Efficient Classification with Conjunctive Features

Efficiency-accuracy dilemma in feature-based classifiers

<u>Conjunctive features</u> (e.g., n-grams) play an important role in obtaining accurate classifiers in many NLP tasks.

Ex) Log-linear model (LLM) w/ binary features

$$p(y \mid x) = \frac{1}{Z(x)} \exp \sum_{i} w_{i} f_{i}(x, y), \quad w_{i} \in \Re$$

Weight
$$f_{F}(x, y) = \bigwedge_{f_{i} \in F} f_{i}(x, y): \text{ conjunctive feature}$$

But if we use many conjunctive features, the classification becomes very slow.

 $O(|x|) \Rightarrow O(|x^d|) d$ (or less) conjunctions of primitive features in x

Current approaches

There are two ways to speeding up the classification with conjunctive features.

- ✓ **Polynomial kernel** implicitly expresses conjunctive features, but its computation is heavy in practice O(|SV||x|); |SV| >> |x| [1].
- ✓ L1-reguralized LLM shrinks the feature space [2], but frequent features are likely to survive.

References

[1] Kudo and Matsumoto: Fast method for kernel-based text analysis. ACL '03.

Naoki Yoshinaga and Masaru Kitsuregawa / Institute of Industrial Science, University of Tokyo

We speed up a classifier trained with many conjunctive features.

How to find an optimal x_c for input x?

sort features in them by frequency, and store **solution:** weights of the prefix feature vectors into a trie.

Time complexity: $O(|x_c| + |x^d| - |x_c^d|)$ remaining weights (sparse)

[2] Gao et al. A comparative study of parameter estimation methods for statistical natural language processing. ACL '07

[3] Chuang et al. Power-law relationship and self-similarity in the itemset support distribution: analysis and applications. The VLDB Journal.

Cla

S

S

ific

b

_

Ο

time

[m

0.4

0.35

0.3

0.25

0.2

0.15

Evaluation: dependency parsing

Results of Japanese dependency parsing

Model		SVM		L1-LLM	
Conj. degree		1	3	1	3
$ F^{d} $ # feat.(×10 ³)		39.7	26194.4	9.3	129.5
$ x^d $ ave. # feat.		27.3	3286.7	26.5	2088.3
Dep. Acc. (%)		88.29	90.93	88.22	90.71
Classify [ms./sent.]	kernel	13.480	10.945	NA	NA
	baseline	0.003	0.345	0.004	0.314
	w/ fstrie	NA	0.079	NA	0.027
Parse [ms./sent.]		0.015	0.093	0.016	0.040

✓ Kyoto Corpus; Sassano's Shift/reduce parser ✓ 3,258,313 sentences (news article) were parsed to build fstrie (weight calculation took 1 hour)

Classification time as a function of fstrie size

ℓ1-LLM d=1 ---l1-LLM d=2 ----l1-LLM d=3 ----

Feature vectors are likely to follow Zipf' law (cf. [3])

700 Size of fstrie [MB]

* The nodes in fstrie are pruned according to their probability and impact on computation reduction

What's next?

✓ Evaluation in other tasks (try the code at http://www.tkl.iis.u-tokyo.ac.jp/~ynaga/) ✓ Application to structured prediction (CRF)