
Scalable Online Training  
with Conjunctive Features 

Naoki  Yoshinaga  and  Masaru Kitsuregawa

IIS, The University of Tokyo

1



Proposal

• Kernel slicing for online training with conjunctive features

• explicitly consider conjunctions among frequent features, 
while implicitly considering the others by polynomial kernel

• reuse temporal margins of partial feature vectors

• Performance evaluation on two NLP tasks 
  (dependency parsing and hyponymy relation extraction) 

• orders of magnitudes faster than kernel-based online training, 
while retaining its space efficiency

• model accuracy: comparable to batch SVM
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Overview

• Research Backgrounds

• Space-time trade-off in training with conjunctive features

• Kernel splitting [Goldberg+ ’08] for testing

• Methods

• Online learning with kernel splitting

• Online learning with kernel slicing

• Experiments

• Conclusion
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y = sgn(wT�d(x))

Conjunctive features in NLP

• Conjunctive features play a key role to obtain a high 
degree of accuracy in NLP classification problems

• dependency parsing [Koo+ ’08], pronoun resolution [Nguyen+, 08], 
semantic role labeling [Liu+, ’07], relation extraction [Sumida+ ’08] 
 
 
 
 
 
 
 
 
 

ex. | dependency parsing

I
RRP

saw
VBD

a
DT

girl
NN

with
IN

...

y =

�
+1 (dependent)

�1 (independent)

active (primitive) features

conjunctive features

x = �f1, f2, f3, f4�

�2(x) = �f1, f2, f3, f4, f1�2, f1�3, . . . , f3�4�

fi�j �= 0 iff fi �= 0 � fj �= 0

Linear model
[LLM, Perceptron, etc.] 

high-dimensional  
weight vector
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Conjunctive features in NLP

• Conjunctive features play a key role to obtain a high 
degree of accuracy in NLP classification problems

• dependency parsing [Koo+ ’08], pronoun resolution [Nguyen+, 08], 
semantic role labeling [Liu+, ’07], relation extraction [Sumida+ ’08] 

 
 
 
 
 
 
 
 
 

y = sgn(wT�d(x)) y = sgn(
�

si�S
�ikd(si,x))

kd(s,x)

= �d(s)T�d(x)

= (sTx + 1)d

Linear model
[LLM, Perceptron, etc.] Kernel-based model

[SVM, Kernel perceptron, etc.]
polynomial kernel

high-dimensional  
weight vector support set  

(subset of training examples)
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• Training with conjunctive features involves space-time 
tradeoff in the way conjunctive features are handled 
  
 
 
 
 
 
 
 
 
 

Space-time tradeoff 
in training with conjunctive features

linear training 
(perceptron)

kernel-based training
(kernel perceptron)

Linear training: polynomial space in the number of primitive features
Kernel-based training: quadratic time in the number of examples

initialize

needs huge memory

{}

} {

} {

compute  
margin

update

w � �
for t = 1 to T do

mt � wT�d(xt)
if ytmt < 0

w � w + yt�d(xt)
endif

end

S0 � �,� � ⇥
for i = 1 to T do

mt �
�

si�St�1
�ikd(si,xt)

if ytmt < 0
�t � yt,St = St�1 ⇥ {xt}

endif
end

linearly increase as 
training proceeds
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Kernel splitting [Goldberg+ 2008] 
(for testing)

• Split features into common ones       and rare ones      
and divide margin computation:

• explicitly consider conjunctions among common features

• implicitly consider remaining conjunctions by kernel 
 
 
 
 
 
 
 

�

si�S
�ikd(si,x) =

�

si�S
�ikd(si,xC) +

�

si�S
�i{kd(si,x) � kd(si,xC)}

= wT
C�d(xC) +

�

si�SR

�i{kd(si,x) � kd(si,xC)}

x � FC

FC F \ FC

according to frequency in S
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Kernel splitting [Goldberg+ 2008] 
(for testing)

• Split features into common ones       and rare ones      
and divide margin computation:

• explicitly consider conjunctions among common features

• implicitly consider remaining conjunctions by kernel 
 
 
 
 
 
