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Relation Extraction from the Evolving Web

* Web (text) as a growing goldmine for extracting
relations between real-world entities

[Pantel+ 06; Banko+ 07; Suchanek+ 07; Wu+ 08,10; Zhu+ 09; Mintz+ 09]
— Processing more text leads to more relations, but

— Relations in text could be obsolete / will become outdated
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How to Consistently Compile
Extracted Relations?

e <argl, flows through, arg2>
* <argl, 'sCEQO s, arg2>
e <argl, sells, arg2>



How to Consistently Compile
Extracted Relations?

e <argl, flows through, arg2>

Accumulate all the relations, because

the relation does not evolve over time

Moselle river flows Moselle river flows
through Germany through France
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How to Consistently Compile
Extracted Relations?

e <argl, 'sCEQO s, arg2>

* <argl, sells, arg2> | o/ i e one, because

the relation can take one value of arg2

Apple’s CEO is

Apple’s CEO is
Steve Jobs

Tim Cook

2012
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Constant and Unique Relations

* Given value of argl,

— Constant rel.: value of arg2 is independent of time
: value of arg2 is one at any point in time

constant, non-constant,

<argl, was born in, arg2> <argl, s CEO is, arg2>
<argl, ‘s father of, arg2> <argl, belongs to, arg2>

<argl, flows through, arg2> <argl, sells, arg2>

constant, non-constant,
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Two Binary Classification Tasks

<argl, was born in, arg2> <argl, s CEO is, arg2>
<argl, ’s father is, arg2> <argl, belongs to, arg2>

<argl, borders on, arg2> <argl, sells, arg2>



Two Binary Classification Tasks

Task 1: constancy classification

constant non-constant
<argl, was born in, arg2> <argl, s CEO is, arg2>
<argl, ’s father is, arg2> <argl, belongs to, arg2>

<argl, borders on, arg2> <argl, sells, arg2>




Two Binary Classification Tasks

| |

<argl, was born in, arg2> <argl, s CEO is, arg2>

<argl, ’s father is, arg2> <argl, belongs to, arg2>

<argl, borders on, arg2> <argl, sells, arg2>



Two Kinds of Features for
Training Supervised Classifiers

* Frequency obtained from time-series text
— Detailed later

— Based on blog posts crawled from 2006 to 2011

* Linguistic cues

e.g., <argl, s president is, arg2> . -const.
Prefix George Bush is ex-president of USA
e.g., <argl, borders on, arg2>,,, niq.

Coordination France borders on Italy as well as Spain
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Using Time-series Text
for Constancy Classification

<Keisuke Honda(=argl), belongs to, arg2>_ . onst

2008 — 2010, VVV-Venlo 2010 — now, CSK Moskow



frequency

Using Time-series Text
for Constancy Classification

<Keisuke Honda(=argl), belongs to, arg2>_ . onst

2008 — 2009
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Cosine Similarity as a Feature Value

<Keisuke Honda, belongs to, arg2>_..-const.
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Importance of Choosing Time Windows

<Keisuke Honda, belongs to, arg2>, . const.
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Importance of Choosing Time Windows

<Keisuke Honda, belongs to, arg2>, . const.
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Using Multiple Time Windows
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Window size T={1, 3, 6, 12 (months) }

Integration method = { ave., min., max. }
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Using Time-series Text
for Uniqueness Classification

<Keisuke Honda, belongs to, arg2> ., <Google, acquires, arg2> . iniq.
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Using Time-series Text
for Uniqueness Classification (Cont.)

<Keisuke Honda, belongs to, arg2> ., <Google, acquires, arg2> . iniq.

Frequency ratio between the 1st and 2nd most frequent entities
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Setting Appropriate Time Windows

is also Important

<Keisuke Honda, belongs to, arg2> ;.
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Experiments

* Evaluate our method with relations extracted from
time-series text
— Classifier: Passive-aggressive algorithm w/ proposed features

— Time-series text: 6-year’s worth of Japanese blog posts
(2.3-billion sentences)

* Conduct experiments to:
— Evaluate the constancy classification
— Evaluate the uniqueness classification
— Investigate the impact of multiple window sizes



Data and Settings

* Parse time-series text to extract dependency paths
connecting two named entities as relation instances

* Annotate 1000 relations (majority vote, 3 humans)

| Comstancy | Uniqueness _

Kappa [Fleiss 1971] 0.346 (fair) 0.428 (moderate)

— Major reason for disagreement: type ambiguity
Ex. <arglp maqn, IS seenin, arg2> . const.
<arg1mountaim is seen in; ar'g2>const.

* Use the labeled relations for training & testing

— Evaluation metric: Precision & Recall (5-fold cross validation)



Precision

Classification Result: Constancy

* Varying the threshold to classifier’s output (margin)
to plot recall-precision curve

— Baseline: cosine similarity between distributions over arg2
in the first and last month
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Precision

Classification Result: Uniqueness

* Varying the threshold to classifier’s output (margin)
to plot recall-precision curve

— Baseline: re-implementation of [Lin+ 10]
(based on gross distributions over arg2)
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Precision

Impact of using Multiple Time Windows, T

 Compare our method (multiple time windows) with
methods using a single time window
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— Combining features computed from multiple time windows
greatly improved the precision of uniqueness classification



Error Analysis

* Investigate 200 misclassified relations

o e conunie

Paraphrases
ex. <Obama, is president of, {USA, the United States}>uniq_



Related Work

 TempEval temporal relation identification
[Verhagen+ 2007, 2010]

— Associate event (relation instance) with time
eXx. <Charles Chaplin, was born in, London> OVERLAP 1889

— Do not address constancy of relation

* Functional relation identification [Ritter+ 10]
— Use distributions over arg2 to identify uniqueness [Lin+ 10]

— Time dimension should be considered to identify uniqueness
ex. <Naoki Yoshinaga, lives in, {Kyoto (-'96),
Tokyo (‘96-'05,'08-)}>,iq.



Overview

* Constancy and Uniqueness of Relations
* Our Approach

* Features for Constancy Classification

* Features for Uniqueness Classification
* Experiments

e Conclusion
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Conclusion

* A novel notion of constancy of relations
* A method of identifying constant and unique relations

— Use massive time-series text to induce features

— Timer-series distributions over arg2 computed with multiple
time windows were quite effective

e Future work

— Apply our method to relations with typed arguments [Lin+ 10]
Ex. <argl,. ., niqin, IS SEEN IN, AYE2> et

— Use constancy/uniqueness to compile extracted relations



