Self-Adaptive Classifier for Efficient Text-stream Processing
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i tweets/mm on the day 3.11 Earthquake in Japan
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A social text stream (e.g., twitter) mirrors the state of real world, so
analyzing a real-time text stream is beneficial for reducing natural
disasters, monitoring sentiment, predicting stock market etc.
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Challenge: The content and volume of flow changes dramatically
in a text stream, reflecting a change in the real world
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We dynamize a linear classifier based on feature sequence trie [Yoshinaga & Kitsuregawa ‘09]
so that it adaptively speeds up classification while processing a text stream
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accuracy but slows down processing time in NLP tasks ~ | problems while processing text:
e , 1. build/enumerate common classification problems
Then, solve common classification problems in advance : .
_ o by adding frequent features in input one by one
to quickly solve new problems as their instances 2. get a margin if exists, o/w compute/store a margin
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Problem: it cannot effectively speed up when a burst _
: : : to keep only k problems

occurs and the tOpIC (COntent) shifts in a text stream when k=3, LRU (Least Recently Used) keeps E, C, B, use upper-/lower-bounds after
while LFU (Least Frequently Used) keeps A, B, C adding the rest feature weights

M Impact of the number of common classification problems, k
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the label (sign of margin) is fixed

* Data: Tweet stream on 3.11 Earthquake (9M posts in Japanese) = 25 e A
, , = Yoshinaga & Kitsuregawa ‘09
* Tasks: base-phrase chunking / dependency parsing < 99 L . .
o . , N
* Models: pointwise chunker / shift-reduce parser [Sassano ‘04] o 15F TN .
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Overall classification performance for tweets on 3.11 Earthquake z Parsing (LRU)
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Baseline [Kudo & Matsumoto ‘03] 0.0221 12.0 0.1187 31.5 -
[Yoshinaga & Kitsuregawa ‘09] 0.0118 30.5 0.0738 99.9 g 6 L. Apa LRU, k=22
This paper (LFU, k=220) 0.0088 90.7 0.0293 1134 = i _ Sup | RU, k=220
(LFU, k=224) 0.0081 4630 00222 9043 = 3 il ) e
(LRU, k=220) 0.0077 859  0.0283 108.9 > 2 V&K ‘09
(LRU, k=224) 0.0070 399.2  0.0208 840.9 ) /Pari'“gj |
Environment: Intel Core i7-3720QM 2.6GHz CPU server with 16GB RAM “o, “u, %, %, %, ~u, %0, Yo, ‘g, ‘g, ‘g, %, g

All the codes are available as open-source softwares at http://www.tkl.iis.u-tokyo.ac.jp/~ynaga/



