A Formal Proof of Strong Equivalence for a Grammar
Conversion from LTAG to HPSG-style

Naoki Yoshinagd, Yusuke Miyao! and Jur’ichi Tsujit’
1 University of Tokyo { CREST, JST (Japan Science and Technology Corporation)

1. Introduction

This paper presents a sketch of a formal proof of strong equivalerwbere both grammars generate equiva-
lent parse results, between any LTAG (Lexicalized Tree Adjoining Grammar: Schabes, Abeille and Joshi (1988))
G and an HPSG (Head-Driven Phrase Structure Grammar: Pollard and Sag (1994))-style grammar converted from
G by a grammar conversion (Yoshinaga and Miyao, 2001). Our proof theoretically justifies some applications of
the grammar conversion that exploit the nature of strong equivalence (Yostkihaba2001b; Yoshinagat al.,
2001a), applications which contribute much to the developments of the two formalisms.

In the past decades, LTAG and HPSG have received considerable attention as approaches to the formalization
of natural languages in the field of computational linguistics. Discussion of the correspondences between the two
formalisms has accompanied their development; that is, their linguistic relationships and differences have been in-
vestigated (Abeil, 1993; Kasper, 1998), as has conversion between two grammars in the two formalisms (Kasper
et al, 1995; Tateiset al,, 1998; Becker and Lopez, 2000). These ongoing efforts have contributed greatly to the
development of the two formalisms.

Following this direction, in our earlier work (Yoshinaga and Miyao, 2001), we provided a method for con-
verting grammars from LTAG tbiPSG-stylewhich is the notion that we defined according to the computational
device that underlies HPSG. We used the grammar conversion to obtain an HPSG-style grammar from LTAG (The
XTAG Research Group, 2001), and then empirically showed strong equivalence between the LTAG and the ob-
tained HPSG-style grammar for the sentences in the ATIS corpus (Marcus, Santorini and Marcinkiewicz, 1994).
We exploited the nature of strong equivalence between the LTAG and the HPSG-style grammars to provide some
applications such as sharing of existing resources between the two grammar formalisms (Yasttaha?@01b),

a comparison of performance between parsers based on the two different formalisms (Yoshiadgz001a),

and linguistic correspondence between the HPSG-style grammar and HPSG. As the most important result for the
LTAG community, through the experiments of parsing within the above sentences, we showed that the empirical
time complexity of an LTAG parser (Sarkar, 2000) is higher than that of an HPSG parser (Togisaly2000).

This result is contrary to the general expectations from the viewpoint of the theoretical bound of worst time com-
plexity, which is worth exploring further. However, the lack of the formal proof of strong equivalence restricts
scope of the applications of our grammar conversion to grammars which are empirically attested the strong equiv-
alence, and this prevents the applications from maximizing their true potential. In this paper we give a formal
proof of strong equivalence between any LTAGand an HPSG-style grammar converted frérby our grammar
conversion in order to remove such restrictions on the applications.

2. Grammar conversion

We start by stating our definition of an HPSG-style grammar, and then briefly describe our algorithm for con-
verting grammars from LTAG to HPSG-style. We hope that the reader will refer to the cited literature (Yoshinaga
and Miyao, 2001) for a more detailed description.

We definedan HPSG-style grammathe form of the output of our conversion, according to the computational
architecture which underlies HPSG (Pollard and Sag, 1994). An HPSG-style grammar corlgisitsabentries
and ID grammar rules each of which is described with typed feature structures (Carpenter, 1992). A lexical
entry for a word must express the characteristics of the word, such as its subcategorization frame and grammatical
category. An ID grammar rule must represent the constraints on the configuration of immediate constituency, and

*

This research was funded by JSPS Research Fellowships for Young Scientists.

1. Chomsky (1963) first introduced the notion of strong equivalence between grammars, where both grammars generate
the same set of structural descriptions (e.g., parse trees). Kornai and Pullum (1990) and Miller (1999) used the notion of
isomorphism between sets of structural descriptions to provide the notion of strong equivalence across grammar formalisms,
which we have adopted in our research.

© 2002 Naoki Yoshinaga, Yusuke Miyao, and Jur’ichi Tsujiroceedings of the Sixth International Workshop on Tree
Adjoining Grammar and Related Frameworks (TAGH&). 101-104. Univergitdi Venezia.