 
 

explicit weights for common 
conjunctive features

�

si�S
�ikd(si,x) =

�

si�S
�ikd(si,xC) +

�

si�S
�i{kd(si,x) � kd(si,xC)}

= wT
C�d(xC) +

�

si�SR

�i{kd(si,x) � kd(si,xC)}

wC =
�

sj�S
�i�d(si � FC)

space-efficient linear classification

x � FC

FC F \ FC

|wC|� |w|
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Kernel splitting [Goldberg+ 2008] 
(for testing)

• Split features into common ones       and rare ones      
and divide margin computation:

• explicitly consider conjunctions among common features

• implicitly consider remaining conjunctions by kernel 
 
 
 
 
 
 
 

= 0 when sT
j x = sT

j xC

consider a few support vectors 
that have rare feature 

�

si�S
�ikd(si,x) =

�

si�S
�ikd(si,xC) +

�

si�S
�i{kd(si,x) � kd(si,xC)}

= wT
C�d(xC) +

�

si�SR

�i{kd(si,x) � kd(si,xC)}

fR � xR = x \ xC

|SR|� |S |

x � FC

FC F \ FC

space-efficient linear classification + efficient kernel-based testing
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S0 � ⇥,� � ⇥,

for t = 1 to T do

mt �
�

si�St�1
�ikd(si,xt)

if ytmt � 0
�t � yt,St = St�1 ⇤ {xt}

endif
end

Online learning with kernel splitting

• Replace margin computation part in kernel-based online 
learning with kernel splitting 
 
 
 
 
 
 
 
 
 
 

replace this with 
kernel splitting

Kernel perceptron
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Online learning with kernel splitting

• Replace margin computation part in kernel-based online 
learning with kernel splitting 
 
 
 
 
 
 
 
 
 
 

kernel splitting
Q. 1:  how to determine       ?  
Q. 2:  how to maintain       ?

Kernel perceptron

FC

wC

S0 � ⇥,� � ⇥,

for t = 1 to T do
xC � xt ⌅ FC

mt � wC⇥d(xC)
+

�
si�SR

�i{kd(si,xt) � kd(si,xC)}
if ytmt � 0

�t � yt,St = St�1 ⇤ {xt}

endif
end
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Online learning with kernel splitting

• Replace margin computation part in kernel-based online 
learning with kernel splitting 
 
 
 
 
 
 
 
 
 
 

Kernel perceptron with kernel splitting
A. 1: Choose top-N 
frequent features in the 
training examples as  

A.2 Online-update          
to correspond with 
       

wC

FC

�St,�t⇥

kernel splitting
Q. 1:  how to determine       ?  
Q. 2:  how to maintain       ?

FC

wC

S0 � ⇥,� � ⇥,
FC � {f |rank(f) � N},wC � ⇥
for t = 1 to T do

xC � xt ⌅ FC

mt � wC⇥d(xC)
+

�
si�SR

�i{kd(si,xt) � kd(si,xC)}
if ytmt � 0

�t � yt,St = St�1 ⇤ {xt}
wC � wC + yt⇥d(xC)

endif
end
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Online learning with kernel splitting

• Replace margin computation part in kernel-based online 
learning with kernel splitting 
 
 
 
 
 
 
 
 
 
 

Kernel perceptron with kernel splitting

Assumption:
additive updates 
⇥t � > t
⇤�t,St⌅ � ⇤�t � ,St �⌅

S0 � ⇥,� � ⇥,
FC � {f |rank(f) � N},wC � ⇥
for t = 1 to T do

xC � xt ⌅ FC

mt � wC⇥d(xC)
+

�
si�SR

�i{kd(si,xt) � kd(si,xC)}
if ytmt � 0

�t � yt,St = St�1 ⇤ {xt}
wC � wC + yt⇥d(xC)

endif
end
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Intricacy in setting Parameter N

• Kernel splitting can control space-time trade-off in training 
with conjunctive features, but it does not resolve it 
 
 
 

•                 should be smaller for higher-order 
conjunctive features (to keep          and         small)

•                 should be larger when we handle a larger 
number training examples (to keep       small) 
 

