A Novel Web-oriented Writing Environment
using Objects’ Facts Acquired from the Web

Naoki Yoshinaga
Japan Society
for the Promotion of Science
6 Ichibancho, Chiyoda-ku,
Tokyo, 102-8471, Japan
n-yoshi@jaist.ac.jp

Abstract

This paper presents a novel web-oriented writing envi-
ronment that helps users describe their opinions on top-
ics/events through weblogs, by showing facts related to
the objects. Our writing environment automatically recog-
nizes information needs for facts on aspects (e.g., “opening
hours”) of the objects (e.g., “J’s cafe”) by applying lexico-
syntactic patterns to the snapshots of users’ writings. It then
attempts to extract facts that satisfy the information needs
from the Web, and shows the extracted facts (e.g., “open-
ing hours”-“10am-8:30pm”) to the users. The users can
thus refer to necessary facts without searching the web by
themselves. We realized this environment for Japanese on a
browser with AJAX, and evaluated how much useful infor-
mation could be provided by our environment.

1. Introduction

The recent Internet revolution has witnessed increasing
opportunities for people to share their experiences with top-
ics/events through weblogs. To provide accurate and dis-
tinctive information on the target, bloggers are likely to
search for facts on various aspects of the objects to be de-
scribed before and during writing (hereafter, fact search).
For example, when you recommend a cafe you have vis-
ited, you may want to know the precise location and open-
ing hours to help the readers visit. The bloggers may even
find unexpected facts that remind them of other unique as-
pects of the objects to be mentioned (e.g., specialties other
than the one they tried), which may stimulate their writings.

Fact search is thus essential for writing on the net, but
it abruptly interrupts our writing and usually requires sub-
stantial time and effort, which prevents us from concentrat-
ing on writing. Assisting this fact search would give more
chances for people to provide useful comments.

In this paper, we propose a web-oriented writing envi-
ronment that assists users to write about topics/events by
dynamically acquiring facts of the objects from the Web.

Kazumasa Nakamura
Hitachi GP Corporation
System Engineering, Ltd.
2-4-18 Toyo, Koutou-Ku,
Tokyo, 135-8633, Japan
kazu@kazub9. jp

Kentaro Torisawa
Japan Advanced Institute
of Science and Technology
1-1, Asahidai, Nomi,
Ishikawa, 923-1292, Japan
torisawa@jaist.ac.jp

Our writing environment adopts an AJAX-based client-
server architecture. The client editor sends snapshots of
users’ writings to the remote server at fixed intervals. The
server applies lexico-syntactic patterns [2] to the given
snapshots to recognize possible information needs for facts
on aspects (e.g., “opening hours”) of the objects (e.g., “J’s
bar”). It then extracts facts that answer the information
needs from the Web (e.g., “opening hours”-“10am-8pm”),
and returns them to the client. The user can thus refer to
several facts at once without being interrupted by the search.

2. Web-oriented writing environment

In this section, we first show a possible scenario when
we recommend a cafe object, and describe how the fact
search interrupts our writing. We then describe the design
and components of our web-oriented writing environment.

2.1. Possible scenario — recommend a cafe

When one recommends a cafe she has visited, she per-
forms a fact search as in the following scenario (Figure 1).

Recognizing information needs: She first recognizes that
she does not know exactly when the cafe opens, which
would help the readers visit the cafe. Information
needs for ‘opening hours’ of the cafe emerge.

Performing fact search: She next tries to search for the
opening hours of the cafe, by reading through web
pages and finding text fragments relevant to the facts
needed (opening hours). She may need to read through
other pages when the facts found seem insufficiently
informative (e.g., ‘7-8:30pm’) or even obsolete.

Quoting the facts: She quotes the most reliable fact and
edits it in her writing style. When she finds other facts
that are worth being mentioned (e.g., facts on ‘menu’),
she will next describe those aspects.

