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This paper presents a scalable visualization technique for automatic animation of
data-flow visual program execution, and a software architecture to provide a scalable
interface for debugging programs, which exploits a multi-focus fisheye viewing algo-
rithm in conjunction with a semantic zooming interface to show various kinds of
information at runtime. The architecture also supports users’ browsing with the
interface by automatically assigning proper focal points, based on information embed-
ded in the debugged programs. Thus, it is possible to provide scalable views and
intelligent assistance for browsing dynamically created data-flow networks. We have
incorporated these ideas into the visual tracer of the KLIEG visual parallel program-
ming environment.
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1. Introduction

WHEN DEVELOPING A PARALLEL PROGRAM, a programmer needs to examine various
aspects of the program behaviors. Examples of ‘aspects’, which we refer to particular
behavior of programs, include the performance of the program, the scheduling policies,
the behavior of a single component and the behavior of cooperative components that
communicate with each other. Since the development usually involves a cycle of coding
particular processes, checking the correctness of the ‘unstable’ processes, and perfor-
mance-tuning of the entire program by searching for bottlenecks, these aspects should
be frequently monitored. Consequently, it is desirable that debuggers should provide
easy access to suitable views to examine those aspects that are of interest to the
programmer.

The goal of this research is to develop a visualization technique and its interface for
debugging programs in parallel data-flow visual programming languages (VPLs), in
which fine-grained processes are dynamically created at runtime. A summary of the
requirements of the technique and the interface is presented in the following:
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1. Multiple Views Facility. To examine various aspects of the execution, one or more
proper views should be provided for each aspect.

2. Easy Access to Multiple Aspects of Execution of Programs. A programmer tends
to browse several aspects. To this end, the programmer changes views frequently.
Therefore, creating and changing views for each aspect must not impose tedious
operations on the programmer. Furthermore, the interface used to specify those
views should be easy and intuitive for the programmer.

3. Scalable Visualization and its Interface. The visualization and the interface for
browsing the visualization must be scalable, since the number of runtime pro-
cesses increases as the execution proceeds and the processes form large networks.
Therefore, the interface must accept visualization of the large runtime networks.

4. Support for Multiple Focal Points. Practically, a multiple focal point facility is
desirable, since the programmer usually needs to examine two or more processes
(e.g. sender and receiver processes) in the runtime network, simultaneously.

The traditional approach for the first requirement is a multiple window method such
as that adopted in ParaGraph [1]. ParaGraph provides various modules, each of which
animates a certain behavior of a program or visualizes a measurement of performance of
the program. Hach of the views is displayed in one window. One merit of this method is
that it allows several views of certain measurements of the execution to be examined.
However, the multiple window method does not scale-up. While it is necessary to
examine various aspects of the execution during the debugging, the programmer’s
understanding of the relationship among separated views tends to become confused by
the separation, even if each view is scalable.

In the field of VPLs, the second requirement is partly achieved by the visualization
technique that is used in both Pictorial Janus [2] and VIPR [3]. These systems depict
a state of program execution as a picture, based on the shape of the program itself, and
represent state transitions during execution as an animation by smoothly morphing
adjacent pictures. Furthermore, VIPR partly addresses the fourth requirement, by
incorporating its own single-focus fisheye viewing algorithm. While both systems
achieve automatic animation of the program code being executed and data being
transmitted among procedures, neither system has a system framework that provides
multiple views displaying various perspectives of a programs execution.

This paper presents an extensible software architecture that provides a scalable,
comprehensible and integrated visualization of program execution in data-flow VPLs by
exploiting multi-focus fisheye viewing and semantic zooming [4]. We also show how we
can assist a programmer’s browsing tasks when examining aspects of a program. Our
approach to this assistance is: (1) the system automatically generates views, each of
which highlights certain aspect(s) of the execution that programmers need to monitor;
and (2) interfaces are provided to change views instantly. The views are generated by
first extracting various kinds of information embedded in the program, such as the
design information, the creators of components, and the last modification times of the
components. Then, based on the extracted information, appropriate focal points are
assigned to fisheye viewing, along with appropriate views selected to emphasize certain
aspects.