102 Proceedings of TAG+6
“ 7 L7 : NN
ANT T SYAVAN
/ AVAN

Figure 1: Sketch for the division transformation (left) and the substitution transformation (right)

¢ aiu S [Sym : } [Sym @ }

* foot node NP/\VP Arg :[2) Ag :[210E
| substitution node ¢/\ /\ /\
sym : [3] sym :[3
[A,g (Y Sym @ Ag :[4] Sym HE|
Arg Leaf :[3] ‘ Arg Leaf :[3] ‘.
Sym: V substitution node Dir :left foot node Dir : left
Sym : VP s Foot? : — Fool’: +
think : Arg: Leaf : S > NP trunk node trunk node

Dir :right|] right o . .

Foot?: +] |Foot?: — Left substitution rule Left adjunction rule

Figure 2: A conversion from a canonical elementary tree to an HPSG lexical entry (left) and grammar rules: the
substitution rule (center) and adjunction rule (right)

not be a construction-specific rule specified by lexical characteristics. The formal definition of an HPSG-style
grammar converted from LTAG is given later in Section 3.3.

Our conversion algorithm consists of two kinds of conversion; i) a conversion from LTAGcartonical
LTAG, LTAG which consists only ofanonical elementary tregand ii) a conversion from the canonical LTAG into
an HPSG-style grammar. Canonical elementary trees are tree structures satisfy the following conditions; Condition
1: Atree must have only one anchor, and Condition 2: Every branching structure in a tree must contain trunk nodes.
Trunk nodesire nodes oa trunkwhich is a path from an anchor to the root node. We call a subtree of d¢pth)
that includes no ancha non-anchored subtreeElementary trees which violate Condition 1 are converted into
canonical ones by dividing them into single-anchored pdhs (livision transformationthe left-hand side of
Figure 1). Elementary trees which violate Condition 2 are initially divided into multiple subtrees by the division
transformation, each of which has at most one anchor, and then converted into canonical ones by substituting the
deepest nodes in the non-anchored subtrees with every initiathesybstitution transformatiorthe right-hand
side of Figure 1). We give the formal definition of these transformations later in Section 3.2. Conversion of a
canonical elementary tree is straightforward; that is, we traverse the trunk of a canonical elementary tree from
its anchor to root, regard the leaf nodes as the anchor’'s arguments, and store the symbols of the leaf nodes and
the trunk nodes akeaf and Sym features respectively in a stackr§ feature in the left-hand side of Figure 2),
whereDir andFoot? features are the direction of the leaf node relative to the trunk and the type of the leaf node,
respectively. A set of pre-determined rules manipulates the stack to emulate substitution and adjunction; namely,
substitution rules (the center of Figure 2) and adjunction rules (the right-hand side of Figure 2).

3. Aformal proof of strong equivalence

The whole proof consists of two pieces, each of which respectively proves that strong equivalence is guaran-
teed before and after the two conversions mentioned in the previous section.

3.1. Definitions

We first define LTAG, according to the definition of TAG given by (Vijay-Shanker, 1987). We then define
derivation tree which is a structural description of LTAG, and introduce the notion of strong equivalence.

We hereafter denote a tree as a set of pair() wherep € N*, which is a free monoid of the set of natural
numbers, and € V, which is a finite set of alphabets (Gorn, 1962). For example, a tree in the left-hand side of
Figure 2 is denoted &, S), (e- 1, NP)(e-2, VP),(e-2-1,V),(e-2-2,5),(e-2-1-1,think)}. Aninequality
p < g is satisfied if and only if there ismae N* such thaty = p - r. Another inequalityp < ¢ is satisfied if and
only if p < g andp # q.

Yoshinaga, Miyao, and Tsujii 103

Definition 3.1 (Lexicalized Tree Adjoining Grammar (LTAG)) Lexicalized Tree Adjoining Grammai? is a
quintuplet(3, NT, S, I, A) whereX and NT are a finite set of terminal symbols and a finite set of nonterminal
symbols respectively, is a distinguished nonterminal symbol called the start symbol,/aguad A are a finite set

of initial trees and a finite set of auxiliary trees respectively.

Here, an elementary treec A U I is a tree whose leaf nodes are labeledXye NT U S or x € 3, and
whose internal nodes are labeled Bye NT U S. The symbol of one leaf node in an auxiliary tréec A is
identical to that of its root node, and is specially marked for a foot node. Note that more than one leaf nodes called
anchors in an elementary treeare labeled with: € ¥, and leaf nodes other than anchors and foot nodes are
marked for substitution nodes.

