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A social text stream (e.g., twitter) mirrors the state of real world, so 
analyzing a real-time text stream is beneficial for reducing natural 
disasters, monitoring sentiment, predicting stock market etc.

Challenge: The content and volume of flow changes dramatically 
in a text stream, reflecting a change in the real world

Classification based on feature sequence trie
[Yoshinaga & Kitsuregawa, EMNLP ‘09]

Self-adaptive classification for text stream
[this paper]

• Data: Tweet stream on 3.11 Earthquake (9M posts in Japanese)
• Tasks: base-phrase chunking / dependency parsing
• Models: pointwise chunker / shift-reduce parser [Sassano ‘04]
• Base classifier: PA-I with 3rd-order poly kernel

We dynamize a linear classifier based on feature sequence trie [Yoshinaga & Kitsuregawa ‘09] 
so that it adaptively speeds up classification while processing a text stream

# tweets/min. on the day 3.11 Earthquake in Japan
Mw 9.0@14:46

Mw 6.3@03:59
Mw 5.6@04:31

Idea:

Issue:

solution:

Problem: it cannot effectively speed up when a burst 
occurs and the topic (content) shifts in a text stream
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Use of conjunctive features (e.g., n-grams) improves 
accuracy but slows down processing time in NLP tasks

Then, solve common classification problems in advance 
to quickly solve new problems as their instances
• Use global statistics to select common problems
• Store problems in a feature sequence trie for fast retrieval
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Pre-compute a margin by 
summing up feature weights

A prefix search returns a 
margin of a problem similar 
to input without processing 
conjunctive features
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Keep updating a set of common classification 
problems while processing text:
1. build/enumerate common classification problems 

by adding frequent features in input one by one
2. get a margin if exists, o/w compute/store a margin

Parsing
Y&K ‘09

LRU, k=224

LRU, k=220

LRU, k=216

Impact of the number of common classification problems, k

All the codes are available as open-source softwares at http://www.tkl.iis.u-tokyo.ac.jp/~ynaga/
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(candidate) common classification problems

How to select useful
classification problems?

A B C D . . . 

Use cache algorithms 
to keep only k problems

A

when k=3, LRU (Least Recently Used) keeps E, C, B, 
while LFU (Least Frequently Used) keeps A, B, C

,, , . . . 

update

Yoshinaga & Kitsuregawa ‘09

Least Recently Used
(LRU)

Least Frequently Used
(LFU)

Method
Chunking Parsing

Speed
［ms/sent.］

Space
[MiB]

Speed
［ms/sent.］

Space
[MiB]

Baseline [Kudo & Matsumoto ‘03] 0.0221 12.0 0.1187 31.5
[Yoshinaga & Kitsuregawa ‘09] 0.0118 30.5 0.0738 99.9
This paper （LFU, k=220） 0.0088 90.7 0.0293 113.4

（LFU, k=224） 0.0081 463.0 0.0222 904.3
（LRU, k=220） 0.0077 85.9 0.0283 108.9
（LRU, k=224） 0.0070 399.2 0.0208 840.9

Speed-up against baseline in processing one-min. tweets

ParsingOverall classification performance for tweets on 3.11 Earthquake
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Stop enumeration as soon as 
the label (sign of margin) is fixed
use upper-/lower-bounds after 
adding the rest feature weights
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Environment: Intel Core i7-3720QM 2.6GHz CPU server with 16GB RAM
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How to quickly 
update the trie?

(candidate) common classification problems
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Reducing # nodes to quickly update a trie
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