Identifying Constant and Unique Relations by using Time-Series Text

Yohei Takaku Nobuhiro Kaji Naoki Yoshinaga Masashi Toyoda Toyo Keizai Inc. Institute of Industrial Science, University of Tokyo

Relation Extraction from the Evolving Web

• Web (text) as a growing goldmine for extracting relations between real-world entities

[Pantel+ 06; Banko+ 07; Suchanek+ 07; Wu+ 08,10; Zhu+ 09; Mintz+ 09]

- Processing more text leads to more relations, but
- Relations in text could be obsolete / will become outdated

How to Consistently Compile Extracted Relations?

- <arg1, flows through, arg2>
- <arg1, 's CEO is, arg2>
- <arg1, sells, arg2>

How to Consistently Compile Extracted Relations?

- <arg1, flows through, arg2>
- <arg1, 's CEO is, arg2>
- <arg1, sells, arg2> Accumulate all the relations, because

the relation does not evolve over time

How to Consistently Compile Extracted Relations?

- <arg1, flows through, arg2>
- <arg1, 's CEO is, arg2>
- <arg1, sells, arg2>

Overwrite with new one, because the relation can take one value of arg2

Constant and Unique Relations

- Given value of arg1,
 - Constant rel.: value of arg2 is independent of time
 - Unique rel.: value of arg2 is one at any point in time

constant, unique

<arg1, was born in, arg2>

<arg1, 's father of, arg2>

non-constant, unique

<arg1, 's CEO is, arg2>

<arg1, belongs to, arg2>

<arg1, flows through, arg2>

constant, non-unique

<arg1, sells, arg2>

non-constant, non-unique

Overview

- Constancy and Uniqueness of Relations
- Our Approach
- Features for Constancy Classification
- Features for Uniqueness Classification
- Experiments
- Conclusion

Two Binary Classification Tasks

<arg1, was born in, arg2> <arg1, 's CEO is, arg2>

<arg1, 's father is, arg2> <arg1, belongs to, arg2>

<arg1, borders on, arg2> <arg1, sells, arg2>

Two Binary Classification Tasks

Task 1: constancy classification

constant

<arg1, was born in, arg2>

<arg1, 's father is, arg2>

<arg1, borders on, arg2>

non-constant

<arg1, 's CEO is, arg2>

<arg1, belongs to, arg2>

<arg1, sells, arg2>

Two Binary Classification Tasks

Task 2: uniquness classification

unique

```
<arg1, was born in, arg2> <arg1, 's CEO is, arg2>
```

<arg1, 's father is, arg2> <arg1, belongs to, arg2>

<arg1, borders on, arg2> <arg1, sells, arg2>

non-unique

Two Kinds of Features for Training Supervised Classifiers

- Frequency obtained from time-series text
 - Detailed later
 - Based on blog posts crawled from 2006 to 2011
- Linguistic cues

e.g., <arg1, 's president is, arg2>_{non-const.}

Prefix George Bush is ex-president of USA

e.g., <arg1, borders on, arg2>_{non-uniq}.

Coordination France borders on Italy as well as Spain

Overview

- Constancy and Uniqueness of Relations
- Our Approach
- Features for Constancy Classification
- Features for Uniqueness Classification
- Experiments
- Conclusion

Using Time-series Text for Constancy Classification

<Keisuke Honda(=arg1), belongs to, arg2>_{non-const.}

2010 – now, CSK Moskow

Using Time-series Text for Constancy Classification

<Keisuke Honda(=arg1), belongs to, arg2>_{non-const.}

Cosine Similarity as a Feature Value

< Keisuke Honda, belongs to, arg2>non-const.

<Tokyo, has river, arg2>_{const.}

Importance of Choosing Time Windows

< Keisuke Honda, belongs to, arg2>non-const.

