Scalable Online Training with Conjunctive Features

Naoki Yoshinaga and Masaru Kitsuregawa

IIS, The University of Tokyo

Proposal

- Kernel slicing for online training with conjunctive features
 - explicitly consider conjunctions among frequent features, while implicitly considering the others by polynomial kernel
 - reuse temporal margins of partial feature vectors
- Performance evaluation on two NLP tasks (dependency parsing and hyponymy relation extraction)
 - orders of magnitudes faster than kernel-based online training, while retaining its space efficiency
 - model accuracy: comparable to batch SVM

Overview

- Research Backgrounds
 - Space-time trade-off in training with conjunctive features
 - Kernel splitting [Goldberg+ '08] for testing
- Methods
 - Online learning with kernel splitting
 - Online learning with kernel slicing
- Experiments
- Conclusion

Conjunctive features in NLP

- Conjunctive features play a key role to obtain a high degree of accuracy in NLP classification problems
 - dependency parsing [Koo+ '08], pronoun resolution [Nguyen+, 08], semantic role labeling [Liu+, '07], relation extraction [Sumida+ '08]

ex. | dependency parsing $y = \begin{cases} +1 (dependent) \\ -1 (independent) \end{cases}$ Linear model with girl saw а [LLM, Perceptron, etc.] RRP IN **VBD** DT NN $y = sgn(\boldsymbol{w}^{\mathsf{I}} \phi_{\mathsf{d}}(\boldsymbol{x}))$ $\boldsymbol{x} = \langle f_1, f_2, f_3, f_4 \rangle$ active (primitive) features high-dimensional $\phi_2(\boldsymbol{x}) = \langle f_1, f_2, f_3, f_4, f_{1 \wedge 2}, f_{1 \wedge 3}, \dots, f_{3 \wedge 4} \rangle$ weight vector $\begin{array}{c} \text{conjunctive features} \\ f_{i \wedge j} \neq 0 \quad \text{iff} \quad f_i \neq 0 \cup f_j \neq 0 \end{array}$

Conjunctive features in NLP

- Conjunctive features play a key role to obtain a high degree of accuracy in NLP classification problems
 - dependency parsing [Koo+ '08], pronoun resolution [Nguyen+, 08], semantic role labeling [Liu+, '07], relation extraction [Sumida+ '08]

Linear model [LLM, Perceptron, etc.]

$$\mathbf{y} = \operatorname{sgn}(\mathbf{w}^{\mathsf{T}} \mathbf{\phi}_{\mathsf{d}}(\mathbf{x}))$$

high-dimensional weight vector

Space-time tradeoff in training with conjunctive features

• Training with conjunctive features involves space-time tradeoff in the way conjunctive features are handled

Linear training: polynomial space in the number of primitive features Kernel-based training: quadratic time in the number of examples

Kernel splitting [Goldberg+ 2008] (for testing)

- Split features into common ones \mathcal{F}_{C} and rare ones $\mathcal{F} \setminus \mathcal{F}_{C}$ and divide margin computation: according to frequency in S
 - explicitly consider conjunctions among common features

• implicitly consider remaining conjunctions by kernel

$$\sum_{s_{i} \in S} \alpha_{i} k_{d}(s_{i}, x) = \sum_{s_{i} \in S} \alpha_{i} k_{d}(s_{i}, \underline{x_{C}}) + \sum_{x_{i} \in S} \alpha_{i} \{k_{d}(s_{i}, x) - k_{d}(s_{i}, x_{C})\}$$

$$= w_{C}^{T} \phi_{d}(x_{C}) + \sum_{s_{i} \in S_{R}} \alpha_{i} \{k_{d}(s_{i}, x) - k_{d}(s_{i}, x_{C})\}$$

Kernel splitting [Goldberg+ 2008] (for testing)

- Split features into common ones \mathcal{F}_C and rare ones $\mathcal{F} \setminus \mathcal{F}_C$ and divide margin computation: according to frequency in S
 - explicitly consider conjunctions among common features

implicitly consider remaining conjunctions by karnel

$$\sum_{s_{i} \in S} \alpha_{i} k_{d}(s_{i}, x) = \sum_{s_{i} \in S} \alpha_{i} k_{d}(s_{i}, \underline{x_{C}}) + \sum_{s_{i} \in S} \alpha_{i} \{k_{d}(s_{i}, x) - k_{d}(s_{i}, x_{C})\}$$

$$= w_{C}^{T} \varphi_{d}(x_{C}) + \sum_{s_{i} \in S} \alpha_{i} \{k_{d}(s_{i}, x) - k_{d}(s_{i}, x_{C})\}$$

$$= \sum_{s_{j} \in S} \alpha_{i} \varphi_{d}(s_{i} \cap \mathcal{F}_{C})$$
space-efficient linear classification

