Accurate Cross-lingual Projection between Count-based Word Vectors by Exploiting Translatable Context Pairs

Shonosuke Ishiwatari, Nobuhiro Kaji , Naoki Yoshinaga , Masashi Toyoda, Masaru Kitsuregawa , Masaru Kitsuregawa , Masashi Toyoda, Masaru Kitsuregawa

 \clubsuit The University of Tokyo, \diamondsuit IIS, the University of Tokyo, \heartsuit NICT, Japan, \spadesuit NII, Japan

Overview

Problem: Word vectors in different languages are not comparable because they are learned from different corpora

Approach: Project a vector from a language into another language space [Fung+, 98][Mikolov+, 13]

Idea: Incorporate previous approaches to realize an accurate projection between word vectors!

Previous studies

¬ Dictionary-based approach [Fung+, 98] ¬

Directly map count-based word vectors for each dimension by using a dictionary

- © Can use relationships between context words
- © Only one-to-one mapping is allowed

Learning-based approach [Mikolov+, 13]

Learn a linear transformation (i.e., a matrix) between predict-based word vectors

- © Can find many-to-many correlation between the elements automatically
- © Can't utilize the context words to learn a model

Proposed approach

- Use count-based word vectors to utilize the knowledge about context words
- The existing knowledge are obtained from
 - training set and
 - surface similarity between context words
- Weight the corresponding elements in the matrix with two bonus terms

- © Can find many-to-many correlation between the elements automatically
- © Can use relationships between context words

Experiments

Data:

- Wikpedia dumps for learning word vectors
- Open Multilingual Wordnet for extracting bilingual pairs to train and test the projection
 - Most frequent 11k words for train
 - The subsequent 1k words for test

Evaluation procedure:

- 1. Given a word vector in the source language
- 2. Translate the vector into the target language
- 3. Choose the top-n (n = 1, 5) similar vectors in the target language
- 4. Check if the correct translation is included in the n vectors

The accuracy of the translation [Mikolov+, 13] [Fung+, 98] **Proposed Testset** P@1 P@1 P@5 P@5 45.7% 54.7% 7.5% 22.0% 61.1% 67.6% $Es \rightarrow En$ 11.9% 26.1% 31.3% 49.6% 7.1% 18.9% $En \rightarrow Es$ $Jp \to Cn$ 13.8% **15.5**% 34.0% 5.4% 9.3% $Cn \rightarrow Jp$ 11.3% 27.9% 2.9% 11.6% 26.8% 13.1% 13.3% 13.9% 19.3% 37.1% 4.9% 5.4% $En \rightarrow Jp$ 22.3% 51.9% 6.5% 19.1% 37.4% 32.5% $Jp \rightarrow En$

