Scalable Online Training
with Conjunctive Features

Naoki Yoshinaga and Masaru Kitsuregawa

IS, The University of Tokyo

Proposal

® Kernel slicing for online training with conjunctive features

® explicitly consider conjunctions among frequent features,
while implicitly considering the others by polynomial kernel

® reuse temporal margins of partial feature vectors

® Performance evaluation on two NLP tasks
(dependency parsing and hyponymy relation extraction)

e orders of magnitudes faster than kernel-based online training,
while retaining its space efficiency

® model accuracy: comparable to batch SVM

Overview

Research Backgrounds
® Space-time trade-off in training with conjunctive features

e Kernel splitting [Goldberg+ '08] for testing

Methods

® Online learning with kernel splitting
® Online learning with kernel slicing

Experiments

Conclusion

Conjunctive features in NLP

e Conjunctive features play a key role to obtain a high
degree of accuracy in NLP classification problems

® dependency parsing [Koo+ '08], pronoun resolution [Nguyen+,08],
semantic role labeling [Liu+,"07], relation extraction [Sumida+ '08]

ex. | dependency parsing RAEN | +1 (dependent)
. /\ v —1 (independent)

Linear model | | |saw || a | |girl || with

[LLM, Perceptron, etc.] RRP/ |VBD||DT| INN| IN
T
= w T _

E Sgn(_ balz)) x = (f1,f2,f3,f4) active (primitive) features

high-dimensional b2(x) = (f1,12, 13,2, T1A2, T1A3, - - -, T314)

weight vector : :
conjunctive features

fing #0 Uff fi A0Uf; #0

Conjunctive features in NLP

e Conjunctive features play a key role to obtain a high
degree of accuracy in NLP classification problems

® dependency parsing [Koo+ '08], pronoun resolution [Nguyen+,08],
semantic role labeling [Liu+,"07], relation extraction [Sumida+ '08]

Linear model

Kernel-based model polynomial kernel
[LLM, Perceptron, etc] [SVM, Kernel perceptron, etc.] k15 z)
Y zsgn(ﬂTd)d(m)) Y zsgn(Z xika(si,z)) —ba(s) dyl(x
high-dimensional Si€S —(sTx +1)4

weight vector support set
(subset of training examples)

Space-time tradeoff
in training with conjunctive features

® Training with conjunctive features involves space-time
tradeoff in the way conjunctive features are handled

linear training kernel-based training
(perceptron) (kernel perceptron)
w0 < initialize —-{ So— 0,0 linearly increase as
for t =1 tOTT do compute for 1 =1 to T do training proceeds
?ﬂt —w' dg(x) }4' margin >{ M ZsiESt_1 xika(si, Ty
if Yme < 0 if Yyme < 0
W w+Yirda(Te) }e—update—>{ o Y, St = Sp1 U{xy)
endif needs huge memory endif
end end

Linear training: polynomial space in the number of primitive features

Kernel-based training: quadratic time in the number of examples
6

Kernel splitting [Goldberg+ 2008]
(for testing)

® Split features into common ones F and rare ones F \ Fc
and divide margin computation: according to frequency in S

® explicitly consider conjunctions among common features

® implicitly consider remaining conjunctions by kernel

> ikalsi,z) =) aikalsi,zc)+) oufkalsi, @) —kalsi, zc))

si{ES SiES wﬂFC sSi{ES
— wg(l)d(:nc)—i— Z oci{kd(si,w)—kd(suflfc)}

S;iESr

Kernel splitting [Goldberg+ 2008]
(for testing)

® Split features into common ones F and rare ones F \ Fc
and divide margin computation: according to frequency in S

® explicitly consider conjunctions among common features

® implicitly consider remaining conjunctions by kernel

> ikalsi,z) = Y aikalsi,zc)+) oufkalsi, @) —kalsi,zc))

si{ES SiES wﬂ]—"c sSi{ES
— fw—l(;(l)d(:nc)—i— Z oci{kd(si,w)—kd(suiﬂc)}

explicit weights for common si €Sk
conjunctive features |wc| < |w|

we = Z oipa(siNFe)

Sj S
space-efficient linear classification

Kernel splitting [Goldberg+ 2008]
(for testing)

® Split features into common ones F and rare ones F \ Fc
and divide margin computation: according to frequency in S

® explicitly consider conjunctions among common features

® implicitly consider remaining conjunctions by kernel

> ikalsi,z) =) aikalsi,zc)+) oufkalsi, @) —ka(si, @)}

SiES 8i€S xrNFc si€S = 0 when SijzszwC
T
= wcohqglzc) + Z xitka(si,) —ka(si, zc)}
SiESR

consider a few support vectors |Sg| < |S]
that have rare feature fr € g = \ ¢

space-efficient linear classification + efficient kernel-based testing

9

Online learning with kernel splitting

® Replace margin computation part in kernel-based online
learning with kernel splitting

Kernel perceptron

So +— 0, + o,

fort=1to T do

replace this with

me ¢) . xika(Si, @) it
Zslestq ika(si, B4 kernel splitting

if yyme <0
o — Yi, St = Si—1 Ulxy)

endif

end

Online learning with kernel splitting

® Replace margin computation part in kernel-based online
learning with kernel splitting

Kernel perceptron

So — 0, o + o,

fort=1to T do
xc — xt NFc Q. l: how to determine Fc?
kernel splitting my wC(I)d(CEC) Q. 2: how to maintain wc?