To show our approach and the system architecture which achieves our goals, the
remainder of this paper is organized as follows. After the description of the declarative
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data-flow VPLs, the languages that our technique targets, and the execution model in
Section 2, Section 3 shows the technique used to animate the execution of a program
written in the VPLs in a comprehensive manner and to incorporate a fisheye viewing
algorithm with semantic zooming. Section 4 proposes a software architecture that
achieves these issues in an extensible manner. Section 5 describes our approach to
assisting the programmer’s navigation of aspects of the program, and Section 6 shows
the visual tracer implemented to demonstrate the assistance provided. After reviewing
related works in Section 7, we summarize this paper with a discussion of future
extensions of the system.

2. Declarative Data-Flow VPLs

This section describes the declarative data-flow VPLs that this paper targets, and their
execution model.

A declarative data-flow VPL program is a collection of declarative rules for processes.
There are two types of processes: composite processes, which are visually defined in
data-flow diagrams, and primitive processes.

A composite process is declared by a set of visual composite rules, each of which spawns
child processes and forms a data-flow network of processes with data-flow links among
the processes. A guard may be attached to a composite rule to enable/disable the rule
conditionally at runtime. A primitive process is defined in a certain way (e.g. as state
transition diagrams or in textual languages), and we omit further details from this paper.

Figure 1 illustrates skeletons of visual composite rules. In this figure, three processes,
Main, M, and WS ate defined. The Main process creates a subnetwork consisting of two
instance processes; one instance of M and one instance of WS. The M process creates
a sub-network consisting of G and D. Two composite rules are defined for WS. The first
rule creates a network consisting of C and three instances of WS. The second rule creates
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Figure 1. A program in a declarative data-flow VPL
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Figure 2. Calculation of the positions and representations of dynamically created processes

a network consisting of C and one W. In general, a process that has more than
one composite rule will select one of the rules at runtime. Definitions of G, D, C and W,
and guards of Main, M, and WS are omitted from this figure. Note that we depict
processes as rectangles in this paper; however, they can be depicted as any shape, such as
squares or circles, provided that they can be fitted to each other by scaling their widths
and heights.

The execution of a program in a declarative data-flow VPL is a sequence of parallel
applications of rules from the root process (a composite Main process). A process
terminates when all of its immediate subprocesses have terminated. In the above
example program, an instance of process M terminates after both G and D have
terminated.

As a result of dynamic creation and termination of processes during execution,
the process network dynamically changes its topology at runtime as the execution
proceeds.

3. Basic Visualization and the Browsing Interface

This section illustrates the mechanism for constructing animations of program execu-
tion in the declarative data-flow VPLs described in Section 2. The basic animation is
produced by the following four steps (Figure 2):

(1) Generate a base view of the runtime process network by calculating the positions
of dynamically created processes at each step of the execution, referring to the
network topologies of the composite rules to show the network in a manner that
is easily recognizable to programmers.

(2) Decide the importance and representation of each process/sub-network, to select
the processes to be displayed and to show appropriate information that the
programmer needs to examine.

(3) Apply a fisheye viewing algorithm to the augmented network to display the
network within a screen and to provide a browsing interface.

(4) Smoothly animate transitions of the network topologies, caused both by the
execution proceeding and by changes of focal points in the fisheye viewing
interface, not to confuse the programmer.

3.1. Define Positions of Dynamically Created Processes
to Configure the Runtime Process Network

Our approach to show the network in an easily recognizable manner to the programmer
is making the topologies of the network imitate the topologies of the program. To this
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Figure 3. Configuration of newly created processes

end, the positions of newly created processes are calculated from two inputs after each
application of composite rules: the location of the parent process and the network
diagram of the applied composite rule. When a certain process creates its sub-network,
we scale the width and the height of the applied network diagram to fit the area that the
parent process occupies.

