
Visual Abstractions for

Object�Based Parallel Computing

Etsuya Shibayama� Masashi Toyoda� Buntarou Shizuki� Shin Takahashi

Department of Mathematical and Computing Sciences

Tokyo Institute of Technology

������ Oookayama� Meguro�ku� Tokyo� ��������� JAPAN

fetsuya� toyoda� shizuki� shing�is�titech�ac�jp

Abstract

We propose the notion of visual patterns� which describe various aspects of

object�based parallel and distributed computing� and have developed a visual sup�

porting environment for parallel programming based upon visual patterns� In this

paper� we show the power of visual patterns in design� programming� and debugging

processes�

� Introduction

Object�oriented computing models inherently have visual natures� the essence of object�
orientation is to model anything and any behaviors in terms of a collection of inter�
related objects and interactions among them� such a collection naturally forms a general
graph structure that a diagrammatic representation is best �tted for human designers
and programmers to comprehend� In object�oriented software engineering community�
for instance� recent experiences in object�oriented analysis and design or OOA�OOD
�e�g�� �RBP�	
� Boo	�� proves the usefulness of various sorts of visual diagrams �e�g��
class and object diagrams that represent design of object�oriented software� Also in the
object�oriented programming community� JavaBeans and some other visual programming
environments are now coming to maturity� Concurrent� parallel� or distributed object�
based programming could not be the exceptions and neat visual representations of parallel
and distributed object�based programs�computations are desirable�

Just being visual is not su�cient� of course� In this paper� we propose new visual ab�
stractions� visual patterns� that describe various aspects of parallel and distributed object�
based design� programming� and debugging in a coherent manner� We also introduce a
prototype parallel visual programming environment KLIEG�TST�	�b� that provides a
support for�

� an object�based visual parallel programming language KLIEG�

� visual patterns that keep information of software design and object layout on the
screen�

master

worker

tasks

answers

workerworker

Figure
� A diagrammatic representation of concurrent objects

The major design issues of the KLIEG environment include the following�

� visual representations vs� textual representations�

� design� programming� and debugging in the large on a relatively small screen�

� a seamless integration of design� programming� and debugging processes�

In the sequel� in Section � we discuss the bene�ts of visual representations in object�
based parallel programming� Also in this section� we introduce the KLIEG language and
propose the new programming methodology� that is� pattern�oriented visual programming�
In Section � we brie�y review a support for visual design patterns provided by the KLIEG
programming environment� In Section �� we discuss scaling�up issues and introduce our
approach based upon distorted multi�focus zooming techniques� We compare our work
and related works in Section � and �nally summaries the current status and the future
direction of our work in Section ��

� The Visual Language KLIEG and Pattern�Oriented

Visual Programming

��� Why Being Visual�

As was brie�y mentioned in the previous chapter� diagrammatic representations of object�
oriented programs or designs are better �tted for human designers and programmers
than the corresponding textual representations� This reason is simple and obvious� any
forms of textual representations of general graphs or networks invented so far are not as
comprehensible as standard pictorial representations�

In Figure
� for instance� a typical diagrammatic representation of a collection of inter�
related objects is illustrated� This �gure represents a master�workers object network� in
which a single master object dispatches tasks to multiple worker objects and gathers the
results of the workers� computations� Either procedural or declarative� a textual repre�
sentation of this sort of network is rather indirect and harder to understand� Notice that
visual approaches in object�orientation are completely di�erent from those approaches

�

Figure �� A producer�consumer pattern

based on �structured �ow�charts� with a little computer support for syntax�directed
editing and outline processing� syntax trees in a textual form �i�e�� ordinary programs
can be as comprehensible as those in a visual form�

��� Patterns in KLIEG

Based upon the observation in the previous subsection� we design a visual �i�e�� picto�
rial language KLIEG for object�based parallel computing� Programs in the language
KLIEG are depicted as visual data��ow diagrams and� in this respect� KLIEG is similar
to CODE�PJ	�� and Pictorial Janus�KMK	��� One of the signi�cant di�erences is that
KLIEG provides a support for visual patterns and pattern�oriented visual programming�

����� Basic Usage

A visual pattern in KLIEG is represented as an object data��ow diagram with abstract
objects� which are called holes and to be instantiated later with concrete objects� In the
KLIEG environment� a visual pattern can keep design and layout information� The detail
of this issue will be described in Section ��

Figure � is the �rst and simple example of visual pattern� which represents the skeletal
structure of producer�consumer object network� This pattern has two holes� that is� pro�
ducer and consumer� In KLIEG� a recessed rectangle like producer or consumer represents
a hole� which is to be instantiated with a concrete object� In this �gure� the producer hole
has an output port Outs and the consumer has an input port Ins� In general� an input
port is depicted recessed and an output port raised� These two ports are called output
and input stream ports� meaning that they transmit and accept� respectively� streams of
messages� The arrow connecting these two ports represents a communication channel or
message stream�

The KLIEG environment provides a support for de�nitions and use of visual patterns�
For de�nitions of visual patterns� an editing interface similar to an draw editor is avail�
able� More advanced editing features including zooming supports will be introduced in
Sections � and �� For use of visual patterns� a drag�and�drop interface is provided� Holes
of a pattern are instantiated with objects by dropping the icons representing the objects�

In Figure �� the holes of producer are instantiated with two objects naturals and sum

by dropping their icons onto the holes �Exactly speaking� each hole is instantiated with

�

drag&drop

Figure �� Hole Instantiations by drag�and�dropping objects

a copy of the object� In KLIEG� a raised round rectangle like naturals or sum is an
iconic representation of an object� which depicts its signature or interface� i�e�� the names
and sorts of its ports� The intended behavior of this network is that� upon reception of
the value N � naturals transmits
� �� � � � � N to sum� which in turn computes the value of

 � � � � � ��N and �nally puts it on the port Sum�

In this case� naturals has two ports N and Nats� N is an input port that accepts just a
single message in its lifetime� This sort of port is called input singleton port and depicted
as a recessed round rectangle� Similarly� Sum is an output port that transmits just a
single message� This sort of port is called output singleton port and depicted as a raised
round rectangle�

As illustrated in Figure �� the output stream port Nats of naturals and the input
stream port Summands of sum are automatically connected via a message stream upon
instantiation� This connection is made by matching Nats and Summands with Outs and
Ins� respectively� In contrast� N and Sum cannot match any ports in the pattern� In
general� the dropped object can have more ports than the hole to which it is dropped�

The KLIEG environment calculates the most probable matching among ports of the
object and the hole using the following information of each port�

� whether singleton or stream�

� whether input or output�

� the types of messages received�transmitted on the port�

� the geometry within a hole or an object�

The �rst two are obvious� a singleton port only matches another singleton port� and so
on� The third information is exploited by the type inference algorithm that is similar to
the mode analysis algorithm�UM	�� for an parallel logic programming language FGHC
�Flat Guarded Horn Clauses� The last information is conducted only when the other
three are not su�cient for resolution of ambiguities since it is heuristic information and
thus error�prone�

In case of Figure �� the �rst two information is su�cient to get the correct result� i�e��
Outs of producer and Ins of consumer correspond to Nats of naturals and Summands of
sum� respectively� Notice that the name of a port is ignored in this matching process�

�

Figure �� The interface and implementation of sum of

Figure �� A base pattern for master�workers

����� Hierarchical Constructions

Even with a pictorial representation� a large and �at object network is rarely comprehen�
sible� To overcome this di�culty� the KLIEG language�environment provides a means for
hierarchical constructions of patterns and object networks�

Firstly� an object in KLIEG can be de�ned hierarchically� Figure � illustrates a simple
example� the small round rectangle sum of represents the interface of an object sum of�
the rest of the �gure represents its body or implementation� That is� an object sum of

consists of two objects naturals and sum that are embedded in the producer consumer

pattern� Notice that this picture is regarded as a rewriting rule and so the KLIEG language
processor reduces the interface of an object in a program into its implementation� Notice
also that the KLIEG allows the programmer to describe visual conditional rewriting rules
that are as expressive as clauses of a committed�choice parallel logic language Moded
FGHC�UM	���

Secondly� a visual pattern can be de�ned in a hierarchical manner� That is� by drop�
ping a pattern onto a hole of another pattern� the hole can be instantiated with the former
pattern� For instance� a master�workers network illustrated in Figure
 can hierarchically
be de�ned in KLIEG as follows�

� De�ning the fundamental structure of the master�workers pattern

Figure � depicts the basic structure of the master worker pattern� which has two
holes� i�e�� master and workers� and two arrows representing the communication
channels between master and workers�

�� De�ning the master and workers patterns

�

Figure �� A master pattern

Figure �� A workers pattern

The master and workers parts in Figure � should have their own micro�architectures
that are best described in terms of visual patterns� Figures � and � illustrate master

and workers patterns in KLIEG� respectively� Since the master�workers pattern is a
canonical example throughout this paper� we resume explanations of Figures � and
�� later�

�� Dropping patterns onto holes

By dropping master and workers patterns in Figures � and � onto the corresponding
holes of the master worker pattern in Figure �� we get the master worker pattern in
Figure ��

The master pattern in Figure � has three holes generator� dispatcher� and combiner� Gen�
erator plays a role of generating tasks that will be delivered to workers� This part heavily
depends on the problems to be solved and should often be replaced� Dispatcher receives
tasks from generator and deliver each of them to an appropriate worker� Also it receives
the computing results of workers and send them to combiner� By replacing dispatcher and
combiner� the load balancing policy and the way to combine the partial results� respec�
tively� can be changed� The workers pattern is de�ned as a replication network� that is�
workers includes a sequence of holes that are instantiated with copies of the same object�
Therefore� once a single worker hole is instantiated with an object� the other worker holes
are automatically instantiated with its copies� The ellipsis �� � �� in the sequence of worker
holes means that the length of the sequence is not yet determined� It is determined in
run�time by the number of messages received at the special port Wks� which is called a

�

Figure �� A master�workers pattern

map port�
Similar to Figure �� a hierarchically constructed pattern can be used by dropping

objects onto its holes� Figure 	 is an object network that is constructed of the master�
workers pattern and that computes the answers of the N�queens problem�

��� Pattern�Oriented Visual Programming

The KLIEG environment introduces a new programming methodology� that is� pattern�
oriented visual programming� which is carried out as follows�

� Designers search for visual patterns in the pattern libraries� If any patterns appro�
priate for the application cannot be found� this step would be skipped�

�� They construct new patterns that are suitable for describing the software archi�
tecture of the application from existing patterns or from scratch in a hierarchical
manner�

�� Programmers de�ne and�or search for objects with which holes of the patterns shall
be instantiated�

In other words� the software architecture of the application is �rst de�ned and components
of the architecture will be introduced later as replaceable elements in pattern�oriented
visual programming� Also the architecture can be incrementally modi�ed by replacing
component patterns �e�g�� master and workers patterns in Section ������ Notice that the
designers in the �rst two stages are expected more experienced in design and programming
than those programmers in the last stage�

�

Figure 	� An N�queens program

� Visual Design Patterns

Recently design patterns�GHJV	�� Pre	�� have been considered essential in design of �ex�
ible and reusable object�oriented software� The notion of design pattern is also important
in object�based parallel and distributed programming�

The KLIEG environment provides a support for visual design patterns� In this section�
we describe issues on supporting design patterns in object�based visual parallel program�
ming environments�

��� Design Patterns in an Instance�Based Programming Envi�

ronment

In our understanding� the signi�cance of design patterns is its supports for �exible and
reusable object�oriented software� that is� software that satis�es the following conditions�

� the software is constructed as a collection of objects�

� in order to change some aspects or behaviors of the software� it is su�cient to replace
a small number of objects with those of the same roles�

Notice that our understanding is rather instance�oriented or puts more emphasis on run�

time structures of software� Some people might prefer more class�oriented views or to
pay more attentions on the program structures� Often in practice� both instance�oriented
and class�oriented views are used in software development processes�

�

� in the modeling stage� �rst the application domain is modeled as a collection of
inter�related objects�

� in the design and coding stages� the program is created as a collection of class
descriptions�

� in the debugging stage� the debugger is used to capture ill�behaved objects�

One of our goals is to design a seamlessly integrated visual programming environment in
which all the stages above shall share the same notions and same visual abstractions�

In general� concreteness� directness� and explicitness are important features of visual
languages and thus instance�oriented approaches are more promising� In this paper� we
show that our instance�oriented approach can be reasonable� For the purpose� we �rst
reconsider the notion of design patterns from the instance�oriented point of view� In this
respect� essentially what design patterns provide are�

� coding techniques to make some objects easily replaceable so as to cope with changes
of speci�cations�

� design information including descriptions of design spaces and design decisions�

The coding techniques provided by design patterns could be replaced with language mech�
anisms and�or environment supports� though they might be necessary for C�� program�
mers� The hole mechanism of KLIEG is su�ciently expressive and it can make objects
and patterns replaceable �i�e�� to make software �exible� No more coding techniques are
necessary�

The real issue in this section is to provide a support for design information by pro�
gramming languages�environments� Design patterns are merely documents and therefore
design information is rarely available in run�time systems or programming environments�
Furthermore� a signi�cant number of people consider that programming environment sup�
ports for design patterns are almost useless ��

Given a speci�cation change� the design information that we consider signi�cant are
those about�

� which objects shall be changed or replaced�

� what are their alternatives�

� how they behave�

The �rst piece of information is obviously important� If reasonable alternatives are already
available� the second information is useful� Otherwise� the programmer�s should learn
the roles of the objects to be replaced and implement new alternatives� In this worst case�
the last information is useful�

In our approach� these pieces of information are respectively supported by the following
manner�

�For instance� J� Vlissides listed ten misconceptions of patterns in �Vli��� and the fourth one was
�Patterns need tool or methodological support to be e�ective��

	

� a visual pattern can have multiple aspects� each of which has its own layout infor�
mation� by selecting an appropriate aspect� the objects to be replaced are displayed
with emphasis�

� a hole in a visual pattern can keep more than one object� i�e�� multiple implemen�

tations� each object in a hole may be regarded as default� sample� or alternative
implementation�

� the KLIEG tracer visualizes a computation using the layout information of a visual
pattern provided by its creator using the KLIEG editor�

��� A Support for Multiple Aspects

A hierarchically constructed pattern can become large and may have more than one aspect
or behavior to be changed� For instance� it is desirable for the master worker pattern in
Figure � to have the following aspects�

� the problem to be solved�

� the load balancing policy�

� the way to combine the computed results by the workers�

These three aspects are almost orthogonal� though in practice they can be inter�related�
The KLIEG editor provides a multi�focus distorted zooming interface� called Mochi

Sheet�TST�	�a�� similar to the continuous zoom�BHDH	�� in order e�ectively to display
each aspect of a pattern� Figure
� illustrates two aspects of the master�workers pattern�
In the left diagram� holes related to the problem to be solved� i�e�� generator and a worker�
are magni�ed and other holes are shrunken� In this manner� holes and objects that should
be instantiated and replaced are visually emphasized and so design information concerning
�which objects shall be changed�� are e�ectively provided� In the right diagram� the
objects related to �the way to combine computed results by the workers� are emphasized�

The zooming interface is tightly embedded into the KLIEG editor� On one hand� the
designer of a visual pattern can freely change the size and position of any visuals in the
pattern and register any layout as a new aspect� On the other hand� a user of the pattern
can choose any registered aspect with a dialog box� A change of the aspect is smoothly
animated like morphing�

��� A Support for Multiple Implementations

In KLIEG� more than one object can be dropped onto a single hole of a visual pattern�
or the hole can keep more than one object at a time� This mechanism is useful for the
designer of a visual pattern to provide several kinds of implementations including�

� the default implementation that the user most likely to use�

� sample implementations that tell the user the role of the hole�

� alternative implementations that the user can choose and customize for building
applications�

�

Figure
�� Two aspects of the master�workers pattern

The user of the pattern� on the other hand� can choose an appropriate implementation
of a hole via a dialog box� If the default implementation is general enough� what a novice
user normally does is just to choose it� With a sample implementation� the user can learn
the basic role of the hole� possibly with a help of the KLIEG tracer that visualizes the
behavior of the implementation� If a number of alternative implementations cover most
areas of the design space� it is su�cient to choose the most eligible one�

Notice that the KLIEG environment has not yet succeeded to e�ectively provide trade�
o� information among those alternatives in a visual manner� Currently written documents
are the only solution to this problem��

��� Visualizing Program Behaviors

The KLIEG tracer visualizes and animates program execution� Figure

 is a snapshot
of the KLIEG tracer� which are currently executing the N�queens program de�ned in
Figure 	� This picture automatically generated by the tracer is more or less similar to
Figure 	� the relative positions and sizes of pass answers� dispatcher� and a number of
nqueen worker are almost the same� Notice that in this �gure the generator has already
�nished its work and becomes a small rectangle on the top left of the master rectangle�

The KLIEG tracer utilizes the layout information of visual patterns during visual�
ization� In case of Figure

� for instance� this picture is generated with the layout
information of master worker pattern provided by its designer and without any optional
information� This visualization technique using layout information of the visual program
is similar to the one employed by Pictorial Janus�KMK	��� In addition� the KLIEG tracer

�We have a plan to extend Mochi Sheet to support hyper links�

Figure

� The KLIEG tracer

has a unique feature� it is integrated with the KLIEG editor� The tracer also supports
multiple aspects of a visual pattern and the user can interactively change its aspect dur�
ing execution� For the purposes� the tracer also uses a multi�focus distorted zooming
algorithm�

� Scaling�up Issues

For a long time� visual languages have been considered only useful for toy problems or
end users� programming� However� recent advancements of visual technologies can make
visual languages more practical� The KLIEG environment provides zooming interfaces
for the user to manipulate data�ow diagrams that are too large to �t in a single computer
display of a typical resolution �e�g��
���� ���� In this section� we demonstrate how the
zooming interfaces are incorporated into the KLIEG environment�

On one hand� a snapshot of a computation depicted by the KLIEG tracer is usually
much larger than its corresponding source program� Even if a source program is small�
the number of objects created during the execution can be large� Therefore� the KLIEG
tracer should provide a sophisticated browsing interface so that only the portions in
considerations and their related contexts be displayed� Notice that not only visual but
also textual tracers�debuggers developed so far rarely provide such sophisticated browsing
interfaces�

On the other hand� the KLIEG editor should support not only browsing but also
editing� The zooming interfaces with editing are an important research area that most

�

Figure
�� A zooming image of the KLIEG tracer

people do not notice�

��� The Zooming Interface of the KLIEG Tracer

During execution of a KLIEG program with the tracer� the user can magnify any por�
tions of the object data�ow diagram generated by the program execution� For instance�
by magnifying the nqueen gen and the leftmost nqueen worker in Figure

� the user
can get the image like Figure
�� The KLIEG tracer employs the continuous zoom
algorithm�BHDH	�� and semantic zooming for this purpose�

Although solely the continuous zoom algorithm usually works well� it sometimes fails�
A typical example is a SPMD �single program� multiple data streams computation� in
which a number of objects of the same type work together in parallel� Their behaviors
are essentially the same but they may have di�erent data� If the number of the parallel
objects becomes large �e�g�� �
��� the continuous zoom algorithm allocates each object
an equally small area like Figure
�� or otherwise it allocates su�ciently large spaces
for a small number of �xed objects� The point is that the continuous zoom algorithm
is designed as domain�independent and does not assume any domain speci�c knowledge�
It cannot well handle a large number of similar objects �or nodes that share the same
parent node in the hierarchy�

Since SPMD computations often appear in practical settings� the KLIEG language and
tracer provides a special support for them using domain speci�c information� First� the
KLIEG language provides the notion of replication pattern which represents a number of
objects of the same type� An example usage of a replication pattern is already introduced
in the workers pattern in Figure �� Second� the KLIEG tracer provides a special browsing

�

Figure
�� Normal zooming of a replication pattern

Figure
�� Semantic zooming of a replication pattern

facility for replication patterns� Namely� any object in a replication pattern can selectively
be magni�ed and the details of the others can be omitted simultaneously� Omitted objects
might be represented as �� � �� and they still can be accessible by moving the foci by mouse
operations� Figure
� illustrates an example of semantic zooming provided by the KLIEG
tracer� This �gure and the previous one depict the same snapshot of a computation with
di�erent zooming techniques�

The reason why an object data�ow diagram representing a snapshot of a computation
can signi�cantly be larger than the source program is that sub�diagrams occurring in the
source program can be copied many times during execution� Signi�cant parts of these
copy processes can often be represented by replication patterns�

��� The Zooming Interface of the KLIEG Editor

A KLIEG program consists of one or more modules� each of which is a collection of
object and pattern de�nitions� For instance� Figure
� illustrates a program consisting of
modules whose names are qsort� append� and primes� Each module have small rectangles
representing object interfaces� object implementations� In order to edit a program which
is under development� the user �rst magni�es the portions that are soon to be edited
and�or referenced� Figure
� is a typical layout example� in which the qsort module is
magni�ed�

During an editing session� any visuals might be created or deleted� This means that
the default position of each node might be changed frequently during an editing session�
Without some reasonable constraints� re�computation of the layout would take a long
time and it would be di�cult to achieve interactive responses�

Mochi Sheet �TST�	�a� that provides the zooming interface of the KLIEG editor
assumes a simple constraints based on griding for rapid re�computation of the layout�
This is the reason why modules and de�nitions in Figures
� and
� are regularly aligned�
We consider that the griding constraint of Mochi Sheet is reasonable compromise between

�

Figure
�� An initial image of the KLIEG editor

Figure
�� Magnifying a module

�

freedom of the layout and interactive responses�
After each editing session� a typical user changes the layout of the program to her or

his most familiar one� To support user�s preferences of the default layout� Mochi Sheet
provides a resize operation so that the previous layout can be quickly recovered by simple
mouse operations� In addition� the history of the layouts are kept in the system and any
of them can be also recovered by mouse operations�

� Related Work

Until now� a lot of visual parallel programming languages have been proposed including
CODE�PJ	�� and Pictorial Janus�KMK	��� However� most of them do not provide any
mechanism for replaceable objects or processes� Therefore� it is di�cult �or impossible
to explicitly de�ne reusable software architectures nor replaceable components in these
languages�

VISTA�SF	�� is one of the exceptions and provides the notion of public processor�
Although public processors in VISTA are replaced with other compatible processors� no
design information is available in the VISTA programming environment� In this respect�
KLIEG provides a deeper support for pattern�oriented visual programming�

For scaling up� VIPR recently introduced a �sheye zooming interface�CS	��� Still�
however� it supports only a single�focus zooming� In our experiences� multi�focus zooming
is better suited in editing and debugging object�based visual parallel programs partly
because� in editing and debugging� we often would like to see the sender and the receiver
objects simultaneously� Also� since KLIEG provides a support for multiple aspects of a
visual pattern� a single�focus zooming interface is insu�cient for our purpose�

� Conclusion

Currently� visual patterns in KLIEG can have the following information of object�oriented
parallel software�

� Design pattern information for parallel and distributed software�

� Layout information of objects for software visualization�

Visual patterns and supports for pattern�oriented visual programming in KLIEG integrate
the design and coding stages of program development in a seamless manner� That is� both
a program and its design information are represented as the same collection of visual
patterns and visual objects� There are no essential di�erences between them�

Layout information in visual patterns are useful in particular in visual debugging� The
KLIEG tracer animates a computation by generating successive images� each of which is
a snapshot of the computation� using the layout information of visual patterns provided
by their designer�s� In this manner� almost the same pictorial images are available not
only in the design and coding states but also in the debugging stage� This sort of seamless
integration is important in visual programming environments�

�

Our future work includes pattern�directed compilation technologies� For instance�
since the master�workers pattern introduced in this paper implements a typical load bal�
ancing schema� it seems promising to attach to the pattern optional information �e�g��
information for analysis and code translation for the compiler� That is� if the compiler
can recognize the master�workers pattern in a program� it might be possible to gener�
ate better codes� For the purposes� we also have to consider visual representations of
compile�time metalevel architectures�

References

�BHDH	�� Lyn Bartram� Albert Ho� John Dill� and Frank Henigman� The Continuous
Zoom� A Constrained Fisheye Technique for Viewing and Navigating Large
Information Space� In Proceedings of UIST ���� pages �����
�� November

		��

�Boo	�� Grady Booch� Object�Oriented Analysis and Design with Applications� Second

Edition� The Benjamin�Cummings Publishing�
		��

�CS	�� Wayne Citrin and Carlos Santiago� Incorporating �sheying into a visual pro�
gramming environment� In Proc� ���	 IEEE Symposium on Visual Languages�
pages ������
		��

�GHJV	�� Erich Gamma� Richard Helm� Ralph Johnson� and John Vlissides� Design

Patterns
 Elements of Reusable Object�Oriented Software� Addison�Wesley�

		��

�KMK	�� Vijay A� Saraswat Kenneth M� Kahn� Complete Visualizations of Concurrent
Programs and their Executions� In Proc� ���� IEEE Workshop on Visual

Languages� October
		��

�PJ	�� P�Newton and J�C�Browne� The CODE ��� Graphical Parallel Programming
Language� In Proc� ACM Int� Conf� on Supercomputing� July
		��

�Pre	�� Wolfgang Pree� Design Patterns for Object�Oriented Software Development�
Addison�Wesley�
		��

�RBP�	
� J� Rumbaugh� M� Blaha� W� Premerlani� F� Eddy� and W� Lorensen� Object�
Oriented Modeling and Design� Prentice�Hall�
		
�

�SF	�� Stefan Schi�er and Joachim Hans Fr�ohlich� Concepts and Architecture of
Vista � a Multiparadigm Programming Environment� In Proc� ���� IEEE

Symposium on Visual Languages�
		��

�TST�	�a� M� Toyoda� B� Shizuki� S� Takahashi� � and E� Shibayama� Mochi sheet�
Integration of zooming and layout editing� In Proceedings of Interaction���
pages �	���� Information Processing Society of Japan� February
		�� �In
Japanese�

�

�TST�	�b� M� Toyoda� B� Shizuki� S� Takahashi� S� Matsuoka� and E� Shibayama� Sup�
porting design patterns in a visual parallel data��ow programming environ�
ment� In IEEE Symposium on Visual Languages� IEEE� September
		��

�UM	�� Kazunori Ueda and Morita Masao� Moded Flat GHC and Its Message�
Oriented Implementation Technique� New Generation Computing�
��
������

		��

�Vli	�� John Vlissides� Patterns� The top
� misconceptions� Object Magazine�
		��
http���www�sigs�com�publications�docs�objm�	����	����vlissides�html�

�

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