O(|xC|d + |SR||xC|)Time complexity :

N (= |FC|)

N (= |FC|)
|SR|

|xC|d |FC|d

xC � xt � FC

mt � wC⇥d(xC) +
�

si�SR
�i{kd(si,xt) � kd(si,xC)}
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• Examples in real-world data are redundant [Yoshinaga+ ’09]

• Online learner will repeatedly compute margins of common 
partial feature vectors 
 
 
 
 
 
 
 
 
 

Kernel slicing | basic idea

sequence of examples parameters

reusing partial margins reduces  
support vectors to be considered

features sorted

i

t

t � 1

t � 2

kernel perceptron

{s � St|f25 � s}

. . .

xt�2 = �f1, f3, f7, f19⇥ �St�2,�t�2⇥

xt�1 = �f1, f3, f9, f21⇥ �St�1,�t�1⇥

xt = �f1, f3, f7, f25⇥ �St,�t⇥

. . .

{xt�1} {xt�2}

S0 � �,� � ⇥
for i = 1 to T do

mt �
�

si�St�1
�ikd(si,xt)

if ytmt < 0
�t � yt,St = St�1 ⇥ {xt}

endif
end
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Kernel slicing | feature-wise splitting 

• Kernel slicing: incrementally compute a partial margin of       
when adding features to               from frequent to rare 
 

• retrieve / update partial margins (with time index   ) in a trie 
 
 
 

• when common feature              is added and the retrieved 
margin was too old, use        to compute the partial margin 
 

partial margin computed 
for      at past round newly added support vectors since we finally see  xj

t

temporal  
partial margin

t �(< t)

x0
t (= �)

xt

t

fj � FC

wC

Sj = {s � St \ St � |fj � s}
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mj
t =

�

si�St

�i(kd(s,xj
t) � kd(s,xj�1

t ))
mt = m0

t +

|xt|�

j=1

mj
t

margin change when we add j-th frequent feature

mj
t = mj

t � +
�

si�Sj

�i{kd(si,xj) � kd(si,xj�1)}

xj
t

mj
t = wT

C{�d(xj
t) � �(xj�1

t )}|�d(xj) � �d(xj�1)| < |Sj||xj�1|



Experiments

• Implement online passive aggressive I (PA-I) [Crammer+ ’06] 

with kernel slicing 

• Compare our learner with

• Support vector machine (SVM) [TinySVM by T. Kudo]

• kernel-based PA-I with inverted indices [Okanohara+ ’07]

• SGD-training of      reguralized log-linear model [Tsuruoka, ’09]

• Evaluate on two NLP tasks:   
Japanese dependency parsing and hyponymy relation extraction

�1-
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Task settings

• Japanese dependency parsing

• Classifier judges whether a given head/dependent candidate 
has a dependency relation (in shift-reduce parser [Sassano, ’04])

• Features: POS(-subcategory), inflection form of head /
dependent, and surrounding contexts (distance etc.)

• Hyponymy relation extraction 

• Classifier judges whether a given pair of entities extracted 
from Wikipedia articles forms a hyponymy relation [Sumida+ ’08]

• Features: POS, surface string, morpheme, listing type of each 
entity, and surrounding contexts (distance etc.) 

18

We considered third-order conjunctive features in training



Example / Feature Statistics

• Feature conjunctions dramatically increase 

• the average number of active features 

• the feature space  
 
 
 
 
 
 
 
 

x50x130

x210x900

data set dependency hyponymy
parsing extraction

T (# examples) 296,776 201,664
Ave. of |x| 27.6 15.4
Ave. of |�3(x)| 3558.3 798.7
|F | (# features) 64,493 306,036
|F3| (# conj. features) 58,361,669 64,249,234
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Labeled examples are available from: http://www.tkl.iis.u-tokyo.ac.jp/~ynaga/pecco/
                                       http://nlpwww.nict.go.jp/hyponymy/



Results | dependency parsing

• PA-I with kernel slicing was the fastest, while retaining 
space-efficiency of kernel-based training

• hyper-parameters are tuned to maximize model accuracy on 
development set 
 
 
 
 
 
