Self-Adaptive Classifier for Efficient Text-stream Processing

Naoki Yoshinaga (Univ. Tokyo) and Masaru Kitsuregawa (NII; Univ. Tokyo)

Introduction

A social text stream (e.g., twitter) mirrors the state of real world, so **analyzing a real-time text stream is beneficial** for reducing natural disasters, monitoring sentiment, predicting stock market etc.

Challenge: The content and volume of flow changes dramatically in a text stream, reflecting a change in the real world

Proposal

We dynamize a linear classifier based on feature sequence trie [Yoshinaga & Kitsuregawa '09] so that it adaptively speeds up classification while processing a text stream

Classification based on feature sequence trie [Yoshinaga & Kitsuregawa, EMNLP '09]

Use of **conjunctive features** (e.g., n-grams) improves accuracy but slows down processing time in NLP tasks

- Then, solve **common classification problems** in advance to **quickly solve new problems as their instances**
- Use global statistics to select common problems
- Store problems in a feature sequence trie for fast retrieval

Self-adaptive classification for text stream [this paper]

Problem: it cannot effectively speed up when a burst occurs and the topic (content) shifts in a text stream

Experiments

- Data: Tweet stream on 3.11 Earthquake (9M posts in Japanese)
- Tasks: base-phrase chunking / dependency parsing
- Models: pointwise chunker / shift-reduce parser [Sassano '04]
- Base classifier: PA-I with 3rd-order poly kernel

Impact of the number of common classification problems, k

Method	Chunking		Parsing	
	Speed [ms/sent.]	Space [MiB]	Speed [ms/sent.]	Space [MiB]
Baseline [Kudo & Matsumoto '03]	0.0221	12.0	0.1187	31.5
[Yoshinaga & Kitsuregawa '09]	0.0118	30.5	0.0738	99.9
This paper (LFU, $k=2^{20}$)	0.0088	90.7	0.0293	113.4
$(LFU, k=2^{24})$	0.0081	463.0	0.0222	904.3
$(LRU, k=2^{20})$	0.0077	85.9	0.0283	108.9
$(LRU, k=2^{24})$	0.0070	399.2	0.0208	840.9

Environment: Intel Core i7-3720QM 2.6GHz CPU server with 16GB RAM

All the codes are available as open-source softwares at http://www.tkl.iis.u-tokyo.ac.jp/~ynaga/