Figure 3 shows sequences of network transitions during execution of the program in
Figure 1. Figure 3(a) and (b) represents the initial network topology before the program
runs and the network topology after the rule of the root process has been applied,
respectively. The locations of the newly created subprocesses (M and WS) are calculated
from the network diagram defining the Main process (Figure 1). The calculation can be
written as follows.

scale_h = parentw/rule_fired.w;

scale_v = parent.h/rule_fired.h;

for each (p in processes in rule_fired){
p_spawned = p.create_untime_process( );
p_spawned.| = scale_h*p.| + parent.|;
p_spawned.t = scale_v*p.t + parentt;
p_spawned.w = scale_h*p.w;
p_spawned.h = scale_v*p.h;

The above code calculates the coordinates of one or more child processes p_spawned
spawned from the runtime process parent when the rule_fired defining the parent process
is applied. scale_h is the horizontal scale factor to scale the network diagram of rule_fired
linearly to fit the area occupied by the parent process, and is defined by dividing the
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width of the parent process parentw by the width of rule_fired. (rule_firedw) The vertical
scale factor scale_v is derived similarly, from parenth and rule_fired.h. Then, the position of
each p_spawned (p_spawned.|, p_spawned.t), is defined by scaling the position of the
corresponding process in rule_fired (., p.t) and moving it by the position of the parent
process (parentl, parent.t) as the offset to the screen.

3.2. Importance and Representation of Process and Sub-Network

Since screen space is limited and the number of processes in a runtime network
increases as the execution proceeds, we have to select processes to be displayed. We also
want to display in the runtime network various information about the execution, such as
scheduling status and performance data. To make such a selection and display, we define
two parameters for each process: a number that expresses its relative importance and
a ‘representation function’ that decides the proper representation for the amount of
space assigned to the corresponding process. Note that the effect of representation
functions is similar to the semantic zooming approach [4], provided that the functions
show as much detailed information as possible when enough space is assigned, while
suppressing unnecessary details and showing some informative signs to indicate that
‘something is there’ when the assigned space is low.

3.3. Applying Multi-Focus Fisheye Viewing

The technique described in Section 3.1 is not scalable only in itself. Even in
a small network such as Figure 3(c), we cannot see the detailed behavior of
processes [e.g. C and three W processes in Figure 3(c)]. A pan + zoom interface
might be a partial solution to the problem. It scales the original network linearly and
provides scrollbars that allow the user to move part of the scaled view. However, the
user may lose track of the current location when zooming on a portion of the runtime
network, particularly when many sub-networks are instantiated from one rule, and are
thus similar.

In contrast, focus + context approaches (e.g. [5-9]) are powerful for navigating such
networks, and many variants have been developed. In particular, the Continuous Zoom
[9] has the properties below and is considered a suitable algorithm. First, the algorithm
supports a multiple focal point facility. Second, it guarantees the presence of paths to
every network node (i.e. process), even to hidden nodes. This allows the user to examine
every node. Another desirable property is that the algorithm preserves the nested
structure of the network and provides a navigation interface based on that structure.
Thus, the algorithm can reveal caller—callee relationships between processes in the
process network hierarchy, such as depicted in Figure 3.

The Continuous Zoom algorithm can be simply applied by treating each of the
processes (i.e. the rectangles depicted in Figure 3) as a node of the algorithm, and
assigning the importance of the process as the degree of interest (DOI) of the
corresponding node.

Note that the representation functions described in Section 3.2 should change the
appearance of the corresponding node according to the area that is assigned by the
viewing algorithm. Thus, it is possible to integrate a semantic zooming interface with
a fisheye viewing interface.
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3.4. Smooth Transitions using Animation

Abrupt transitions of view tend to confuse the user. This problem can be addressed by
animating transitions smoothly. The transition of the topology of the runtime network
caused by the application of rules can be animated in two steps: computing the position
of each process before and after the application, and linearly interpolating the two
geometries in several steps, redrawing the network at each step. Note that the positions
of processes that are newly created by an application are defined as the center of the
parent process.

3.5. Integration of Fisheye Viewing with Multiple Semantic Zooming:
Merits and Demerits

With the visualization and its browsing interface described above, we can obtain detailed
views of the dynamically created process network at execution, while seeing the shape of
the whole network in a scalable manner. Moreover, multiple views can be achieved if an
appropriate set of representation functions are provided, each of which shows semantic
information (such as its execution status and a performance measurement) related to the
specified process in a semantic zooming manner.