Kernel splitting [Goldberg+ 2008] (for testing)

- Split features into common ones \mathcal{F}_{C} and rare ones $\mathcal{F} \setminus \mathcal{F}_{C}$ and divide margin computation: according to frequency in S
 - explicitly consider conjunctions among common features

• implicitly consider remaining conjunctions by kernel

$$\sum_{s_i \in S} \alpha_i k_d(s_i, x) = \sum_{s_i \in S} \alpha_i k_d(s_i, x_C) + \sum_{x \cap \mathcal{F}_C} \alpha_i \{ \frac{k_d(s_i, x) - k_d(s_i, x_C)}{s_i \in S} \}$$

$$= w_C^T \varphi_d(x_C) + \sum_{\substack{s_i \in S_R \\ s_i \in S_R \\ that have rare feature f_R \in x_R = x \setminus x_C}} \alpha_i \{ k_d(s_i, x) - k_d(s_i, x_C) \}$$

space-efficient linear classification + efficient kernel-based testing

• Replace margin computation part in kernel-based online learning with kernel splitting

Kernel perceptron

$$\begin{split} &\mathcal{S}_{0} \leftarrow \emptyset, \boldsymbol{\alpha} \leftarrow \mathbf{o}, \\ &\text{for } t = 1 \text{ to } T \text{ do} \\ & \boldsymbol{m}_{t} \leftarrow \sum_{\boldsymbol{s}_{i} \in \mathcal{S}_{t-1}} \alpha_{i} \boldsymbol{k}_{d}(\boldsymbol{s}_{i}, \boldsymbol{x}_{t}) \\ & \text{if } \boldsymbol{y}_{t} \boldsymbol{m}_{t} \leq 0 \\ & \boldsymbol{\alpha}_{t} \leftarrow \boldsymbol{y}_{t}, \mathcal{S}_{t} = \mathcal{S}_{t-1} \cup \{\boldsymbol{x}_{t}\} \\ & \text{endif} \\ & \text{end} \end{split}$$

• Replace margin computation part in kernel-based online learning with kernel splitting

Kernel perceptron

• Replace margin computation part in kernel-based online learning with kernel splitting

Kernel perceptron with kernel splitting

• Replace margin computation part in kernel-based online learning with kernel splitting

Kernel perceptron with kernel splitting

$$\begin{split} &\mathcal{S}_{0} \leftarrow \emptyset, \boldsymbol{\alpha} \leftarrow \mathbf{o}, \\ &\mathcal{F}_{C} \leftarrow \{f | \operatorname{RANK}(f) \leq N\}, \boldsymbol{w}_{C} \leftarrow \mathbf{o} \\ & \text{for } t = 1 \text{ to } T \text{ do} \\ & \boldsymbol{x}_{C} \leftarrow \boldsymbol{x}_{t} \cap \mathcal{F}_{C} \\ & \boldsymbol{m}_{t} \leftarrow \boldsymbol{w}_{C} \varphi_{d}(\boldsymbol{x}_{C}) \\ & + \sum_{\boldsymbol{s}_{i} \in \mathcal{S}_{R}} \alpha_{i} \{k_{d}(\boldsymbol{s}_{i}, \boldsymbol{x}_{t}) - k_{d}(\boldsymbol{s}_{i}, \boldsymbol{x}_{C})\} \\ & \text{if } \boldsymbol{y}_{t} \boldsymbol{m}_{t} \leq 0 \\ & \boldsymbol{\alpha}_{t} \leftarrow \boldsymbol{y}_{t}, \mathcal{S}_{t} = \mathcal{S}_{t-1} \cup \{\boldsymbol{x}_{t}\} \\ & \boldsymbol{w}_{C} \leftarrow \boldsymbol{w}_{C} + \boldsymbol{y}_{t} \varphi_{d}(\boldsymbol{x}_{C}) \\ & \text{endif} \\ & \text{end} \end{split}$$

