Context-aware Decoder for Neural Machine Translation Using a Target-side Document-Level Language Model

Amane Sugiyama

The University of Tokyo

Naoki Yoshinaga

Institute of Industrial Science The University of Tokyo

Document-level MT and the Standard Approach

Directly optimize using document-level parallel data

Problem: Lack of document-level parallel data

Most of existing parallel data are built from only reliable sentence alignments in parallel/comparable documents.

Can we perform document-level translation without using document-level parallel data?

Decoding with a Document-level Language Model

Approximate the objective function by sentence-level translation model, document-level language model, and sentence-level language model scores.

$$\hat{y} = \arg \max_{y} \log p(y|x, c^{(y)}) \approx \arg \max_{y} [\log p(y|x) + \log p(y|c^{(y)}) - \log p(y)]$$
C-Score
$$x$$
Source Sent. Sentence-level TM \hat{y} \hat{y}
Output Sentence-level LM
$$c^{(y)}$$
Prev. output
Sentence-level LM

• Document-level parallel is not required for training

• $PMI(c^{(y)}, y) = \log p(y|c^{(y)}) - \log p(y)$: association between y and $c^{(y)}$

Decoding Strategy

<u>Reranking with C-Score (§ 2.2.1)</u>

Generate n-best hypotheses by sentence-level decoding and select the one that maximizes C-Score

Context-aware Beam Search (§ 2.2.2)

Experiments

Overall translation performance measured by BLEU score

Model		para only	+30M mono
Transformer w/BT	Sentence-level TM	32.36	32.40
DocTransformer	Multi-encoder document-level translation [Zhang+18]	32.50	31.59
DocRepair	sequence-to-sequence post-editing [Voita+18]	n/a	32.35
Bayes DocReranker	Reranking based on scores of S-TM, backward S-TM,	n/a	33.75**
w/o context and D-LM [Yu+ 20]		n/a	33.67**
Ours (Context-aware beam search)		n/a	32.27
Ours (Reranking with C-Score)		n/a	32.93*

- Bayes DocReranker and ours (rerank) achieved significant improvements the baseline
- Bayes DocReranker performed almost as well without context.

Evaluation of the ability to capture context [Voita+ 2019]

Model	deixis	lex.c	ell.infl	ell.vp
DocTransformer	50.0	45.9	56.0	57.2
DocRepair	89.1	75.8	82.2	67.2
Bayes DocReranker	65.2	72.2	59.6	44.6
C-Score (ours)	86.9	94.9	78.2	77.0
PMI	96.8	97.8	75.8	90.6

C-Score achieves higher scores than DocRepair in two test sets

Conclusion

- We proposed an approach to document-level MT, trainable without document-level parallel data
- We confirmed the effectiveness of our methods in terms of BLEU and the contrastive test

Appenix

BLEU vs #context sents.

