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Document-level MT and the Standard Approach

Directly optimize using document-level parallel data
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Problem: Lack of document-level parallel data

Most of existing parallel data are built from only reliable sentence alignments
in parallel/comparable documents.

Can we perform document-level translation without using document-level parallel data?



Decoding with a Document-level Language Model

Approximate the objective function by sentence-level translation model,
document-level language model, and sentence-level language model scores.
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* Document-level parallel is not required for training
. PMI(C(Y),y) = log p(y|c(3’)) — log p(y) : association between y and ¢®)




Decoding Strategy

Reranking with C-Score ( § 2.2.1)

Generate n-best hypotheses by sentence-level decoding
and select the one that maximizes C-Score

Context-aware Beam Search ( § 2.2.2)

Decompose C-Score into token-wise C-Score and perform beam search
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Experiments

Glerall translation performance measured by BLEU score \

Model paraonly +30M mono
Transformer w/ BT Sentence-level TM 32.36 32.40
DocTransformer Multi-encoder document-level translation [Zhang+ 18] 32.50 31.59
DocRepair sequence-to-sequence post-editing [Voita+ 18] n/a 32.35

Bayes DocReranker | Reranking based on scores of S-TM, backward S-TM, n/a 33.75**

w/o context| and D-LM [Yu+ 20] n/a 33.67**
Ours (Context-aware beam search) n/a 32.27
Ours (Reranking with C-Score) n/a 32.93*

Bayes DocReranker and ours (rerank) achieved significant improvements the baseline
* Bayes DocReranker performed almost as well without context.

-

ﬁvaluation of the ability to capture context [Voita+ 2019]

Model deixis lex.c ellinfl ellvp
DocTransformer 50.0 45.9 56.0 57.2
DocRepair 89.1 75.8 82.2 67.2
Bayes DocReranker 65.2 72.2 59.6 44.6
C-Score (ours) 86.9 94.9 78.2 77.0
PMI 96.8 97.8 75.8 90.6

\C-Score achieves higher scores than DocRepairin two test sets

%
<




Conclusion

* We proposed an approach to document-level MT,
trainable without document-level parallel data

e We confirmed the effectiveness of our methods in terms
of BLEU and the contrastive test
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