The problem here is that she may need to spend much
time to browse and read through several pages to retrieve

/:,arh Engine

Query: J's café’
‘opening hours’

2. Formulating
query

It must open late at night,
but | wonder until when? 'S

3. Performing
fact search

I wonder why opening hours of | opinion
cafes are so short. J's café... (no fact)
Good restaurants in Brighton
1.)’s cafe

Opening hours: ? — 8:30 pm
Menu: Pizza, Fish & Chips

T's café (Brighton)

(Opening hours) 8am-10pm fact
(Location) city centre

1. Recognizing
info. needs

Boonen’s weblogs
JUNE 13, 2007
[Review] J's café
Today, I found a splendid
cafe, J's cafe, near the
university. The opening

hours ofjkw«_-_——/
Which has the most informative facts?

To mention my favorite Neapolitan pizza
must be a good idea, but | wonder what
| had first planned to write about ...

fact

Figure 1. Possible scenario of fact search

the facts needed, because a single web page does not al-
ways include reliable facts for the desired aspects. Also, by
reading several pages, she may find facts of other aspects
worth being mentioned, but she may be distracted by the
excess of information. Fact search is thus likely to occupy
considerable time in describing our opinions about objects
in the web, which seriously interrupts the thoughts we first
had in mind.

2.2. Design of our writing environment

To let people concentrate on essential writing, we auto-
mate the process in the above possible scenario. Figure 2
depicts our AJAX-based writing environment. It works for
the above situation in the following way:

1. A user writes fragments of comments, “Today, I found
a splendid cafe, J’s cafe, near the university. The open-
ing hours of J’s cafe are”, on the client editor. The
client sends this snapshot to the remote server.

2. The remote server next recognizes from the snapshot
her information needs for an aspect of an object, and
formulates a search query to retrieve web pages to ac-
quire facts for the information needs.

3. The server then acquires the facts from the web pages.
When facts needed are acquired, the server sends the
facts to the client (e.g., “?-8:30pm” and “10am-8pm™)
along with facts for other aspects of the object.

4. The client finally shows the acquired facts on the editor
screen. She can keep writing by referring to the facts.

By the writing environment performing fact search on
behalf of the user, the user can glance through facts that
are acquired from several web pages. This significantly re-
duces the user’s workload in searching for facts, and lets
the user concentrate on the writing itself. The key feature

Web Documents
/——s:arch Engine

Query; J's café’,
‘opening hours’

Remote Server

2. Recognizing
info. Needs

3. Acquiring facts
for the objects

1. Sending snapshots of the writings 4. Displaying the acquired facts
Client Editor /\

\ > 3 That’s it! I'll next write about
Facts for J's cafe | my favorite Neapolitan pizza.
JUNE 13, 2007 Opening hours: 7-8:30 i, et |
[Review] J's Cafe Menu: Pizza, Fish & Chips | URL

Today, I found a splendid | |Opening hours 10am=8pm
cafe, J's cafe, near the Location: city centre LR|

This is the most informative,

Boonen’s weblogs

university. The opening ‘
hours of J's cafe are ... let me quote it.

Just edit and quote facts |

Figure 2. Computer-aided fact search

of our environment is to recognize users’ information needs
automatically from snapshots of their writings. This may al-
low the users to notice that the information they had for the
objects are insufficient when the environment could show
more reliable facts written by others. Also, detecting infor-
mation needs before they are recognized by the user allows
the environment to spend more time searching for the facts.

In the following, we describe how to recognize users’
information needs, and then explain a method of acquiring
facts for the recognized information needs.

2.3. Recognition of users’ information needs
using lexico-syntactic patterns

To detect users’ information needs, we should know the
intention in their writings. Researchers in the field of natu-
ral language processing (NLP) have found that certain types
of facts are likely to be described in some syntactic pat-
terns [1, 6]. For example, assume the following sentences:

—— The specialties of J’s cafe are Neapolitan
pizza and organic beer. Although the size of the
Neapolitan pizza is usually less than

The strings in bold face are objects, while the strings in
italic face are attributes (the term used to refer to aspects
of objects in the field of NLP), which are followed by the
facts on the attributes. We can see that the same syntactic
pattern is used for describing objects, attributes, and facts;
namely, “the A of O [is |are] V" where A is an attribute, O is
an object and V is a fact (attribute’s value). Such syntactic
patterns are called lexico-syntactic patterns [2] in the field
of NLP, and have been widely used for extracting certain
knowledge such as object-attribute-fact relations [1, 6, 7]
from sentences. We make use of the patterns used for ex-
tracting object-attribute-fact relations in order to recognize
user’s intentions for writing facts on attributes of the ob-
jects, because these patterns are often used to describe facts.

