
Parsing comparison across grammar
formalisms using strongly equivalent
grammars
Comparison of LTAG and HPSG parsers: A case study

Naoki Yoshinaga* — Yusuke Miyao* — Kentaro Torisawa**

Jun’ichi Tsujii *,***

* University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan

{yoshinag, yusuke, tsujii}@is.s.u-tokyo.ac.jp

** Japan Advanced Institute of Science and Technology
1-1 Asahidai, Tatsunokuchi, Ishikawa, 923-1292, Japan

torisawa@jaist.ac.jp

*** CREST, JST (Japan Science and Technology Agency)
4-1-8 Honcho, Kawaguchi-shi, Saitama, 332-0012, Japan

ABSTRACT. This article presents a novel approach to empirical comparison between parsers for
different grammar formalisms such as LTAG and HPSG. The key idea of our approach is to
use strongly equivalent grammars obtained by grammar conversion, which generate equiva-
lent parse results for the same input. We validate our approach by giving a formal proof of
strong equivalence for an existing grammar conversion from LTAG to HPSG-style grammar.
Experimental results using two pairs of LTAG and HPSG parsers with dynamic programming
and CFG filtering reveal that the different ways of using the parsing techniques cause significant
performance differences, and also suggest a definite way of improving these parsing techniques.

RÉSUMÉ. Nous présentons une approche nouvelle pour comparer de manière empirique des ana-
lyseurs syntaxiques pour des formalismes grammaticaux comme LTAG et HPSG. L’idée centrale
consiste à utiliser des grammaires fortement équivalentes obtenues par conversion et produi-
sant des analyses équivalentes pour la même chaîne d’entrée. Nous validons cette approche en
fournissant une preuve formelle d’équivalence forte pour le mécanisme de conversion de gram-
maires de LTAG vers HPSG. Les résultats expérimentaux obtenus avec deux paires d’analyseurs
syntaxiques LTAG et HPSG en utilisant la programmation dynamique et le filtrage CFG ont
montré que les différences de performance résultent des différence d’adaptation des techniques
d’analyse, suggérant une piste solide pour améliorer celles-ci.

KEYWORDS: parsing, dynamic programming, CFG filtering, LTAG, HPSG.

MOTS-CLÉS : analyse syntaxique, programmation dynamique, filtrage CFG, LTAG, HPSG.

TAL. Volume 44 - n◦ 3/2003, pages 15 to 39

16 TAL. Volume 44 - n◦ 3/2003

1. Introduction

Over the past two decades, a wide range of parsers have been developed for lexical-
ized grammars such as Lexicalized Tree Adjoining Grammar (LTAG) [SCH 88] and
Head-Driven Phrase Structure Grammar (HPSG) [POL 94a]. Parsers that have been
proposed independently of one another often share the same parsing techniques that
are claimed to be independent of individual grammar formalisms. Examples of such
generic techniques are dynamic programming [YOU 67, EAR 70, VIJ 85, HAA 87],
left-to-right parsing [TOM 86, BRI 93, NED 98], and two-phase parsing [MAX 93,
TOR 95, YOS 99] including CFG filtering [TOR 96, TOR 00, KIE 00]. However, as
mentioned in [CAR 94], while these techniques are generic in the sense that they can
be used for efficient implementation of parsers for any grammar formalism, their im-
pact often varies from one formalism to another [SCH 95, YOS 99]. It seems that
generic techniques actually interact with the characteristics of individual grammar
formalisms.

To assess the true effect of algorithmic techniques such as those derived from dy-
namic programming, CFG filtering, etc., we need a means of abstracting away the
‘surface’ differences between grammar formalisms. Such abstraction should also be
useful for adapting techniques found that have been efficient with parsers based on
one formalism to parsers based on another.

In this article, we propose grammar conversion as a means of abstracting away
the surface differences between grammar formalisms. That is, we show that, by con-
structing a “strongly equivalent” grammar1 in a particular formalism from one given
in another formalism and by measuring the performance of parsers based on the origi-
nal grammar and ones based on the newly-constructed grammar, one can gain a deeper
insight into generic parsing techniques and share techniques developed for parsers for
different grammar formalisms. Strongly equivalent grammars obtained by grammar
conversion allow us to carry out a meaningful comparison among parsers for different
grammar formalisms regardless of their surface differences, because the parsers han-
dle equivalent grammatical constraints (which are preserved by the grammar conver-
sion) and thus produce equivalent parse results for the same input. Strongly equivalent
grammars are also very helpful for incorporating techniques that have been found to
be efficient from parsers based on one formalism to parsers based on another, because
the grammar conversion defines a clear correspondence between those grammars,i.e.,
a correspondence which enables us to observe how parsers for one formalism handle
a grammar in another formalism.