We denote adjunction and substitution of several tges. . , v, into a treey atk distinct addresses, . . ., ay
by~ — ~[a1,7] ... [ak, 7] Wwherek > 1, and[a;, /] indicates substitution at; of ~; in the case where; is a
substitution node, or indicates adjunctiomabf ~; in the case where; is an internal node. We call this production
asa derivationfor ~ if all of the addresses of the substitution nodes iare included iruy, ..., a;. A derivation
for - without substitution and adjunction is denotedyas- e.

We use the above notations to defaéerivation trege which represents the history of combinations of trees
and is a structural description of LTAG.

Definition 3.2 (Derivation trees) A derivation treeY for LTAGG = (3, NT, S, I, A) is defined by a set of
derivations as follows:

Yo={v—ell<i<myeAul}|]Dec

where Dg C {v; — vila1,7,] law, v,] | k > 1,0 > m,v;,v, € AUI}. The derivation tre€l'¢ must
satisfy the following condition?/ can appear once respectively in the left-hand side and the right-hand side of
derivations except that one distinguished elementary-ggevhich is the root of the derivation tré€, and~

can appear once in the left-hand side of the derivation, becapisan adjoin or substitute onceNote that the
inequality: > i; > 1is necessary to avoid cyclic applications of substitution and adjunction among elementary
trees.

Finally, we give the definition of strong equivalence between two given gramthaandG..

Definition 3.3 (Strong equivalence)Two given grammar&’; and G- are strongly equivalent if and only if there
is a bijective (i.e., one-to-one and onto) function which maps a set of structural descriptiGhs Bh (G1), to a
set of structural descriptions @2, Tp(G2).

In what follows, we assume that structural descriptions of LTAG are derivation trees in which the root node of
~s is labeled by the start symb8lin the definition 3.2.

3.2. Proof of strong equivalence for the two tree transformations

In this section we give a proof that strong equivalence is guaranteed for grammars before and after the two
tree transformations. In this abstract, We omit the proof of the substitution procedure, because the substitution
transformation is exactly the same as the one that Schabes and Waters (1995, pp. 494-495) defined and proved in
their strong lexicalization procedure of CFG into Lexicalized Tree Insertion Grammar.

The division transformation is formalized in the following lemma.

Lemma 3.1 (The division transformation) LetG = (X, NT, S, I, A) be LTAG. Lety € AU I be an elementary
tree and letu, be an internal node with addregsof that is labeled byX and be not on the spine. We divigiat
w and obtain two trees™, v¥ as follows. Lety* be a subtree except that a node labeledb¢ NT U S is added
to its root node, and let” be a supertree, except that the symbol.a$ relabeled by the symbdf ¢ NT and
by marking it for substitution as shown in Figure 1. Deftde= (3, NT U{Y},S,I’, A") whereI’ and A’ are
created as follows:

Ify e Ithenl’ = (I —{y})U{y*,7v"}andA4A’ = A

Ifye Athenl’ =TU {y*}andA’ = (A — {v}) U {yv*}
Then,G’ is strongly equivalent td-; that is, there is a one-to-one onto mapping from the set of derivation trees
Tp(G') generated by’ to the set of derivation treeB, (G) generated by for the same sentence.

2. Due to limitations of space, we omit the notion of adjoining constraints and the proof including the notion in this abstract,
and then assume all internal nodes take selective adjoining constraints.
3. The condition implies that no trees can substitute or adjoin to two different nodes.

104 Proceedings of TAG+6

Proof We show that there is a one-to-one mapping from a derivationfpec T (G’) to a derivation tree
Yo € Tn(G).

Assume each derivation tré&; consists of elementary tre€s;,...,v,},v; € AUIforl <j <n. Then,
we can represent the derivation tfég. by the set of derivations as shown in the definition 3.2.

Since we assume that a derivation tree is rooted by an elementary tree whose symbol of the roofnode is
every occurrence of” in T4 must always accompany witit* and vice versa. In the following procedure, we
construct a one-to-one mapping frdfiz;y to Y by replacing every occurrence 9f which takes a substitution
of v with ~ in derivations inY ¢ .

1. Whenv* ¢ {v1,...,7} orv” ¢ {v,...,7}, YT¢ includes neithen™ nor~". Y therefore consists of
vi € (AUT —{v}) C AUI, there is exactly the same derivation tfég in T (G).