Suppose that a representation function places the subprocesses of a process in the
same manner as that described in Figure 3, and shades each of the subprocesses based
on its execution time (summation of the elapsed time of all of its descendant processes).
1f we specify all of the processes to be shown by the representation function, we will be
able to see some ‘hot’ processes within the runtime network at a glance from the
gradation of processes within the network. Then we can further examine those ‘hot’
processes, using zooming to display the same kind of details for the descendants, while
viewing adjacent processes and the overall network using fisheye viewing. Thus, the
most problematic processes can be probed gradually, using semantic zooming and
the fisheye viewing interface.

Such performance monitoring requires integration, and cannot be achieved solely by
multiple viewing (such as in ParaGraph) or by animation of the execution with a fisheye
viewing interface (such as VIPR).

However, we may still have to zoom in and out of several parts of the runtime
network, to select the appropriate view for each of the parts, to obtain our desired view.
Moreover, changing those views is a time-consuming task, and many changes are
required to examine various aspects of the program. Some supporting mechanism is
therefore required.

4. System Configuration

Figure 4 illustrates the software configuration for implementing the mechanism
described in Section 3.

The architecture is designed to provide a variety of views, each of which shows
specific information about the execution of the program, in an extensible manner. To
achieve this goal, there is a separated component view generator, which generates views
from the output of other system components (base view generator and runtime system).
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Figure 4. System architecture

The view generator has several modules as its sub-components, each of which shows
specific information about part of the runtime network. Thus, we need only to add
modules to the view generator, if we want to extend the system and support other kinds
of views.

The three main components, the base view generator, view generator and fisheye
viewing interface, are described below.

4.1. Base View Generator

The base view generator generates the base view of the runtime process network, as
described in Section 3.1, at each step of the execution. At the same time, to convey
various parameters to the view generator, it also constructs a process tree structure. Figure 5
depicts an example of the process tree structure, which corresponds to the network in
Figure 3(c). Each node of the tree corresponds to a runtime process and stores those
parameters, such as the default representation of the process and execution state:
running, suspended or dead.

4.2. View Generator

The view generator assigns importance and representation to each process in the
network hierarchy and feeds them to the fisheye viewing algorithm, based on the
parameters stored in the nodes of the process tree. More concretely, the parameters
below are assigned for each node of the process tree by modules in the view generator:
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Figure 5. Process tree

* DOL A number which indicates the relative importance of the corresponding
process.

* representation function: A function that decides the proper representation for the
amount of space assigned to the corresponding process.

o visibility (‘open’/‘close /*not-specifie’): A value that explicitly tells the fisheye viewing
algorithm that the contents of the corresponding network hierarchy must be visible
(‘open’) or invisible (‘close’), or that the visibility depends on the algorithm (‘not-
specified’).

The above parameters are assigned after a module is activated by the user. When the
user specifies a module to be activated to a process (i.e. the corresponding node of the
process tree), the module then re-calculates the DOIs of the specified node (and its
descendent nodes if necessary) and re-assigns the representation function of the module
and an appropriate visibility to the node.

4.3. Fisheye Viewing Interface

The fisheye view algorithm distorts the base view according to the DOI of each part of
the network hierarchy and shows it within the screen. The appearance of each part of
the network hierarchy is defined by the representation function that is set by the view
generator.

5. Navigation Support by Exploiting Aspects

As mentioned in Section 1, programmers need to monitor various aspects of program
execution. Although they could obtain a layout suitable for each aspect by assigning
several focal points on the multi-focus fisheye viewing interface and selecting appropri-
ate modules for semantic information, their browsing tasks can be alleviated if we can:

(1) automatically generate views, each of which highlights certain aspects to be
checked (e.g. views for checking correctness of unstable processes and views for
performance-tuning); and

(2) provide an interface for choosing from those views easily.
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Although it is virtually impossible to generate all of the views highlighting aspects
necessary for the programmer, it is possible to automatically generate several views
essential to debugging. An example of those views is one that emphasizes processes
considered to have bugs. Another example is a view that highlights processes that
include faults and those relevant to the computation of the faulty processes.

Our approach for the automatic generation of such views is based on visual design
patterns (VDPs) [10]. VDPs include various information, such as the design information
that the designers of the VDPs present to the users, the creators, and the last
modification time. From this information, we can generate views of a program’s
execution that emphasize certain aspects of the program.