 
 

1/6

x30
kernel-based

training

linear training

{

{

method acc. time memory

svm (batch) 90.93% 25912s 243MB
pa-i | kernel 90.90% 8704s 83MB
pa-i | splitting 90.90% 351s 149MB
pa-i | slicing 90.89% 262s 175MB
pa-i | linear 90.90% 465s 993MB
�1-llm (sgd) 90.76% 4057s 21499MB
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Results | hyponymy extraction

• PA-I with kernel slicing was the fastest, while retaining 
space-efficiency of kernel-based training

• hyper-parameters are tuned to maximize model accuracy on 
development set 
 
 
 
 
 
 
 

1/6

x70{kernel-based
training

linear training {

method acc. time memory

svm (batch) 93.09% 17354s 140MB
pa-i | kernel 93.14% 1074s 49MB
pa-i | splitting 93.10% 68s 108MB
pa-i | slicing 93.05% 17s 131MB
pa-i | linear 93.11% 103s 751MB
�1-llm (sgd) 92.86% 779s 14089MB
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Splitting vs. Slicing |  Parameter N

• Training time as a function of parameter N [mem. usage]

• kernel splitting: parameter-sensitive

• kernel slicing: parameter-insensitive 
 
 
 
 
 
 
 
 

You don’t need to tune N (it doesn’t change the model, anyway)

splitting
splitting

slicingslicing

= linear  
   training = linear  

   training

~1000MB
~750MB

~130MB
~180MB

0
20
40
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140
160

100 1000 10000 100000

Tr
ai
ni
ng
tim
e
[s
]

N (logscale)

0
200
400
600
800
1000
1200
1400

100 1000 10000 100000

Tr
ai
ni
ng
tim
e
[s
]

N (logscale)

dependency parsing hyponymy extraction
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Splitting vs. Slicing |  # examples, T

• Training time as a function of the number of examples

• kernel splitting: in between linear and quadratic

• kernel slicing: almost linear 
 
 
 
 
 
 
 
 

Reusing temporal margins      more scalable training

kernel kernel

splitting splitting

slicing

0

50

100

150

200

0 50000 100000 150000 200000

Tr
ai
ni
ng
tim
e
[s
]

T : # of examples

slicing

dependency parsing
N=250 (fixed)

hyponymy extraction
N=125 (fixed)

0

100

200

300

400

500

600

0 100000 200000 300000

Tr
ai
ni
ng
tim
e
[s
]

T : # of examples
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Related Work

• Feature selection in linear training [Wu+ ’07, Okanohara+, ’09] 

(limit the number of conjunctive features)

• Simpler model       faster, more space-efficient, less accurate 
x17 but 94.19%     93.71% (named entity recognition [Wu+ ’07]),  
x37 but 89.52%     89.03% (dependency parsing [Okanohara+ ’09])

• Bounded Kernel-based training [Dekel+ ’06; Cavallanti+ ’07]

(limit the number of support vectors)

• These lightweight algorithms could not bound the number of 
support vectors, while retaining model accuracy [Orabona+ ’09] 

 
 Our method exploits the data redundancy in evaluating  

the kernel to train the same model as the base learner
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Conclusion

• Scalable online training method with kernel slicing

• Kernel slicing generalizes kernel splitting [Goldberg+ ’08], to reuse 
temporal partial margins for common partial feature vectors

• orders of magnitude faster than kernel-based online training, 
while retaining its space efficiency

• Things I didn’t mention in this talk (see our paper):

• Efficient management of feature weights and partial margins 
(packed training examples) with a double-array trie [Yata+ ’09]

• Termination of margin computations that will never contribute 
to parameter updates (safely skipping rare features)
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Future work

• Release C++ implementation and dataset: done. 
http://www.tkl.iis.u-tokyo.ac.jp/~ynaga/opal/

• Fast testing? - you may want to try pecco [Yoshinaga+, EMNLP ‘09] 
http://www.tkl.iis.u-tokyo.ac.jp/~ynaga/pecco/

• Implement kernel slicing for other online algorithms

• Generalize kernel slicing to accommodate other kernels 
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Thank you
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