We focus on two generic parsing techniques in this article, namely dynamic
programming [SAR 00a, HAA 87] and CFG filtering [HAR 90, POL 94b, TOR 96,

1. Chomsky [CHO 63] first introduced the notion of strong equivalence between grammars,
where both grammars generate the same set of structural descriptions (e.g., parse trees). Kornai
and Pullum [KOR 90] and Miller [MIL 99] used the notion of isomorphism between sets of
structural descriptions to provide the notion of strong equivalence across grammar formalisms,
which we have adopted in this research.

Parsing comparison across formalisms 17

�

�� ��

�

run

��

���

can

*

adjunction

��

�

we

substitution

α2

α1 β1anchor
foot node*
substitution node

α1, α2, β1: elementary trees

derived tree
α1

β1α2

derivation tree
�

�� ��

���

can

�

we �

run

Figure 1. Lexicalized Tree Adjoining Grammar: basic structures (elementary trees)
and compose operations (substitution and adjunction)

POL 98, TOR 00, KIE 00]. We first see how these techniques have been employed in
parsers for two particular grammar formalisms, LTAG and HPSG. Since dynamic pro-
gramming forms the basis of most current parsing techniques, a comparison of parsers
using it allows us to roughly grasp the difference between the performance of LTAG
and HPSG parsers. Since the impact of CFG filtering for LTAG is quite different from
that for HPSG, a comparison of parsers using it can demonstrate the utility of our
methods. Next, we show that grammar conversion yielding an HPSG-style grammar
from a given LTAG grammar reveals the true nature of these generic parsing tech-
niques, and results in parsers for LTAG that are more efficient than those implemented
for the original LTAG grammar, even though they use the same generic techniques.

To validate our approach, we give a formal proof of strong equivalence for an ex-
isting grammar conversion from LTAG to HPSG-style grammar [YOS 02], and use
it to obtain strongly equivalent grammars. Empirical comparisons of parser perfor-
mance were then conducted using two LTAG grammars and their equivalent HPSG-
style grammars. One is the XTAG English grammar [XTA 01], which is a large-scale
handcrafted Feature-Based LTAG (FB-LTAG) [VIJ 87, VIJ 88], and the other is an
LTAG grammar that was automatically extracted from the Penn Treebank [MAR 93].

2. Grammar formalisms and parsing techniques

2.1. Grammar formalisms

2.1.1. Lexicalized Tree Adjoining Grammar

An LTAG [SCH 88] is defined by a set ofelementary trees that are composed by
two operations calledsubstitution andadjunction. These are shown on the left-hand
side of Figure 1. An elementary tree has at least one leaf node that is labeled with a
terminal symbol (i.e., word) calledan anchor (marked with�). Elementary trees are
classified as eitherinitial trees (α1 andα2) or auxiliary trees (β1). The label of one
leaf node of an auxiliary tree is identical to that of its root node, and this is specially
marked (here, with∗) asa foot node. In an elementary tree, leaf nodes other than

18 TAL. Volume 44 - n◦ 3/2003

anchors and the foot node are calledsubstitution nodes (marked with↓). The left-
hand side of Figure 1 also illustrates the two operations. In substitution, a leaf node
(substitution node) is replaced by an initial tree, while in adjunction, an auxiliary tree
with the root node and a foot node labeledx is grafted onto a node with the same
symbolx. The results of analysis are described not only byderived trees (i.e., parse
trees) but also byderivation trees (the right-hand side of Figure 1). The derivation
trees represent the history of combinations of trees.

FB-LTAG [VIJ 87, VIJ 88] is an extension of the LTAG formalism in which each
node in the elementary trees has a feature structure, which contains a set of grammat-
ical constraints on the node. The constraints are to be satisfied through unification
during adjunction and substitution.