In the following sections, we illustrate how these aspects of the program can be
extracted from VDPs, after reviewing the concept of VDPs with an example. Interfaces
to select one of the views generated are described later in Section 6.

5.1. Visual Design Patterns

5.1.1. Constructs of VDPs

A VDP is a user-definable data-flow network diagram that has boles as parameters and
maintains design information. A hole can be instantiated with concrete processes by the
user of the VDP. The user can use the network diagram in a composite rule (described
in Section 2) after instantiating all of the holes.

As an example of a VDP, we show a rough sketch of the master-worker VDP in
Figure 6, which implements a simple load-balancing scheme that involves a generator
process and a collection of worker processes. The master-worker VDP has some holes
(represented as ovals), which are instantiated with concrete processes depending on the
problem to be solved.

The network is composed of the generator hole and the combiner process (repre-
sented as a rectangle), the dispatcher process, and several worker holes. The generator
generates a stream of sub-problems. The dispatcher receives the sub-problems from the
generator and sends them to idle workers. It also receives answers from the workers and
forwards the answers to the combiner. Each worker process receives sub-problems,
solves them, and returns the answers to the dispatcher. The combiner receives the
answers from the dispatcher and computes the final answer.

Combiner

Dispatcher

Worker ) 000

Figure 6. An example of VDP: master-worker
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Figure 7. Master-worker pattern in three layouts

By providing appropriate generator and worker processes, we can use this VDP to
solve various parallel programming problems, such as ray-tracing and search problems.
In this respect, VDPs are appropriate units for reuse.

5.1.2. Layont Information of 1VDPs

VDPs visually represent design information, for instance, ‘which processes (or holes)
should be modified to change a particular behavior?” For this purpose, the designer of
a VDP can save fisheye-viewed layouts of the VDP with appropriate names. The user
can easily discover the processes that should be modified by selecting the layout with the
name of the behavior.

In each of Figures 7(a) and (b), one layout of the master-worker VDP is depicted.
Figure 7(a) represents the ‘Problem to solve’ layout. This layout emphasizes the
processes that should be modified to change the problem to be solved, where the
generator and the left-most worker are magnified and the others are shrunken.
Figure 7(b) represents another layout, “Treatment of answers’, where the dispatcher and
the combiner are magnified.

5.1.3. Defining a VVDP

To define a VDP, the designer first defines a network diagram by placing processes
and/or holes and drawing data-links between them. When the designer saves a fisheyed
layout, it is possible to optionally assign one of the modules in the view generator to the
processes/holes that the VDP comprises.

In the VDP depicted in Figure 7, the designer can assign to the sequence of holes
[Figure 7(c)] the module that has a representation function that colors the associated
process base on its execution at runtime. The resulting layout will help the users of the
VDP to examine whether load-balancing works correctly at runtime, as described later
in Section 5.2.

5.1.4. Programming using VDPs

Programming with VDPs usually starts with understanding the behavior of existing
VDPs by instantiating the holes with sample processes provided as a system library.
After understanding the behavior, the programmer instantiates holes with the processes
that the programmer developed. After instantiating all of the holes, the programmer can
use the resulting network in a composite rule (described in Section 2).
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5.2. Generating Views from Information in VDPs

Currently, two kinds of views based on the information in VDPs are generated: views
generated by referring to layout information in the VDPs and views that reflect the
quality of the processes.

5.2.1. Views from Layouts in VDPs

Our experience in using VDPs suggests that a layout defined by the designer of a VDP
often corresponds to an aspect that the user of the VDP wants to examine during
execution. Since programming using well-designed VDPs consists mainly of instantiat-
ing their holes with appropriate processes, the magnified portions in VDP layouts
represent the processes just instantiated, which are usually unstable. Therefore, by
referring to the layouts, a visualizer can highlight certain parts (in the runtime network)
that are relevant to the code that the user needs to examine, thus assisting by greatly
reducing the tasks required to assign focal points in the fisheye viewing interface.

