
Self-Adaptive Classifier for Efficient Text-stream Processing
Naoki Yoshinaga (Univ. Tokyo) and Masaru Kitsuregawa (NII; Univ. Tokyo)

A social text stream (e.g., twitter) mirrors the state of real world, so
analyzing a real-time text stream is beneficial for reducing natural
disasters, monitoring sentiment, predicting stock market etc.

Challenge: The content and volume of flow changes dramatically
in a text stream, reflecting a change in the real world

Classification based on feature sequence trie
[Yoshinaga & Kitsuregawa, EMNLP ‘09]

Self-adaptive classification for text stream
[this paper]

• Data: Tweet stream on 3.11 Earthquake (9M posts in Japanese)
• Tasks: base-phrase chunking / dependency parsing
• Models: pointwise chunker / shift-reduce parser [Sassano ‘04]
• Base classifier: PA-I with 3rd-order poly kernel

We dynamize a linear classifier based on feature sequence trie [Yoshinaga & Kitsuregawa ‘09]
so that it adaptively speeds up classification while processing a text stream

tweets/min. on the day 3.11 Earthquake in Japan
Mw 9.0@14:46

Mw 6.3@03:59
Mw 5.6@04:31

Idea:

Issue:

solution:

Problem: it cannot effectively speed up when a burst
occurs and the topic (content) shifts in a text stream

text
enumerate

NNS
songs

IN
by

NNP
Enya

,
,

IN
for

NNP
Irish

,,

NNS IN NNP , IN NNP

IN

Use of conjunctive features (e.g., n-grams) improves
accuracy but slows down processing time in NLP tasks

Then, solve common classification problems in advance
to quickly solve new problems as their instances
• Use global statistics to select common problems
• Store problems in a feature sequence trie for fast retrieval

10.5

1.5

-20.5

Pre-compute a margin by
summing up feature weights

A prefix search returns a
margin of a problem similar
to input without processing
conjunctive features

NNS
beers

IN
in

NNP
Dublin

input NNS
beers

IN
in

NNP
Dublin

, . . .

Keep updating a set of common classification
problems while processing text:
1. build/enumerate common classification problems

by adding frequent features in input one by one
2. get a margin if exists, o/w compute/store a margin

Parsing
Y&K ‘09

LRU, k=224

LRU, k=220

LRU, k=216

Impact of the number of common classification problems, k

All the codes are available as open-source softwares at http://www.tkl.iis.u-tokyo.ac.jp/~ynaga/

IN
0.5

root

. . . NNS
men

IN
in

NNP
Cork

input
?

?

IN
0.5

IN
1.5

NNS IN NNP
10.5

root

. . .

retrieve

(candidate) common classification problems

How to select useful
classification problems?

A B C D . . .

Use cache algorithms
to keep only k problems

A

when k=3, LRU (Least Recently Used) keeps E, C, B,
while LFU (Least Frequently Used) keeps A, B, C

,, , . . .

update

Yoshinaga & Kitsuregawa ‘09

Least Recently Used
(LRU)

Least Frequently Used
(LFU)

Method
Chunking Parsing

Speed
［ms/sent.］

Space
[MiB]

Speed
［ms/sent.］

Space
[MiB]

Baseline [Kudo & Matsumoto ‘03] 0.0221 12.0 0.1187 31.5
[Yoshinaga & Kitsuregawa ‘09] 0.0118 30.5 0.0738 99.9
This paper （LFU, k=220） 0.0088 90.7 0.0293 113.4

（LFU, k=224） 0.0081 463.0 0.0222 904.3
（LRU, k=220） 0.0077 85.9 0.0283 108.9
（LRU, k=224） 0.0070 399.2 0.0208 840.9

Speed-up against baseline in processing one-min. tweets

ParsingOverall classification performance for tweets on 3.11 Earthquake

B

Stop enumeration as soon as
the label (sign of margin) is fixed
use upper-/lower-bounds after
adding the rest feature weights

NNP

NNP

C E A B F G

Introduction

Proposal

Experiments

A

B

C

D E

F

G

Environment: Intel Core i7-3720QM 2.6GHz CPU server with 16GB RAM

m(x) =
�

�i(x)=1

wi

How to quickly
update the trie?

(candidate) common classification problems

root

0 4

1

3

2 7

8

\0

\0

variable-byte ID coding
9

5
\0 +reducing value nodes

+gap-based key

Reducing # nodes to quickly update a trie

6
\0

root

0 4

1

3

2 8

9

\0

\0
5

\0
6

\0

root

0 4

1 3 9
\0

6