Input: Object = J's café, Attribute = opening hours

Query: “J's cafe” “opening hours”

Step 1: Web page retrieval

Place to eat in Brighton Cafés in Brighton & Hove

e el
- Opening hours/ ? — 8:30pm hours

- Menu/ Pizza, Fish & Chips
J's café offers a cozy...

2. Banana Fish
_ Opening hours/ 2pm-5pm. ..

: —
——————>{Step 2: AVP block extraction | [step 2]

J'scafé 10am-8pm Brighton
Sakura 8am-2pm Hove

AVP _blocks| Opening hours/ ? — 8:30pm

Step 3: Pattern induction Menu/ Pizza, Fish & Chips
J's café offers a cozy...

Extraction| (. +2)/ (.+?)#
Pattern Attribute = $1 Step 4: Pattern match

Value = $2b

Facts (AVPs)

<name, BC’s café>
<opening hours, 10am - 8pm)
<location: Brighton>

<opening hours, ? - 8:30pm>
<menu, Pizza, Fish & Chips>

Figure 3. Fact Retrieval Engine

In order to recognize information needs for facts re-
lated to objects in Japanese, we exploit the existing lexico-
syntactic patterns [6, 7] for acquiring facts:

O D A IF (The A of X [is |was])

where O is a proper noun and A is a noun. By using this
pattern, we identify information needs for an aspect (or an
attribute, A) of an object (O). In the case when the lexico-
syntactic patterns fail to detect information needs, we pre-
pare an optional interface for a user to directly specify an
object and its aspects for which the user wants facts.

2.4. Automatic fact retrieval from the Web

In this section, we briefly describe a method of acquir-
ing facts for the information needs that are recognized by
the lexico-syntactic patterns. We hereafter denote facts for
attributes of objects as the attributes’ value, and refer to an
attribute-value pair as AVP (e.g., (open hours, 10am-8pm)).

To effectively acquire values for the input attribute of the
object, we exploit facts represented in layouts such as lists
or tables in the web (Figure 3). Because experts on the tar-
get objects who know facts on several attributes of the ob-
jects are likely to use layouts in order to concisely describe
several facts, we will be able to acquire more reliable facts
from the layouts than normal sentences written by novices,
as well as acquire facts for other attributes of the object.

Our AVP acquisition consists of the following steps. We
first retrieve web pages that are likely to include an AVP for
a given object and attribute (Step 1). We next enumerate
regions that include objects’ AVPs (AVP blocks) from each
retrieved page (Step 2). We then induce patterns to extract
each AVP from each block (Step 3). We finally apply the
induced patterns to the blocks and acquire AVPs from them
(Step 4). In the following, we describe each step in detail.
Step 1. Collecting pages that include AvPs: We use a
commercial search engine with a query consisting of the

object and the attribute to collect web pages that are likely
to include an AVP for the input attribute of the object.

Step 2. Identifying AVP blocks: In Step 2, we identify lay-
outs (tables or lists) that describe the objects’ AVPs in the
web pages retrieved in Step 1. The pages may even include
layouts that describe AVPs for other objects (e.g., facts for
“Banana Fish” and “Sakura” in Figure 3). We investigated
where objects and their AVPs appear in web pages, and hy-
pothesize the positional relations between objects and lay-
outs that describe the AVPs for the objects as follows:

Hypothesis I: AvPs for a given object are likely to appear
concentrated in a small number of regions (AVP blocks)
enclosed by HTML block tags. An AVP block describ-
ing an object should include attribute words, and also
include or closely follow the object name.