In the case of using the master-worker VDP, the user often has to examine
a generator and a worker process simultaneously, after they have finished coding their
own generator and worker, in order to check whether each sub-problem is produced
and solved correctly. The ‘Problem to solve’ layout directly answers this requirement. In
turn, they may want to monitor the scheduling of worker processes to discover
bottlenecks. Since the scheduling of worker processes is controlled by the dispatcher,
the “Treatment of answers’ layout is useful, where both the dispatcher and the combiner
are magnified. Zooming-in on the dispatcher would be sufficient for this purpose.

5.2.2. Layouts by Quality of Components

The quality of components (i.e. processes in the data-flow VPLs) can be used as a
tool to make our visualizer enhance the network view, because of the two observations
below:

* In order to recognize the behavior of a VDP, the user of the VDP often wants to
monitor the overall behavior of the VDP, rather than the details of each process.

* After instantiating holes within the VDP, the user usually needs to examine the
detailed behavior of the processes that instantiate the holes, since these processes
(which are under development) can be considered unstable and are the main targets to
monitor and debug.

In programming using reusable components (i.e. the processes in this paper),
a program is composed mostly of reused components, which are considered stable.
Consequently, the programmer usually has to check only the few components that the
programmer has developed thus the qualities are unknown. Therefore, by automatically
emphasizing the components whose qualities are unknown (possibly low), it is possible
to reduce the programmer’s navigation tasks for checking the correctness of the
components.

The quality of a process can be calculated and reflected in network views by using the
heuristics below:
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* The code currently being developed is considered unstable and is the main target to
monitor and debug. Therefore, as far as possible, the visualizer shrinks the sub-
networks created from stable (well-debugged or old) processes and magnifies the
sub-networks that are relevant to unstable processes.

* The sub-networks created from the processes that instantiate the holes within
‘VDPs from the system library’ will be monitored by the programmer, since
the VDPs in the system libraries can be considered stable, like the C standard
libraries.

For this calculation, the VDPs and processes hold the creator and the last modifica-
tion time.

6. Implementation in KLIEG VPL

We have implemented the architecture described in Section 4 as the visual tracer of
the KLIEG VPL [10, 11]. Figure 8 shows a snapshot of the animation representing
the execution of an N-Queens program. The program is derived by instantiating the
generator and the worker holes of the master_worker KLIEG-VDP [Figure 9(a)] with
an nqueens_gen that generates sub-problems of N-queens and nqueens_workers that
solve the problems, respectively.

In this section, we first describe the KLIEG-VDP implemented in KLIEG VPL, and
next show the browsing assistance based on aspects implemented in the KLIEG visual
tracer.

main
process
master_worker
master

ngqueens_gen

Probs)

ngueens_worker

Ansk |

Figure 8. A snapshot of visualization on the KLIEG tracer
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Figure 9. Layouts in KLIEG-VDP
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6.1. VDPs in KLIEG VPL

The master_worker KLIEG-VDP [shown in Figure 9(a) and (b)] is a network construc-
ted from two networks, master and workers. These networks have ports (represented by
white rectangles) to communicate with each other. An arrow linking two ports repres-
ents a stream that is a continuous data-flow between the ports. For example, master has
two ports Wks and Ans to communicate with workers. The master network is
composed of the generator hole, the combiner process, and the dispatcher process as
shown in Figure 9(a).

Note that workers are defined using a replication network that replicates processes
dynamically, and connects those processes. The replicated processes in workers are
represented by three holes (recessed rectangles labeled worker), and an ellipsis, which
abbreviates a set of processes. Fach worker hole has an input port (the recessed
rectangle labeled Probs) and an output port (the raised rectangle labeled Ans). Each
replicated worker process receives sub-problems from the Probs port, solves them, and
returns the answers to the master via the Ans port. A replication network has some
special ports that determine the number of replicated processes and the topology of the
network. For example, the Wks port in workers is a zap port that determines the number
of processes to generate by the number of received elements from the port, and maps
each element to each process. Master [at the bottom of Figure 9(a)] is a merge port
that merges the output streams of all the processes (details are described in our VL7

paper [10]).

6.2. Zooming Interface of KLIEG Tracer

As shown in Figure 8, the network view on the visual tracer, which is distorted by the
Continuous Zoom algorithm, preserves the topology of the network diagrams depicted
in Figure 9(a).