+ 2 ocs. itka(si, i) — ka(si, xc))
it yyme <0
o — Y, St = Si—1 U{x]

endif

end

Online learning with kernel splitting

® Replace margin computation part in kernel-based online
learning with kernel splitting

Kernel perceptron with kernel splitting

A. |: Choose top-N So — 0, o + o,
fregL!ent features in the Fe — {f ‘ RANK(f) < N}, we — 0
training examples as 7ol fort=1to T do

xc —xtNFc Q l: how to determine Fc ?
kernel splitting me ’wC(bd(wC) Q. 2: how to maintain wc?
+ Zsi ESp (Xi{kd(Si, wt) _ k‘d(sia iBC)}
if yymy <0
A2 Online-updat.e we Xt — Ui, St = Si—1 U{x!
to correspond with we — we +yibalze)
(S, o) endif

end

Online learning with kernel splitting

® Replace margin computation part in kernel-based online
learning with kernel splitting

Kernel perceptron with kernel splitting

So 0, + o,
Fc «— {f|RANK(f) < N}, wc < 0
fort=1to T do

xrc — xy N Fc

m¢ — wcdqalxc)

Assumption: +ZsiesR oitkal(si, 1) —ka(si,zc))
additive updates if ygmy <0
vt >t Xt ¢ Y, St = Si—1 U{x)
(o, St) € (apr, Sir) wc — wc +YePalzc)
endif

end

Intricacy in setting Parameter N

e Kernel splitting can control space-time trade-off in training
with conjunctive features, but it does not resolve it

rc — i N Fc
my «—— wedalxe) +) 5 cs. Xilkal(si,) —kalsi, zc))

Time complexity : O(lxzc|? + |Srllzc|)

® N (= |Fc|) should be smaller for higher-order
conjunctive features (to keep |zc|® and |Fc|? small)

® N (= |Fcl|) should be larger when we handle a larger
number training examples (to keep |Sg| small)

Kernel slicing | basic idea

® Examples in real-world data are redundant [Yoshinaga+ '09]

® Online learner will repeatedly compute margins of common

partial feature vectors

kernel perceptron

’ sequence of examples

So—0.c o [q f b barameters
fori=1to T do features sorted

me Zsiest_1 xika(si, Tt t—2 | ®e—2=(f1,13,17,T19) (St—2, 0t¢—2)

if ygme <0 t—1 | e =(f1,3,fo,f21) | (St1, 1)

Xt — Y, St =S¢ U
.t yt, t t=1 {wt} mt:< 1af3)f7af25> <St)at>

endif

Qnd .o
my = + - +my—

reusing partial margins reduces

support vectors to be considered
15

i1} {ze—2) {5 € Silfs € s}

Kernel slicing | feature-wise splitting

® Kernel slicing: incrementally compute a partial margin of @
when adding features to 0 (= 0) from frequent to rare

il margin change when we add j-th frequent feature

0)

me=my+) m ' j)
t t Z1 t |temporal m) = E xi(ka(s,zy) — kd(<9>33t—1)
)= partial margin

8;i €Sy

® retrieve / update partial margins (with time indext) in a trie

m), :m_jt, + Z xi{ka(si, ;) —ka(si,zj-1)}

$1E€S; _
partial margin computed LS ={s € St \Su Ifj € 8) .
for xi at past round t'(< t) newly added support vectors since we finally see)

® when common feature f; € Fcis added and the retrieved
margin was too old, use wc to compute the partial margin

a(z;) — dalzi 1) < ISillzs_1| ™ =wl{balx}) — bz} ')}

16

Experiments

® Implement online passive aggressive | (PA-l) [Crammer+ 06]
with kernel slicing

® Compare our learner with
® Support vector machine (SVM) [TinySVM by T. Kudo]
® kernel-based PA-| with inverted indices [Okanohara+ '07]

® SGD-training of {;- reguralized log-linear model [Tsuruoka, ’09]

® FEvaluate on two NLP tasks:
Japanese dependency parsing and hyponymy relation extraction

Task settings

® Japanese dependency parsing

® C(lassifier judges whether a given head/dependent candidate
has a dependency relation (in shift-reduce parser [Sassano,'04])

® Features: POS(-subcategory), inflection form of head /
dependent, and surrounding contexts (distance etc.)