Importance of Choosing Time Windows

< Keisuke Honda, belongs to, arg2>_{non-const.}

Using Multiple Time Windows

Window size $T = \{ 1, 3, 6, 12 \text{ (months)} \}$ $12 (= 4 \times 3) \text{ features}$ Integration method = $\{ \text{ ave., min., max.} \}$

Overview

- Constancy and Uniqueness of Relations
- Our Approach
- Features for Constancy Classification
- Features for Uniqueness Classification
- Experiments
- Conclusion

Using Time-series Text for Uniqueness Classification

< Keisuke Honda, belongs to, arg2>_{uniq.} <Google, acquires, arg2>_{non-uniq}. You Tube **PUSHLIFE** 30 WIDEVINE[®] 25 25 20 12 entities ← single entity 15 15 10 number of entity types 'n arg2 fillers arg2 fillers

Using Time-series Text for Uniqueness Classification (Cont.)

<Keisuke Honda, belongs to, arg2>_{uniq.} <Google, acquires, arg2>_{non-uniq.}

Frequency ratio between the 1st and 2nd most frequent entities

Setting Appropriate Time Windows is also Important

< Keisuke Honda, belongs to, arg2>_{uniq.}

Overview

- Constancy and Uniqueness of Relations
- Our Approach
- Features for Constancy Classification
- Features for Uniqueness Classification
- Experiments
- Conclusion

Experiments

- Evaluate our method with relations extracted from time-series text
 - Classifier: Passive-aggressive algorithm w/ proposed features
 - Time-series text: 6-year's worth of Japanese blog posts
 (2.3-billion sentences)
- Conduct experiments to:
 - Evaluate the constancy classification
 - Evaluate the uniqueness classification
 - Investigate the impact of multiple window sizes

Data and Settings

- Parse time-series text to extract dependency paths connecting two named entities as relation instances
- Annotate 1000 relations (majority vote, 3 humans)

	Constancy	Uniqueness	
Kappa [Fleiss 1971]	0.346 (fair)	0.428 (moderate)	

- Major reason for disagreement: type ambiguity Ex. $\langle arg1_{human}$, is seen in, $arg2\rangle_{non-const.}$ $\langle arg1_{mountain}$, is seen in, $arg2\rangle_{const.}$
- Use the labeled relations for training & testing
 - Evaluation metric: Precision & Recall (5-fold cross validation)

Classification Result: Constancy

- Varying the threshold to classifier's output (margin) to plot recall-precision curve
 - Baseline: cosine similarity between distributions over arg2 in the first and last month

Classification Result: Uniqueness

- Varying the threshold to classifier's output (margin) to plot recall-precision curve
 - Baseline: re-implementation of [Lin+ 10]
 (based on gross distributions over arg2)

Impact of using Multiple Time Windows, T

 Compare our method (multiple time windows) with methods using a single time window

 Combining features computed from multiple time windows greatly improved the precision of uniqueness classification

Error Analysis

• Investigate 200 misclassified relations

Error Type	Const.	Uniq.	Total
Paraphrases	16	52	68

ex. < Obama, is president of, {USA, the United States}>_{uniq.}

Related Work

- TempEval temporal relation identification
 [Verhagen+ 2007, 2010]
 - Associate event (relation instance) with time
 ex. < Charles Chaplin, was born in, London > OVERLAP 1889
 - Do not address constancy of relation
- Functional relation identification [Ritter+ 10]
 - Use distributions over arg2 to identify uniqueness [Lin+ 10]
 - Time dimension should be considered to identify uniqueness ex. <Naoki Yoshinaga, lives in, {Kyoto (-'96),
 Tokyo ('96-'05,'08-)}>_{uniq.}

Overview

- Constancy and Uniqueness of Relations
- Our Approach
- Features for Constancy Classification
- Features for Uniqueness Classification
- Experiments
- Conclusion

Conclusion

- A novel notion of constancy of relations
- A method of identifying constant and unique relations
 - Use massive time-series text to induce features
 - Timer-series distributions over arg2 computed with multiple time windows were quite effective

Future work

- Apply our method to relations with *typed* arguments [Lin+ 10] Ex. $\langle arg1_{mountain}$, is seen in, $arg2\rangle_{const.}$
- Use constancy/uniqueness to compile extracted relations