Self-Adaptive Classifier for Efficient Text-stream Processing
Naoki Yoshinaga (Univ. Tokyo) and Masaru Kitsuregawa (NII; Univ. Tokyo)

Introduction
A social text stream (e.g., twitter) mirrors the state of real world, so analyzing a real-time text stream is beneficial for reducing natural disasters, monitoring sentiment, predicting stock market etc.

Challenge: The content and volume of flow changes dramatically in a text stream, reflecting a change in the real world.

Proposal
We dynimize a linear classifier based on feature sequence trie [Yoshinaga & Kitsuregawa ‘09] so that it adaptively speeds up classification while processing a text stream.

Classification based on feature sequence trie [Yoshinaga & Kitsuregawa, EMMNLP ‘09]
Use of conjunctive features (e.g., n-grams) improves accuracy but slows down processing time in NLP tasks.

Then, solve common classification problems in advance to quickly solve new problems as their instances:
• Use global statistics to select common problems.
• Store problems in a feature sequence trie for fast retrieval.

Problem: it cannot effectively speed up when a burst occurs and the topic (content) shifts in a text stream.

Self-adaptive classification for text stream [this paper]
Keep updating a set of common classification problems while processing text:
1. build/enumerate common classification problems by adding frequent features in input one by one.
2. get a margin if exists, o/w compute/store a margin.

Experiments
• Data: Tweet stream on 3.11 Earthquake (9M posts in Japanese)
• Tasks: base-phrase chunking / dependency parsing.
• Models: pointwise chunker / shift-reduce parser [Sassano ‘04]
• Base classifier: PA-I with 3rd-order poly kernel.

Overall classification performance for tweets on 3.11 Earthquake

<table>
<thead>
<tr>
<th>Method</th>
<th>Chunking</th>
<th>Parsing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed [ms/sent.]</td>
<td>Space [MiB]</td>
<td>Speed [ms/sent.]</td>
</tr>
<tr>
<td>Baseline [Kudo & Matsumoto ‘03]</td>
<td>0.0221</td>
<td>12.0</td>
</tr>
<tr>
<td>[Yoshinaga & Kitsuregawa ‘09]</td>
<td>0.0118</td>
<td>30.5</td>
</tr>
<tr>
<td>This paper</td>
<td>0.0088</td>
<td>90.7</td>
</tr>
<tr>
<td>(LFU, k=2)</td>
<td>0.0081</td>
<td>463.0</td>
</tr>
<tr>
<td>(LRU, k=2)</td>
<td>0.0077</td>
<td>85.9</td>
</tr>
<tr>
<td>(LRU, k=2)</td>
<td>0.0070</td>
<td>399.2</td>
</tr>
</tbody>
</table>

Impact of the number of common classification problems, k

All the codes are available as open-source softwares at http://www.tkl.iis.u-tokyo.ac.jp/~ynaga/