2. Whemy" € {v1,...,7v,}, we can construct one derivation tre; from Y, as follows.

(a) We first replace every occurrenceydt in the right-hand side of derivations witH.
(b) We next replace every derivation whose left-hand side is eittteor 4.
i. When a root node with addressof +" takes substitution or adjunction, a pair of two derivations
whose left-hand side is"* and+’” is denoted ag/* — ~"[a1,71]...[an—1,7,_][p,7"*] andy™” —
Y le; v l[bnt 1, Vaa] - - - [bry 7i], wherek > h > 1. Here we assume; # p for 1 < i < h without loss of
generality. We replace these two derivations with the following derivation:

'Y/ _)’7[0/17,71] DR [ah—177;1—1][p7’7;1][p -1- bh-‘rla’y;H-l] DR [p -1- bk7’yl/q]

ii. If a root node with addressin ~* takes neither adjunction nor substitution, we can also replace a pair of
two derivations whose left-hand side are respectiyélyand~’® with one derivation whose left-hand side
is+’ in a similar way as above.

(c) By repeating the above replacements at most the number of pairs of two derivatiafisdiod~”, we can
obtain a set of derivatior¥ & withouty* and~’*. The replacement in (a) is valid sing# includes both root
node and foot node of, and thusy can substitute or adjoin every node at whi¢hdoes. In the procedure
(b), we replace exactly the same number6f as the procedure (a). The resulting derivations including
is valid in G because)’ appear only once in the right-hand side and the left-hand side of the derivations,
respectively.

The resulting derivation tre¥ is the same a¥ - except that every occurrencesdfwhich takes a substitution
of v with ~. Sincey* which takes a substitution of’ is the same as except that one internal node is added,
this does not cause effect on the frontier string. Also, wiign, Y2, are mapped t&',, Y andY{, andY% are
equivalent X'}, andY%, are also equivalent owing to the formulation of the above mapping.

On the other side, we can also construct a one-to-one onto mappingYfrpno Y. by replacing every
occurrence ofy in T by v which takes a substitution af’. Due to limitations of space, we omit the proof here.

In this way, we can construct a one-to-one onto mapping from a derivatio tree T'»(G’) to a derivation
treeYs € Tp(G) for the same sentence. This indicates thas strongly equivalent t¢:'. O

3.3. Proof of strong equivalence for the conversion from canonical LTAG to HPSG-style

In this section, we prove that strong equivalence is guaranteed for the latter part of our grammar conversion,
that is, a conversion from canonical LTAG to an HPSG-style grammas”’. In the following proof, we first
introduce the notion obrigination for every Sym andLeaf feature in HPSG lexical entries. We next defare
HPSG parsewhich is a structural description of an HPSG-style grammar. We then prove the strong equivalence
by giving a one-to-one onto mapping from a derivation tre&tp an HPSG parse b§'.

Definition 3.4 (An HPSG-style grammar converted from LTAG) Given canonical LTAG G =
(X,NT,S,I,A), an HPSG-style gramma&’ converted fromG is denoted by quituplet>, NT, S, A, R)
wherej; € A is a lexical entry converted from; € A U I and R is substitution and adjunction rulesy; is
denoted as followsd; = (so, (s1,01,d1,t1), .-, (Sk, Ik, di, tx)) Wherek > 1, sq is the symbol of the mother
node of the anchor iny;, ands; € U NT,l; € XU NT,d; € {right, left}, t; € {+,—} are values oSym,
Leaf, Dir, Foot? features in thei-th element of thérg feature ind;. When the length of therg feature off; is 0O,
0; is denoted as; = (sg, ¢).

Yoshinaga, Miyao, and Tsujii 105

First, we introduce the notion afrigination for the Sym andLeaf features in HPSG lexical entries in order
to definean HPSG parsgwhich represents the histories of rule applications to lexical entries and is a structural
description of an HPSG-style grammar. We hereafter assume that each HPSG lexic&! sntonverted from a
canonical elementary treg. We define the origination of the featuredpas(p, ;), which indicates that the value
of the feature originates from the symbol of a node with addpessy;.

Next, we definea rule historyfor 4;, which is a history of rule applications to a lexical enryin the parse
tree. We then follow the parse tree from an ancha¥; ®b root, and then assign each rule application as an element
of the rule history for; if and only if the applied rule pops an element which originates from an element of the
Arg feature ind;. Assume thabd; is denoted as the one given in the definition 3.4. A rule history fag denoted
as follows, where the origination &f and the feature unified with) are(a;, v;) and(b, v;,), respectively.

