uBLEU: Uncertainty-Aware Automatic Evaluation Method for Open-Domain Dialogue Systems

Yuma Tsuta⁺, Naoki Yoshinaga[‡], Masashi Toyoda[‡] + University of Tokyo ‡ Institution of Industrial Science, University of Tokyo

Slide/code/dataset: https://bit.ly/3hDwTj8

Open-domain dialogue systems become popular

Dialogue agents are used in daily life

Chart 1: Smart speaker installed base (millions of units)

Cited from:

https://techcrunch.com/2019/02/05/report-smart-speaker-adoption-in-u-s-reaches-66m-units-with-amazon-leading/

 Dialogue agents are expected to reply to any user utterance (open-domain dialogues)

<u>How to develop</u> <u>open-domain dialogue systems ?</u>

• Large-scale human-human conversations on SNS helps to develop open-domain dialogue systems [Wu+2016]

- Automatic evaluation metrics are needed to develop dialogue systems efficiently
 - Existing reference-based evaluation metrics such as BLEU do not perform well on open-domain dialogue [Liu+2016]

<u>Challenge in evaluating</u> <u>open-domain dialogue systems</u>

Difficult to consider all possible responses

- Diverse replies can be allowed
- Only one reference response is available when real conversation data is used for evaluation

• Evaluation with one reference response is unstable

Related work: ΔBLEU[Galley+2015]

ΔBLEU compute weighted BLEU using additional responses retrieved from Twitter and manual validation to those replies

- Step 1. Retrieve reference responses from dialogue logs
- Step 2. Rate reference responses by human annotator

Step 3. Compute weighted BLEU with human annotated test samples

<u>STEP 1 on ΔBLEU:</u> <u>Retrieve dialogues as reference responses</u>

Retrieve dialogues of which

- utterance is similar to input utterance (of test example), and
- response is similar to reference response (of test example) based on BM25 as similarity function

STEP 2 on ΔBLEU: Rate reference responses by hand

<u>STEP 3 on ΔBLEU:</u> Evaluate generated responses

Step 1. Retrieve reference responses from dialogue logs

Step 2. Rate reference responses by human annotator

Generated responses is

- rewarded when it matches positively rated reference response
- penalized when it matches negatively rated reference response

Issues on ΔBLEU

Proposed method: Automatic evaluation method **uBLEU**

Proposed method ν BLEU deals with the issues on Δ BLEU by

- Collecting more diverse reference responses, and
- Rating reference responses automatically

Step 3. Compute weighted BLEU with automatically rated test samples

<u>STEP 1 on υBLEU:</u> <u>Diverse responses retrieval</u>

10

<u>STEP 2 on vBLEU:</u> <u>Automatic response rating</u>

<u>STEP 2 on υBLEU:</u> <u>Training data of NN-rater</u>

U₂

R.

12

<u>Experiment 1:</u> <u>Comparison of response retrieval methods</u>

Evaluate the impact of collecting additional responses using the similarity of utterances

- 1. Compute **BLEU with reference responses** retrieved by changing the target and function to compute similarity
 - Target
 - Utterance & Response
 - Utterance only (proposal)
 - Function
 - BM25
 - Cosine similarity for averaged Glove vector (proposal)
- 2. Compare the correlations with human judgment and BLEU using each retrieved multiple reference responses

Experiment 1: settings

- Number of retrieved reference response: 15 responses
- Dialogue systems:

VHRED [Serban+2017], C-BM25 (derivation of C-TFIDF[Lowe+2015]), human response

• Test data:

100 pairs of Japanese conversations on Twitter in 2019

- Human annotation:
 - Five annotator rated 300 responses in terms of appropriateness in the scale of [1, 5]
 - Calculate Pearson correlation between **individual judgment** and each evaluation metric
 - Show the maximum and minimum value in five correlations

Pearson correlation between human judgment and BLEU with multiple reference response

• Max. / Min. of five correlations with individual judgements

Metrics		Pearson correlation	
Target	Function	Max.	Min.
Original reference only		0.276	0.190
Utter. & Resp.	BM25	0.298	0.173
Utterance only	BM25	0.296	0.178
Utter. & Resp.	Cosine sim.	0.322	0.177
Utterance only	Cosine sim.	0.366	0.209

Proposed method retrieves more beneficial reference responses than the method of Δ BLEU [Galley+2015]

Experiment 2: Comparison of evaluation metrics

Compare the correlations between human judgment and each evaluation metric

- Methods to compare
 - ∆BLEU [Galley+2015]
 - RUBER [Tao+2018]
 - ບBLEU
 - RUBER with υBLEU (*)
- * RUBER is constituted by
 - referenced-based metric and
 - unreferenced-based metric

we also propose automatic **integrated metric (RUBER with vBLEU)** replacing its <u>referenced-based-metric</u> with vBLEU

Experiment 2: settings

- Training data of NN-rater and RUBER 5.6M pairs of Japanese conversations on Twitter in 2017
- Dialogue systems, Test data and Human annotation Same as experiment 1

Pearson correlation between human judgment and evaluation metric

• Max. / Min. of five correlations with individual judgements

	Pearson correlation	
Metrics	Max.	Min.
ΔBLEU	0.360	0.294
ບBLEU	0.394	0.332
RUBER	0.325	0.193
RUBER with ບBLEU	0.450	0.338

- Our proposal υBLEU outperformed ΔBLEU
- Integrating uBLEU into RUBER improved correlation

<u>Summary</u>

• Proposal:

Uncertainty-Aware Automatic Evaluation Method for evaluating open-domain dialogue systems

- Collect semantically diverse reference responses
- Rate responses automatically with neural network classifier
- Using Twitter dialogues, we experimentally confirmed
 - Comparable with semi-automatic evaluation metric, Δ BLEU
 - Improve the correlation of the state-of-the-art automatic evaluation method RUBER by integrating with υBLEU

The research was supported by NII CRIS collaborative research program operated by NII CRIS and LINE Corporation