Assumption: additive updates $\forall t' > t$ $\langle \alpha_t, S_t \rangle \subseteq \langle \alpha_{t'}, S_{t'} \rangle$

Intricacy in setting Parameter N

 Kernel splitting can control space-time trade-off in training with conjunctive features, but it does not resolve it

 $\begin{aligned} & x_{\mathsf{C}} \leftarrow x_{\mathsf{t}} \cap \mathcal{F}_{\mathsf{C}} \\ & \mathfrak{m}_{\mathsf{t}} \leftarrow w_{\mathsf{C}} \phi_{\mathsf{d}}(x_{\mathsf{C}}) + \sum_{s_{\mathsf{i}} \in \mathcal{S}_{\mathsf{R}}} \alpha_{\mathsf{i}} \{ \mathsf{k}_{\mathsf{d}}(s_{\mathsf{i}}, x_{\mathsf{t}}) - \mathsf{k}_{\mathsf{d}}(s_{\mathsf{i}}, x_{\mathsf{C}}) \} \end{aligned}$

Time complexity : $\mathcal{O}(|\boldsymbol{x}_{C}|^{d} + |\mathcal{S}_{R}||\boldsymbol{x}_{C}|)$

- N (= $|\mathcal{F}_C|$) should be smaller for higher-order conjunctive features (to keep $|x_C|^d$ and $|\mathcal{F}_C|^d$ small)
- $N (= |\mathcal{F}_C|)$ should be larger when we handle a larger number training examples (to keep $|\mathcal{S}_R|$ small)

Kernel slicing | basic idea

- Examples in real-world data are redundant [Yoshinaga+ '09]
 - Online learner will repeatedly compute margins of common partial feature vectors

Kernel slicing | feature-wise splitting

- Kernel slicing: incrementally compute a partial margin of x_{t} when adding features to \boldsymbol{x}^{0}_{t} $(=\emptyset)$ from frequent to rare
 $$\begin{split} m_{t} &= m_{t}^{0} + \sum_{j=1}^{|\boldsymbol{x}_{t}|} \underline{m_{t}^{j}}_{t} & \begin{array}{c} \textit{margin change when we add j-th frequent feature} \\ \textit{temporal partial margin } m_{t}^{j} &= \sum_{\boldsymbol{s}_{i} \in \mathcal{S}_{t}} \alpha_{i}(k_{d}(\boldsymbol{s}, \boldsymbol{x}_{t}^{j}) - k_{d}(\boldsymbol{s}, \boldsymbol{x}_{t}^{j-1})) \\ \textbf{retrieve / update partial margins (with time indext) in a trie} \end{split}$$

when common feature $f_i \in \mathcal{F}_C$ is added and the retrieved margin was <u>too old</u>, use $w_{
m C}$ to compute the partial margin

$$|\phi_{d}(\boldsymbol{x}_{j}) - \phi_{d}(\boldsymbol{x}_{j-1})| < |S_{j}||\boldsymbol{x}_{j-1}|$$
 $\mathfrak{m}_{t}^{j} = \boldsymbol{w}_{C}^{\mathsf{T}}\{\phi_{d}(\boldsymbol{x}_{t}^{j}) - \phi(\boldsymbol{x}_{t}^{j-1})\}$

for $x^{\scriptscriptstyle 1}_{\scriptscriptstyle \mathrm{t}}$ at

Experiments

- Implement online passive aggressive I (PA-I) [Crammer+ '06] with kernel slicing
- Compare our learner with
 - Support vector machine (SVM) [TinySVM by T. Kudo]
 - kernel-based PA-I with inverted indices [Okanohara+ '07]
 - SGD-training of ℓ_1 reguralized log-linear model [Tsuruoka, '09]
- Evaluate on two NLP tasks: Japanese dependency parsing and hyponymy relation extraction

Task settings

- Japanese dependency parsing
 - Classifier judges whether a given head/dependent candidate has a dependency relation (in shift-reduce parser [Sassano, '04])
 - Features: POS(-subcategory), inflection form of head / dependent, and surrounding contexts (distance etc.)
- Hyponymy relation extraction
 - Classifier judges whether a given pair of entities extracted from Wikipedia articles forms a hyponymy relation [Sumida+ '08]
 - Features: POS, surface string, morpheme, listing type of each entity, and surrounding contexts (distance etc.)