Note that the continuous zoom uses the same operation to animate the transitions
caused by the user’s zoom-in/out operations as the animation described in Section 3.4.
Therefore, we can integrate the two animations together. This integration greatly
simplifies implementation.

6.3. Modules in the View Generator

Currently, there are four modules in the view generator: ‘Evaluate zoom in/out’,
‘Restore saved layouts’, ‘Calculate code quality’ and “Terminate Processes.” The module
‘BEvaluate zoom in/out’ is activated by users’ zooming in/out operations (currently, left
button for zooming in, and right button for zooming out). Other modules, which
construct views reflecting certain kinds of aspects, are activated in response to users’
selections (currently, pop-up menus on visible processes). One exception is “Terminate
Processes.” The module is activated when a process terminates and it changes the
representation of the process to indicate that the process is now dead.
More detailed descriptions of the modules are as follows:

* The ‘Evaluate zoom in/ont’ module increases and decreases the DOI of the node in
response to the user’s zoom-in and out, respectively. The visibility and the representa-
tion of the process are not changed.
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* ‘Restore saved layouts’ receives the name of saved layouts of a VDP and resizes runtime
processes by distributing the DOI of the manipulated process to the descendant
processes. The DOIs of each of the descendant processes are assigned to be
proportional to the area of the corresponding process in the saved layout.

* ‘Calculate code quality’ calculates the code quality of the descendant processes of the
selected process, as described in Section 5.2.2. The DOIs of each of the descendant
processes are assigned to be proportional to the code quality of the processes.

* “Terminate processes’ shrinks a dead process by assigning 0 (the minimum value of DOI
in the current implementation) as the DOIL, to give as much screen space as possible
to other live sibling processes.

Besides those modules, parameters for a newly created node are defined by the system
as follows:

* DOI 1.

* visibility: ‘not-specified’.

* representation function: the default representation function determines the representa-
tion of the associated process according to the screen space that is assigned to the
process by the fisheye viewing algorithm. When the process is assigned enough space
to show the children of the process, the function shows the children. Otherwise, it
shows one of three icons: a rectangle with the ports and the name of the process,
a rectangle only with the name of the process, and a simple square. Moreover, in order
to help the programmer easily discover bottlenecks within the network, the function
colors the icon to show the scheduling status of the process: runnable, 1/O-blocked
and dead processes are colored gray, green and black, respectively. (When viewed in
black and white, these colors correspond to light gray, dark gray and almost black,
respectively.)

In Figure 8, three nqueens_workers are shown on the tracer. The one on the left is
currently running, and is colored light gray, whereas the other two are waiting for
another sub-problem, and are colored green. From this default colored network view,
the programmer can briefly monitor the scheduling status of the program.

Note that the user can examine hidden parts within the network by enlarging the part
with zooming-in. For example, each nqueens_worker in Figure 8 clusters its sub-
processes and represents them as an icon of nqueens_worker. The user can observe the
internal networks by zooming-in. In this way, the default representation function is
effective in preventing unnecessary details of the network from being drawn, thus
enhancing both the readability and performance of drawing.

6.4. Browsing Assistance in the Tracer

Figure 10 depicts the browsing assistance facility implemented in the KLIEG tracer.

The N-queens program, which is monitored by the tracer, contains the nqueens_gen
process that the programmer has modified recently. As a result, the unknown (possibly
low) quality of the process is reflected in the tracer’s view (shown in the center of this
figure) by magnifying an instance of the nqueens_gen process, so that the internal
sub-network of the process is shown.
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Figure 10. Changing the layout of the network

We can easily adjust the network view by selecting items from the menu as shown
in the center of Figure 10. The figure shows the situation when the user is
selecting ‘Problem to solve’ from the menu. The menu operation causes the tracer
to change the view as shown in the left part of the figure, by referring to the layout
saved by the designer of the master_worker VDP. Now we can get a runtime
network view where both the generator and the workers are magnified, and we are
ready to check the behavior of the two kinds of processes. If the performance
is required to be examined, we select ‘Treatment of answers’ from the menu.
This selection magnifies both the dispatcher and the combiner, so a further single
zoom-in to the dispatcher is enough to obtain the layout shown in the right part of
Figure 10.

