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Efficiency-accuracy dilemma
in feature-based classifiers

Conjunctive features (e.g., n-grams)
play an important role in obtaining
accurate classifiers in many NLP tasks.

Ex) Log-linear model (LLM) w/ binary features
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But if we use many conjunctive features,
the classification becomes very slow.
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Current approaches

There are two ways to speeding up the
classification with conjunctive features.

v’ Polynomial kernel implicitly
expresses conjunctive features, but
its computation is heavy in practice

O(ISV][x]); ISV] >> [x] [1].

v’ L1-reguralized LLM shrinks the
feature space [2], but frequent
features are likely to survive.
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Efficient classifier with feature sequence trie

We speed up a classifier trained with many conjunctive features.

\\I/

Idea:

and use it to obtain weight W of X O X,

Pre-compute weight J/ for some feature vector x,

weight computation
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v Which x_ should we pre-compute weight for?

Issua: |¥ How to find an optimal x, for input x?
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solution:

[1] Kudo and Matsumoto: Fast method
for kernel-based text analysis. ACL ‘03.

Obtain source feature vectors from actual data,
sort features in them by frequency, and store
weights of the prefix feature vectors into a trie.

[Time complexity: O(|x, |+ x*|—|x’ )

remaining weights (sparse) ]

[2] Gao et al. A comparative study of parameter estimation
methods for statistical natural language processing. ACL ‘07

Evaluation: dependency parsing

Results of Japanese dependency parsing

Model SVM L1-LLM

Conj. degree 1 3 1 3

F'|# feat.x10°>)  39.726194.4 9.3 129.5
x|ave. #feat.  27.3| 3286.7 26.5 2088.3
Dep. AccC. (%) 38.29 90.93| 88.22| 90.71
3 0 kernel 13.480 10.945 NA NA
=% baseline 0003 0345 0.004 0.314
>3 w/fstie.  NA 0079 NA 0.027
Parse [ms./sent] = 0.015| 0.093| 0.016 0.040

v’ Kyoto Corpus; Sassano’s Shift/reduce parser
v’ 3,258,313 sentences (news article) were parsed
to build fstrie (weight calculation took 1 hour)

Classification time as a function of fstrie size
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* The nodes in fstrie are pruned according to their
probability and impact on computation reduction

What’s next?

v’ Evaluation in other tasks (try the code at
http://www.tkl.iis.u-tokyo.ac.jp/~ynaga/)
v" Application to structured prediction (CRF)
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