We process each occurrence of the object name in the page
from first to last, and iteratively collect innermost blocks
enclosed by block tags such that the blocks include the input
attribute preceded by the appearance of the object name as
candidate AVP blocks.

Step 3. Inducing AVP Extraction Patterns: We then in-
duce patterns for extracting AVPs from each AVP block col-
lected in Step 2. To design the induction procedure, we
made the following assumption:

Hypothesis II: In an AVP block, an attribute immediately
precedes its value, and other AVP immediately follow
those values. When attributes in an AVP block are em-
phasized by some HTML tags, braces, prefixes or suf-
fixes, the same symbols are used to emphasize other
attributes in that block.

Following this hypothesis, our procedure induces a reg-

ular expression as a generic pattern for extracting attributes
and their values. The procedure first applies patterns used
for extracting attributes from layouts [8] to the AVP block,
and utilizes the matched strings that include the input at-
tribute to identify HTML tags or symbolic cues that are
used to emphasize attributes in the block. By replacing the
input attribute in this string with a wildcard that matches
the shortest string, we acquire a regular expression for ex-
tracting attributes in this block. A value for an attribute is
a string that spans from immediately after the correspond-
ing attribute to just before another attribute. By putting a
special character ‘#’ before the attributes in the block, we
obtain a generic pattern for extracting attributes and values.
Note that this pattern can extract AVPs for attributes other
than the input attribute (e.g., menu in Figure 3).
Step 4. Acquiring AVPs from AVP blocks: We iteratively
acquire AVPs from each AVP block by applying the extrac-
tion pattern induced for the block in Step 3 to the block.
We merge all the AVPs acquired from the blocks and return
the resulting AVPs. When the patterns extract the same at-
tributes twice, we stop the acquisition from the page and
return the acquired AVPs until that point. This is because
when the same attribute appears twice in the page, it usu-
ally expresses an AVP for different objects.

Steps 3 and 4 assumed that the AVP block is described
by a list. When we fail to recognize AVPs from AVP blocks
enclosed by th or td tags (which express a cell in a table),
we attempt to recognize AVPs from the whole table. We de-
tect a row or column that represents attributes based on the
position of the input object and attribute. We omit further
details due to space limitations.

3. Experiments

We implemented our writing environment for Japanese
using AJAX technology on a browser, and evaluated the
usefulness of our environment. As we described in sec-
tion 2.3, our writing environment returns facts for users’
information needs which are recognized by lexico-syntactic
patterns. We investigated objects and their attributes that
often appear in lexico-syntactic patterns in major Japanese
blog sites (articles), and regard them as possible information
needs during writing. We then evaluated how many object-
attribute pairs (information needs) we could retrieve correct
facts about among those object-attribute pairs to show the
utility of our writing environment. We also measured the
efficiency of our fact retrieval engine to examine whether it
can be used as a real-time application.

3.1. Experimental settings

In this section, we explain how we built a testset of
object-attribute pairs (information needs), and then describe
the specification of the testset in detail.

We obtained class-object pairs from hyponymy rela-
tions automatically acquired from the definition sentences
in Wikipedia [5]. We sorted hypernyms in the hyponymy
relations according to the number of the hyponyms, and se-
lected the top-1,000 hypernyms to obtain major hypernyms
with a large number of hyponyms. We then obtained class-
object relations from these hyponymy relations by assuming
hypernyms as classes and by eliminating their hyponyms X
when a hit count' of “& @ X (which X)” was larger than 0
because generic concepts appear in this pattern [4].

We next acquired at most ten attributes for each class in
the class-object relations by using an existing attribute ac-
quisition method [8].2 We calculated a hit count of “O ® A
(the A of O)” for each pair of an object O and an attribute A
in each class in seven major Japanese blog sites,® in order
to obtain major attributes (aspects) that were often referred
to by people. We regarded attributes whose hit counts of “O
@ A” was larger than O for at least three objects in the class
as the major attributes, and randomly chose 39 classes and
at most five major attributes for them. Then, we randomly
chose at most five objects for the selected attributes, from

'Yahoo API (http://developer.yahoo.co.jp/) is used to obtain hit counts.