6.5. Support by Semantic Browsing

Although it is possible to browse any shape of network using a fisheye viewing interface
with semantic zooming, it is also possible to combine other kinds of interfaces that are
suitable for the specific shape of networks with fisheye viewing. Furthermore, the idiom
of the underlying VPL (the replication network mechanism in KLIEG VPL) can serve
as a template to provide such ‘hybrid browsing interfaces’.

An ellipsis, which is shown in the bottom half of Figure 8, is an example. The ellipsis
abbreviates a sequence of worker processes (such as the sequence shown in Figure 11)
created from the replication network mechanism in KLIEG-VDPs. Browsing such
a sequence of nodes only with fisheye viewing usually requires many zoom-in/out
operations and tends to be a tedious task, since the user has to enlarge each node
one by one. On the visual tracer, the user can change the abbreviated part within the
sequence by dragging with the mouse, and can easily browse all of the abbreviated
processes.
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Workers

Figure 11. A sequential network created from a replication network

We call such hybrid interfaces semantic browsing interfaces. Note that semantic brows-
ing interfaces should be designed in such a way that they do not interfere with the
properties of the Continuous Zoom algorithm, such as the multiple focal points and
paths to every process, described in Section 3.3. The above semantic browsing interface
satisfies these requirements by providing: (1) the function to enlarge two or more
processes in a sequence and (2) the function to view the contents of enlarged processes
by zooming in on those processes.

7. Related Work

PP [12] is another programming environment that directly displays the execution of
a visual program, as do Pictorial Janus [2] and VIPR [3]. Our visualization of program
execution is basically the same as in those systems, in the sense that animation of
program execution is represented as pictures that are derived from the shape of the
program. However, we provide multiple views, using semantic zooming interfaces
together with advanced browsing assistance, to support the programmer’s navigation
tasks based on a program’s aspects.

The visualization technique described in Section 3 can be applied to visualize other
data-flow VPLs that are similar to that mentioned in Section 2. Examples of such VPLs
include Prograph [13], CODE [14], Meander [15], VISTA [16], and V [17].

There have been many attempts to automatically visualize the creation of objects and
the messages passed between objects in parallel object-oriented systems. Many studies
have also been made of monitoring the performance of these systems automatically,
without code-instrumentation or annotations. Our visualization technique can be
integrated into these visualization systems to provide another comprehensive view of
the execution for visual data-flow VPLs.

8. Discussion

Although we have concentrated on visualizing runtime networks in this paper, the
visualization could be extended to integrate a data browsing facility. This can be
achieved by making a stream port expand and the data of the stream be visible within the
expanded port when users zoom in on the stream port.

The proposed architecture can be easily extended to provide other kinds of views.
One example is a view that highlights processes relevant to the value of a port specified
by the user. This can be achieved by adding another module in the view generator, which
computes a slice of the program by interprocedural slicing such as in [18, 19], and
increases the DOls of the processes in the computed slice. The user only needs to select



BROWSING OF DATA-FLOW 547

the port of a runtime process to obtain a fish-eyed view that highlights processes in the
runtime process network that might affect the value of the port selected.

The proposed architecture can be extended to show other kinds of measurements,
such as the memory usage of processes and the amount of data transmitted via stream
links. Two approaches to presenting such measurements can be considered: presenting
a measurement as a fish-eyed view, or as a graphical diagram instead of a process icon.
The former approach can be achieved by assigning measurements as DOIs of processes.
The latter can be done by assigning a representing function that shows a diagram of the
measurement. Both would work well, but the strategy for selecting an appropriate
approach would depend on the properties of the measurements. Further research on
this topic is necessary.

9. Summary

This paper presents a scalable visualization technique to animate the execution of
declarative data-flow VPLs using the Continuous Zoom algorithm. We show a software
architecture to provide a scalable interface for debugging, which exploits a multi-focus
fisheye viewing algorithm in conjunction with a semantic zooming interface to show
various kinds of information at runtime. The architecture also supports the user’s
browsing tasks by automatically generating views highlighting certain aspects, based on
information embedded in debugged programs.

This framework relieves us of the load both of focusing tasks on the fisheye viewing
interface and selection of appropriate modules, thus achieving greater scalability in
browsing,.
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