® Hyponymy relation extraction

® C(Classifier judges whether a given pair of entities extracted
from Wikipedia articles forms a hyponymy relation [Sumida+ '08]

® Features: POS, surface string, morpheme, listing type of each
entity. and surrounding contexts (distance etc.)

We considered third-order conjunctive features in training

18

Example / Feature Statistics

® Feature conjunctions dramatically increase
® the average number of active features

® the feature space

DATA SET dependency hyponymy

parsing extraction
T (# examples) 296,776 201,664
Ave. of |x| 27.6 15.4

130

Ave. of |3 ()| S 3558.3 798.7/< "
7| (# features) x900 — 64,493 306,036l
[F3| (# conj. features) 58,361,669 64,249,234

Labeled examples are available from: http://www.tkl.iis.u-tokyo.ac.jp/~ynaga/pecco/
http://nlpwww.nict.go.jp/hyponymy/
19

Results | dependency parsing

® PA-lI with kernel slicing was the fastest, while retaining
space-efficiency of kernel-based training

® hyper-parameters are tuned to maximize model accuracy on
development set

METHOD ACC. TIME MEMORY

kernel-based [SVM (batch) 90.93% 25912s 243MB
training | PA-1 | kernel 90.90% [8704s| 30 83MB
PA-1 | splitting 90.90% 35ls> 149MB
PA-1I | slicing 90.89% 2625 175MB
PA-I | linear 90.90% 465s 993M
{1-LLM (seD) 90.76% 4057s 21499MB

linear training

20

1/6

Results | hyponymy extraction

® PA-lI with kernel slicing was the fastest, while retaining
space-efficiency of kernel-based training

kernel-based
training

linear training

hyper-parameters are tuned to maximize model accuracy on
development set

METHOD ACC. TIME MEMORY
SvM (batch) 93.09% 17354s 140MB
PA-1 | kernel 93.14% |1074s| 70 49MB
PA-T | splitting 93.10% 68s> 10SMB
PA-I | slicing 93.05% 17s 131MB

. ~ 1/6
PA-I | linear 93.11% 103s 751MB
{i1-LLM (sGD) 92.86% 779s 14089MB

21

—

Training time [s

Splitting vs. Slicing | Parameter N

® Training time as a function of parameter N [mem. usage]

° : parameter-sensitive

® kernel slicing: parameter-insensitive

1400 dependency parsing 160 ¢ hyponymy extraction
1200 | 140 |
L 90]
2120 |
1000 | ~1000MB o |
: , g 100 | O
800 | = linear = ool ~750MB
600 | training %D 6o | = linear
i O g : training
400 | = 40|
[o o — L~
200 | slicing = o0k 130MB —
o l~lsoMB % o slicing
100 1000 10000 10000C 100 1000 10000 100000
N (logscale) N (logscale)

You don’t need to tune N (it doesn’t change the model, anyway)
22

Splitting vs. Slicing | # examples, T

® Training time as a function of the number of examples

' kernel

:in between linear and quadratic

kernel slicing: almost linear

dependency parsing
N=250 (fixed)

slicing

0 100000 200000 30000C

T: # of examples

200

Training time [s]

0

hyponymy extraction
kernel N=125 (fixed)

slicing
O —a

50000 100000 150000 200000
T": # of examples

Reusing temporal margins — more scalable training

23

Related Work

® Feature selection in linear training [Wu+ '07, Okanohara+, ’09]
(limit the number of conjunctive features)

® Simpler model — faster, more space-efficient, less accurate
x |7 but 94.19%— 93.71% (named entity recognition [wu+ '07]),
x37 but 89.52%—> 89.03% (dependency parsing [Okanohara+ '09])

® Bounded Kernel-based training [Dekel+ '06; Cavallanti+ '07]
(limit the number of support vectors)

® These lightweight algorithms could not bound the number of
support vectors, while retaining model accuracy [Orabona+09]

Our method exploits the data redundancy in evaluating
the kernel to train the same model as the base learner
24

Conclusion

® Scalable online training method with kernel slicing

® Kernel slicing generalizes kernel splitting [Goldberg+ '08], to reuse
temporal partial margins for common partial feature vectors

® orders of magnitude faster than kernel-based online training,
while retaining its space efficiency

® Things | didn’t mention in this talk (see our paper):

® Efficient management of feature weights and partial margins
(packed training examples) with a double-array trie [Yata+ '09]

® Termination of margin computations that will never contribute
to parameter updates (safely skipping rare features)

25

Future work

ase-C++imp ation-and-dataset: done.
http://www.tkl.iis.u-tokyo.ac.jp/~ynaga/opal/

® Fast testing? - You may want to try pecco [Yoshinaga+, EMNLP ‘09]
http://www.tkl.iis.u-tokyo.ac.jp/~ynaga/pecco/

® Implement kernel slicing for other online algorithms

® Generalize kernel slicing to accommodate other kernels

26

Thank you

27

28