1. Whenvy; € I, no application of the adjunction rule is assigned;tas an element of the rule history f@r The
rule history is then denoted a5 — d;[a1, 9,] ... [ax, 0;,].

2. When~; € A, one application of the adjunction rule is assigned;tas an element of the rule history féy.
The rule history fow; is then denoted a§ — d;[a1,4;,] ... [an—1,6;, ,1[b, 0,][ans1.0;,] . ax, 6;,] where
ty, = +.

When the length of tharg feature ofd; is 0, a rule history fop; is denoted by, — .

Definition 3.5 (HPSG parses)Given canonical LTAG? = (X, NT, S, I, A) and an HPSG-style gramma&¥ =
(X, NT, S, A, R) converted from&, an HPSG parsel - is denoted by a set of rule histories féy € A as
follows:

\IJG/:{(52—>6|lglgm,’ylEI}UAG/UBG/

whereAq is a set of rule histories fof; converted fromy; € I, and Bg- is a set of rule histories fof; converted
from~; € A, and elements inls and B are denoted as the ones in the above paragraph wheren.

Since the above HPSG par$g; must uniquely correspond to the parse tree, we require some conditions on
U. First, 6, where~; € I can appear once respectively in the left-hand side and the right-hand side of rule
histories except that one distinguished lexical erdigywheredy, appears once in the left-hand side of the rule
history fords. Secondg. wherey; € A must appear only once in the left-hand side of the rule historyfor
Third, 1 < 4; < ¢ for the rule history fory; wherev; € I. Fourth,1 < i; < i wherej # h, andi, > 1, for
the rule history fory; wherev; € A. The third and fourth conditions are necessary to avoid cyclic applications of
grammar rules to lexical entries.

Lemma 3.2 LetG = (X, NT, S, I, A) andG’ be LTAG and an HPSG-style grammar converted ft@nmespec-
tively. Then, we can map a derivation tr€g;, by G one-to-one onto to an HPSG parde;: by G'.

Proof In the following proof, we first show a mapping frown;. to a set of derivation¥ ¢/, and then show that
T is a valid derivation by.

Suppose an HPSG parse denoted as the one given in the definition 3.5. We can map it to a set of d&tgyations
in the following procedure. For eacdh wherey; € A, we eliminate[b, §;, |, which corresponds to an application
of the adjunction rule, and add the elemgnt!] to the right-hand side of the rule history fé&; . Then, we obtain
a set of derivation¥ ¢ by replacingy;, and5§j with 7, andygj in the rule history fow; and by assigning it as the
derivation fory;. This mapping is one-to-one because a pair operation of an eliminat{brigf] and an addition
of [b, §}] is one-to-one mapping.

Following the definition 3.2, we show thats: is a valid derivation tree by. First, every substitution and
adjunction in the derivations iff v must be valid inG. Since the substitution and adjunction rules preserve
the order of the elements in tieg feature ofj;, substitution rules always unify the symbol of the substitution
node with the symbol of the root nodegf , which represents the same constraint as the one on which substitution
imposes. We can give the similar argument for an adjunction rule. The substitution and adjunction in the derivations
in T are then valid inG. Second, all addresses in the substitution nodes wfust be included in its derivation.
This is apparently guaranteed by the definition of the rule history;foFhird, v, can appear only once respectively
in the right-hand side and the left-hand side of the derivations. This is apparently guarantgedtierey; € I
by the definition 3.5, and is guaranteed f¢grwherev; € A because does not appear in the right-hand side of
rule histories b, §;, | appears only once in the rule history # and the elimination ofb, §;,]| accompanies the
addition of[b, v/] once to the right-hand side of the derivation 4¢f. Fourth, the elements in the right-hand side

106 Proceedings of TAG+6

of the derivation fory; must be[aj77§j] wherei; < i. This is apparently guaranteed fgrwherey; € I by the
definition 3.5, and is guaranteed fgrwherey; € A because the addition df, +;] for the derivation fory; satisfy
ip, > 1 due to the definition 3.5.

The frontier string is preserved before and after this mapping ffgmto Y., because; stores the same
LP constraints betweef) andd; for i # j as the constraints betweepand-~y;. Then, an HPSG parskg: by G’
mapped one-to-one to a derivation tfég, which is valid inG.

On the other side, we can construct a mapping fibgto an HPSG pars@& . as the inverse procedure for
the above mapping fronfrs to Y-. The obtainedl ¢ is a valid HPSG parse by’ because we can give a similar
argument for the validity of the rule historiesir. O

Hence, strong equivalence is guaranteed for a conversion from canonical LTAG to an HPSG-style grammar.
The two proofs given here and in the previous section prove the strong equivalence between ary &md@n
HPSG-style grammar converted fraghby our grammar conversion.