2We also ran a simple supervised classifier to filter out implausible at-
tributes. We omit details here since it is irrelevant to the main argument.

3blogs.yahoo.co.jp, fc2.com, blog.goo.ne.jp, blog.livedoor.jp, ame-
blo.jp, yaplog.jp, and plaza.rakuten.co.jp: these sites had more than
100,000 users in June, 2007 (cf., http://www.blogfan.org/service/)

Table 1. A testset of the object-attribute pairs

class attributes’ #obj. # pairs
ZBE (actress) W (film), F 7 % (drama), 880K _(hobby), 7 — < (theme), Rty (director) 5 25
T 7L (CDsingle) __CD, {Fai (lyricist), 7 — < (theme), mall_(arranger), 0. (rank), 5 25

%L~ F (talent) TFHLHL (photo book), I EFHl (hometown), 2<% (autonym), {1ii5 (appear- 5 25
ance), B _(film appearance)

CD, (price), (i (yricist), TEHT poser), 7 7 7 £ —)L (profile), 5 25
£ 7 (piano), W (performance), TEE_(music) 515
TR (music), ¥ ¥ 7 7 % —7 ¥ 4 ~ (character design), BIZ4 (story), B 5 25
E_(producer), < ¥ ¥)L (genre),

7B (dubbing artist) TR (picture), X ¥ 7 7 ¥ — (character), 7 & 7 £ — /L (profile), G211 5 20

(magnum opus)

7)L23 2 (CD album)
T7 = AT _(pianish)
7 =X (animation)

Z N (comedian) 717 4 —)L (profile) 5 5

75~ F _(brand) TR (Teature), {n%&g (price), 7X7 7 (bag), /1 7 — (colon, FA ~ F (pom) _5___ 25

FPH (cooking) TED i (recipes), MFF (i dient) 5 10

TEAE (law) T _(objective), BN (penalty). /£ %% (definition), By (inspection) 520

T (city) N (population), “TF7%Uli (ave. temperature), ¥ 4 A (size), & (price), 5 25
787 4 =) (profile)

U —Z (race) V% (prelim), DelF (final match). & £ X _(tire), 1 — A (course) 520

T (theme song), FA1F (original), Bty (director), B~ (writer), M@ 5 25
(starring)

FEBT (office), E2¢fl (main god worshiped), 3- /K% (wash-pot), %Pk 5 25
(name), ¥ (pavilion)

AL (head office), TRZINGHITE (CEO), f1-41 (name), 5C - (sales amount), 5 25
AEEFH S (phone)

Tro% (music), TEMN (composer), & A~ (script), iZe (performance), JR{E 5 25
(original), & (chorus)

F 7= (drama)

fAFFL: (shrine)

{3 (company)

F<F (opera)

FLY)_(mineral) Fhinm_(crystal), J57_(raw stone) 5 10

K (person) TEF& (character), “Fls (age), 7 9 7 £ — /b (profile), BEBR (hobby), 1 5 25
(height

e (weapon) B (attack), (& _(price) S 10

TR (war) T _(film) 5 5

AL (program) T (starring), PN%% (content), MR (picture), & %% (music), ORI 5 25
(airtime)

BB (theater) Bit (location), 2255 (venue), 15 (starring), ma.afi a7 (phone), i adi 5 25
(phone)

X =75 — (manufacturer) flif% (price), Fn 2 _(goods name) 510

TEY) (plant) % (alias), 7% (nomenclature), fll%s (Japanese name), il L (place of 5 25

origin), filif% (price)

7—7 4 AT (atis __CD, 5% (music)

i (document) Y75 (content)
V7 T 7 =7 (software) ¥ 7 ¥ H— F (download), /S—< 3 v _(ver.), Mlil& (price)
B (park) 5T _(location), FA L (I)
AR EL (instrument) FA X (size), Mit& (price)
THIEE (institution) H_(objective). PI%¥ (content)
T1dF (event) 285 (venue), IFIH (schedule)
BT (sweet stuff) TIVRITIRE (expiry date)
73 _(bread) ED) 77 (recipe)