We considered third-order conjunctive features in training

Example / Feature Statistics

- Feature conjunctions dramatically increase
 - the average number of active features
 - the feature space

DATA SET	dependency	hyponymy
	parsing	extraction
T (# examples)	296,776	$201,\!664$
Ave. of $ \boldsymbol{x} $	×130 < 27.6	15.4
Ave. of $ \phi_3(\boldsymbol{x}) $	3558.3	798.7 ×50
$ \mathcal{F} $ (# features)	×900 64,493	306,036 x210
$ \mathcal{F}^3 \ (\# \text{ conj. features})$	$58,\!361,\!669$	64,249,234

Labeled examples are available from: http://www.tkl.iis.u-tokyo.ac.jp/~ynaga/pecco/ http://nlpwww.nict.go.jp/hyponymy/

Results | dependency parsing

- PA-I with kernel slicing was the fastest, while retaining space-efficiency of kernel-based training
 - hyper-parameters are tuned to maximize model accuracy on development set

	METHOD	ACC.	TIME	MEMORY
kernel-based	SVM (batch)	90.93%	25912s	243MB
training	PA-I kernel	90.90%	8704s	×30 83MB
	PA-I splitting	90.90%	351s	149MB
	PA-I slicing	90.89%	262s	175MB
linear training -	$\begin{cases} PA-I \mid \text{linear} \\ \ell_1-\text{LLM} (SGD) \end{cases}$	90.90%	465s	$993 \mathrm{MB}$
	ℓ_1 -LLM (SGD)	90.76%	4057s	$21499 \mathrm{MB}$

Results | hyponymy extraction

- PA-I with kernel slicing was the fastest, while retaining space-efficiency of kernel-based training
 - hyper-parameters are tuned to maximize model accuracy on development set

	METHOD	ACC.	TIME	MEMORY
kernel-based	SVM (batch)	93.09%	17354s	$140 \mathrm{MB}$
training	$\begin{cases} \text{SVM (batch)} \\ \text{PA-I kernel} \end{cases}$	93.14%	1074s	×70 49MB
	PA-I \mid splitting	93.10%	68s) 108MB
	PA-I slicing	93.05%	17s	131MB
linear training	ſPA-I linear	93.11%	103s	751MB
	$\int \ell_1 - \text{LLM} (\text{SGD})$	92.86%	779s	14089 MB

Splitting vs. Slicing | Parameter N

- Training time as a function of parameter N [mem. usage]
 - kernel splitting: parameter-sensitive
 - kernel slicing: parameter-insensitive

Splitting vs. Slicing | # examples, T

- Training time as a function of the number of examples
 - kernel splitting: in between linear and quadratic
 - kernel slicing: almost linear

Related Work

- Feature selection in linear training [Wu+ '07, Okanohara+, '09] (limit the number of conjunctive features)
 - Simpler model → faster, more space-efficient, less accurate x17 but 94.19% → 93.71% (named entity recognition [Wu+ '07]), x37 but 89.52% → 89.03% (dependency parsing [Okanohara+ '09])
- Bounded Kernel-based training [Dekel+ '06; Cavallanti+ '07] (limit the number of support vectors)
 - These lightweight algorithms could not bound the number of support vectors, while retaining model accuracy [Orabona+ '09]

Our method exploits the data redundancy in evaluating the kernel to train the same model as the base learner

Conclusion

- Scalable online training method with kernel slicing
 - Kernel slicing generalizes kernel splitting [Goldberg+ '08], to reuse temporal partial margins for common partial feature vectors
 - orders of magnitude faster than kernel-based online training, while retaining its space efficiency
- Things I didn't mention in this talk (see our paper):
 - Efficient management of feature weights and partial margins (packed training examples) with a double-array trie [Yata+ '09]
 - Termination of margin computations that will never contribute to parameter updates (safely skipping rare features)

Future work

- Release C++ implementation and dataset: done. http://www.tkl.iis.u-tokyo.ac.jp/~ynaga/opal/
 - Fast testing? you may want to try pecco [Yoshinaga+, EMNLP '09] <u>http://www.tkl.iis.u-tokyo.ac.jp/~ynaga/pecco/</u>
- Implement kernel slicing for other online algorithms
- Generalize kernel slicing to accommodate other kernels

Thank you