4. Conclusion

In this research, we proved that strong equivalence is guaranteed between any LTAG gfaandan HPSG-
style grammars converted fro@ by our grammar conversion. Our proof theoretically justifies some applications
of the grammar conversion that exploit the nature of strong equivalence (Yosleinalg®2001b; Yoshinagat al,,
2001a), applications which contribute much to the developments of the two formalisms.

References

Abeillé, Anne. 1993Les nouvelles syntaxes: grammaires d’unification et analyse du frangaisanda Colin. in French.

Becker, Tilman and Patrice Lopez. 2000. Adapting HPSG-to-TAG compilation to wide-coverage grammah®c.|of
TAG+5, pages 47-54.

Carpenter, Bob. 1992The Logic of Typed Feature StructuréSambridge University Press.

Chomsky, Noam. 1963. Formal properties of grammar. In R. D. Luce, R. R. Bush and E. Galanter, Bditatisook of
Mathematical Psychologyolume Il. John Wiley and Sons, Inc., pages 323-418.

Gorn, Saul. 1962. Processors for Infinite Codes of Shannon-Fano typeodnof the Symposium on Mathematical Theory of
Automata pages 223-240.

Kasper, Robert. 1998. TAG and HPSG. Talk given in the tutorial session at TAG+4.

Kasper, Robert, Bernd Kiefer, Klaus Netter and K. Vijay-Shanker. 1995. Compilation of HPSG to TA®odnof ACL 1995
pages 92-99.

Kornai, A. and G. K. Pullum. 1990. The X-bar Theory of Phrase StruciLaieguage 66:24-50.

Marcus, Mitchell, Beatrice Santorini and Mary Ann Marcinkiewicz. 1994. Building a large annotated corpus of English: the
Penn TreebankComputational Linguisticsl9(2):313-330.

Miller, Philip H. 1999. Strong Generative CapacityCSLI publications.

Pollard, Carl and Ivan A. Sag. 1994Head-Driven Phrase Structure GrammatUniversity of Chicago Press and CSLI
Publications.

Sarkar, Anoop. 2000. Practical Experiments in Parsing using Tree Adjoining Gramm&sclrof TAG+5 pages 193-198.

Schabes, Yves, Anne Abeille and Aravind K. Joshi. 1988. Parsing strategies with ‘Lexicalized’ grammars: Application to Tree
Adjoining Grammars. IProc. of COLING 1992pages 578-583.

Schabes, Yves and Richard C. Waters. 1995. Tree Insertion Grammar: A Cubic-Time Parsable Formalism that Lexicalizes
Context-Free Grammar without Changing the Tree ProduCedhputational Linguistic21(4):479-513.

Tateisi, Yuka, Kentaro Torisawa, Yusuke Miyao and Jun’ichi Tsujii. 1998. Translating the XTAG English Grammar to HPSG.
In Proc. of TAG+4 pages 172-175.

The XTAG Research Group. 2001. A Lexicalized Tree Adjoining Grammar for English. http://www.cis.upenn.edu/"xtag/.

Torisawa, Kentaro, Kenji Nishida, Yusuke Miyao and Jun’ichi Tsujii. 2000. An HPSG Parser with CFG Filtétatgral
Language Engineering(1):63—80.

Vijay-Shanker, K. 1987A Study of Tree Adjoining GrammarBh.D. thesis, Department of Computer & Information Science,
University of Pennsylvania.

Yoshinaga, Naoki and Yusuke Miyao. 2001. Grammar conversion from LTAG to HPSBrot of the Sixth ESSLLI Student
Sessionpages 309-324.

Yoshinaga, Naoki, Yusuke Miyao, Kentaro Torisawa and Jun’ichi Tsuijii. 2001a. Efficient LTAG parsing using HPSG parsers.
In Proc. of Pacific Association for Computational Linguistics (PACLING 20papes 342—-351.

Yoshinaga, Naoki, Yusuke Miyao, Kentaro Torisawa and Jun’ichi Tsujii. 2001b. Resource sharing among HPSG and LTAG
communities by a method of grammar conversion from FB-LTAG to HPSGPrére. of ACL/EACL 2001 Workshop on
Sharing Tools and Resources for Research and Educaieges 39-46.

