess, Link2 is faster than our encoding because Link2 is



0.001

0.01

0.1

1

10

100

1000

10000

100000

0.001 0.01 0.1 1 10 100 1000 10000100000

T
im

e 
in

 p
ro

po
se

d 
en

co
di

ng
 (

m
se

c.
)

Time in Guillaume et al.’s encoding (msec.)

Fig. 4. The comparison of the time taken by the depth-first search of the graphs
encoded in Guillaume et al.’s method with Huffman codes and that in the proposed
method. Both axes are in logarithmic scale.

fixed for the variable-length nybble code. The variable-length nybble code can be
decoded faster than general variable-length block codes because in the variable-
length nybble code, it is sufficient to simply split one byte into two nybbles to
extract blocks, while in general variable-length block codes, operations on bit by
bit are needed.

6 Conclusion

It was clarified that the compact encoding by Link2 came from the fact that the
delta values of the adjacency lists had the power distribution with the exponent
of about −4/3 by observing the actual data. Furthermore, it was found that the
initial distances and the increments had the power distributions of the different
exponents. By using the distributions of initial distances, increments and other
variables, we obtained another compact encoding of the web graph. Especially,
the connection between power distributions and variable encodings has turned
to be useful to encode the web graph efficiently.

The qualitative comparison of our method with Link2 and Link3 in terms of
compression ratio and extraction time is yet to be performed.

Widely-known “power law” about the distribution of the out-degrees and the
in-degrees of vertices is not used in our method. Using it and the distribution of
other variables may lead to more efficient encoding method.



Our method has several parameters and it has hopefully application to other
kinds of graphs than the web graphs. The optimal parameters of the variable
encodings used in the method may be different for different kinds of graphs.
Currently, to adopt our method to other kinds of graphs, it is required to tune
the parameters by observing the distributions of initial distances and increments
of the actual graph. However, our method have few parameters and the tuning
will be easier than encodings with more parameters. The general discussion for
usefulness and optimal parameters of our method to other kinds of graphs needs
more experiments using different graphs.

References

1. A. Z. Broder, S. R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins and J. Wiener. Graph structure in the web. In Proceedings of the 9th
International World Wide Web Conference, pp. 309–320, 2000.

2. J.-L. Guillaume, M. Latapy and L. Viennot. Efficient and Simple Encodings for the
Web Graph. In Proc. the 3rd International Conference on Web-Age Information
Management, LNCS 2419, pp. 328–337, 2002.

3. J. M. Kleinberg. Authoritative Sources in a Hyperlinked Environment. Journal of
ACM, 46(5):604–632, 1999.

4. S. R. Kumar, P. Raghavan, S. Rajagopalan and A. Tomkins. Trawling the Web for
Emerging Cybercommunities. Computer Networks, 31(11–16):1481–1493, 1999.

5. L. Page, S. Brin, R. Motwani and T. Winograd. The PageRank Citation Ranking:
Bring Order to the Web. Technical Report, Stanford University, 1998.

6. K. Randall, R. Stata, R. Wickremesinghe and J. L. Wiener. The Link Database:
Fast Access to Graphs of the Web. Research Report 175, Compaq Systems Research
Center, Palo Alto, CA, 2001.

7. M. Toyoda and M. Kitsuregawa. Observing evolution of Web communities. In Poster
Proceedings of the 11th International World Wide Web Conference (WWW2002),
2002.