H| |] wn| | | wo| cn|inf | inf] ia| |)
)

TERE (route) 7 (station name’ 5
TZX% (police station) #iaki_(phone), 15 X8 (district boundary) 10
AR (C 'phoon) TR (Teast atmospheric) pressure), HULRUL (core atmospheric pressure) 10
FIE (qual ion) 2 ination contents) Py
N Z_(bus) AT (timetable) 1
fotal 19 61T

objects whose hit counts of “O @ A” were larger than 0 for
at least one attribute A in the class. Table 1 shows the at-
tributes used to generate the testset of object-attribute pairs.
The total number of the object-attribute pairs was 611.

3.2. Experimental results

We then acquired facts for each object-attribute pair us-
ing a method described in Section 2.4. We collected top-15
web pages for each pair using the Yahoo API. 14.97 pages
(in total 9,148 pages) were on average downloaded for each
object-attribute pair.

For each web page, a human subject was asked to judge
if the system could extract correct facts for the given object-
attribute pair. The subject judged facts as correct when he
could find an association between the extracted facts and the
object name in the page. Table 2 shows the results of fact
retrieval for the object-attribute pairs. The column titled
CORR shows the number of object-attribute pairs for which
we successfully acquired correct facts for the attribute from
at least one web page, the column titled CORR* shows the
number of those for which we acquired correct facts with
some irrelevant strings for the attribute from at least one
web page. The column FAIL shows the number of those
for which we failed to obtain correct facts for the attribute.

We acquired correct facts for 244 (CORR: 230, CORR*: 14)
(40%) object-attribute pairs. We should note that even when
we exclude facts extracted from the pages in Wikipedia
(http://ja.wikipedia.org/), we acquired correct facts for 240
(39%) object-attribute pairs. This means that Wikipedia
was not the only source for acquiring facts from the Web.

We observed that the coverage varied greatly from one
class to another. Object-attribute pairs in some classes did
not have concise facts that could be written in layouts on
the web. For example, most of the attributes for pianist,
race, mineral, artist, document, institution, bread, bus were
too abstract to obtain objective facts from layouts. Also,
most of the attributes for war and manufacturer were mean-
ingless. For 519 object-attribute pairs in 29 classes other
than these classes, we acquired correct facts for 233 (45%)
object-attribute pairs. We conclude that our writing environ-
ment is helpful for writing about objects in certain classes.

We then evaluated the efficiency in acquiring facts for
the object-attribute pairs. In order to acquire facts for each
object-attribute pair, the remote server took on average 12.8
sec. (total 7843.4 sec) for downloading top-15 web pages
and 2.8 sec. (total 1686.8 sec.) for extracting facts from
them. Although our fact retrieval engine needed around
15.6 (= 12.8 + 2.8) sec. to acquire facts for the object-
attribute pairs, we can decrease this to 2.8 sec. if we could
implement our fact retrieval engine on a search engine,
which can handle web documents without downloading.

We have also observed the number of object-attribute
pairs for which we acquired correct facts from at least one
page among the top-5 pages retrieved by the Yahoo API (Ta-
ble 2). The number of object-attribute pairs for which we
could acquire correct facts reduced from 244 (CORR: 230,
CORR*: 14) to 153 (CORR: 140, CORR*: 13) while the tim-
ing needed also reduced from 12.8 sec. to 4.7 sec. (3.8 sec.
for downloading, 0.9 sec. for extracting facts). This differ-
ence suggests that we will be able to obtain more facts by
increasing the number of web pages to be processed when
the coverage is more important.

Finally, to estimate the number of facts (AVPs) acquired
for attributes other than the input attributes, we calculated
the number of facts that our system returns for the 244
object-attribute pairs for which we acquired correct facts for
the input attribute. The system extracted on average 14.3
correct facts for each object-attribute pair. This means that
our writing environment will give more chances for users to
write opinions about various aspects of the target objects.

4. Conclusion

We have proposed a web-oriented writing environment
that helps users to describe opinions about objects by dy-
namically acquiring facts of various aspects (attributes) of
the objects from the web. Experimental results showed that
our method acquired correct facts for 244 (40%) of 611
open domain object-attribute pairs when we processed 15
web pages for each pair, and we acquired on average 14.3
facts for each pair. These results suggest that our writing

Table 2. Experimental results of fact retrieval
for the object-attribute pairs

class # pairs top-5 pages top-15 pages
CORR _CORR* _FAIL CORR CORR FAIL
actress 25 2 0 23 4 0 21
CD single 25 5 2 18 12 1 12
talent 25 6 0] 19 6 0 19
CD album 25 12 1] 13 14 0 11
pianist_ 15 0 0 15 0 1 14
animation | 25 12 1 12 20 0 5
dubbing artist 20 2 0 18 4 0 16
comedian 5 0 0 5 0 0 5
brand 25 6 0 19 8 1 16
cooking 10 1 0 9 3 0 7
law 20 5 0] 15 7 0 13
city 25 2 0 23 7 0 18
race 20 0 0 20 1 0 19
drama 25 14 1 10 14 2 9
shrine 25 5 0 20 5 0 20
company 25 12 2 11 16 1 8
opera 25 9 1 15 15 2 8
mineral 10 0 0 10 0 0 10
person 25 1 0 24 3 0 22
weapon 10 2 0 8 3 0 7
war 5 0 0] 5 0 0 5
program 25 1 0 24 1 0 24
theater 25 7 1 17 11 1 13
manufacturer 10 3 1 6 7 0 3
plant 25 12 1 12 16 2 7
artist 10 0 0 10 0 0 10
document 3 0 0 S 0 0 5
software 15 2 0 13 3 1 11
park 10 1 0 9 2 0 8
nstrument 10 5 1 4 8 0 2
institution 10 0 0 10 0 0 10
event 10 1 1 8 2 1 7
sweet stuff 5 2 0 3 2 0 3
rea 3 0 0 3 0 0 3
route X 5 1 0 4 1 0 4
police station 10 4 0 6 5 0 5
typhoon 10 3 1 6 5 0 5
qualification 4 2 0 2 2 0 2
bus 4 0 0 4 [0] 0 4
total 611 140 13 458 230 14 367

environment is helpful for writing about objects on the net.

We will use object search [8, 3] to collect web pages for
objects, and exploit on-line databases for some classes (e.g.,
amazon.com for book objects) or other methods of acquir-
ing facts from sentences [6] to improve the coverage of fact
retrieval. We will employ other lexico-syntactic patterns to
recognize users’ information needs.

References

[1] A. Almuhareb and M. Poesio. Attribute-based and value-
based clustering: An evaluation. In Proc. EMNLP, 2004.

[2] M. A. Hearst. Automatic acquisition of hyponyms from large
text corpora. In Proc. COLING, 1992.

[3] Z. Nie, Y. Ma, S. Shi, J.-R. Wen, and W.-Y. Ma. Web object
retrieval. In Proc. WWW, 2007.

[4] A. Sumida, K. Shinzato, and K. Torisawa. Concept-instance
relation extraction from simple noun sequences using a search
engine on a web repository. In Proc. ISWC workshop on Web
Content Mining with Human Language Technologies, 2006.

[5] A. Sumida and K. Torisawa. Hacking Wikipedia for hy-
ponymy relation acquisition. 2007. in submission.

[6] T. Takahashi. Computation of Semantic Equivalence for
Question Answering. PhD thesis, Nara Institute of Science
and Technology, Nara, Japan, 2005.

[7]1 K. Tokunaga, J. Kazama, and K. Torisawa. Automatic discov-
ery of attribute words from web documents. In Proc. I/JCNLP,
2005.

[8] N. Yoshinaga and K. Torisawa. Finding specification pages
according to attributes. In Proc. WWW, 2006.