2.1.2. Head-Driven Phrase Structure Grammar

We definean HPSG-style grammar according to the computational architecture of
HPSG [POL 94a]. It consists oflexical entries andImmediate Dominance (ID) gram-
mar rules, each of which is described with typed feature structures [CAR 92]. The
greater generative power of the underlying architecture of HPSG allows us to obtain
a trivial encoding of LTAG in the typed feature structure, as described by [KEL 94,
pp. 144–151]. However, such a conversion cannot meet our needs because the result-
ing grammar is far from the one defined in [POL 94a]. Hence, we restrict the form
of an HPSG-style grammar to one that follows the HPSG formalism in the following
ways. A lexical entry for a word must express the characteristics of the word, such
as its subcategorization frame and grammatical category. An ID grammar rule must
represent the constraints on the configuration of immediate constituency and not be a
construction-specific rule defined by lexical characteristics. These restrictions enable
us not only to define a formal link between computational architectures that under-
lies LTAG and HPSG, but also to clarify the relationships between linguistic accounts
given using LTAG and HPSG by comparing the HPSG-style grammar converted from
LTAG with HPSG. The interested reader may refer to the discussion in [YOS 02].

Note that Pollard and Sag [POL 94a] provide detailed linguistic specifications for
the form of feature structures and adoptprinciples, such asthe Immediate Dominance
Principle, to express linguistic concepts, for example projection. In our definition,
we assume that principles are implicitly encoded in ID grammar rules and when we
convert an LTAG grammar to an HPSG-style grammar we do not attempt to translate
linguistic specifications in the LTAG into the corresponding HPSG principles.

2.2. Conventional parsers

The LTAG and HPSG parsers with dynamic programming used in our experi-
ments [NOO 94, HAA 87] performfactoring, a common-sense parsing technique that
avoids generating duplicate equivalent partial parse trees. In the following sections,
we briefly describe how factoring is accomplished in parsers for the two formalisms.

Parsing comparison across formalisms 19

�

�� ��

�

run

α1 �

�� ��

�

run

α1

��

���

can

*

��

���

can

*

β1 β1

S1: run S3: run

S4-1: S4-2: can

�

�� ��

�

run

α1�

�� ��

�

run

α1�

�� ��

�

run

α1

��

�

We

α2
��

�

We

α2

S5: can run S7: we can run

S6-1: we S6-2: we

S8: we can run

Accept

Figure 2. Example of head-corner parsing for an LTAG grammar

2.2.1. Head-corner parser for LTAG

One of the LTAG parsers used in our experiments, which we call the “conven-
tional” LTAG parser, is a head-corner LTAG parser [SAR 00a]. Its parsing algorithm
is a chart-based variant of van Noord’s [NOO 94]. The parser uses a data structure
calledan agenda. The agenda storesstates to be processed. A state is represented by
a quadruplet consisting of an elementary tree, a root node, a processing node, and a
span over the input, which denote the processed and unprocessed parts of the tree.

Figure 2 depicts the process of head-corner parsing for the sentence “we can run.”
In the figure, nodes in bold face, arrows in states, arrows between states, and strings
followed by the state number S# respectively indicate processing nodes, directions
of processing, relations between the states, and spans over the input string. In head-
corner parsing, the parser traverses a tree from one leaf node calledthe head-corner to
the root node. This tree traversal is calledhead-corner traversal. During head-corner
traversal, the parser recognizes the siblings of the processing node and possible ad-
junctions at this node. In Figure 2, the parser first predicts an initial treeα2 whose
root node matches the symbol S corresponding to the sentence (state S1 in Figure 2).
The parser proceeds in a bottom-up manner from the head-corner “run” to S. After
moving up to the node VP inα2 (S3), the parser recognizes the adjunction at the
processing node VP and introduces a new state S4-1 for the adjoining treeβ1. After
recognizingβ1 (S4-2), the parser tries to recognize the sibling of VP (S5). To recog-
nize the sibling NP, the parser introduces a new state S6-1 forα1. Then, the parser
proceeds to the root S ofα2 (S8). Since there is no state to be processed in the agenda,
parsing of “we can run” ends.

The parser performs factoring when it generates a new state. That is, it pushes a
state in the agenda only when an equivalent state does not exist in the agenda. Note
that equivalent states are those which have the same elements in the quadruplet.

20 TAL. Volume 44 - n◦ 3/2003

we can run

Grammar rule

unify
E1 E2 E3
Sym: ��

Arg :
Sym�� ��

Arg ������

Sym�� ��

Arg ������

Sym�

Arg �

unify

�

�

we can run

Sym: ��

Arg :
Sym�� ��

Arg ������

Sym�� ��

Arg ������

Grammar rule

�Sym�

Sym�� ��

Arg ������

unify

unify

�

we can run

Sym: ��

Arg :
Sym�� ��

Arg ������

Sym�� ��

Arg ������

Sym�� ��

Arg ������

Sym�����

Arg �

E4

E5

Sym�

Arg �

�

Sym�

Arg �

�

�

Sym��

Arg �

Sym�

Arg �

�

�

�

�

�

Figure 3. Example of CKY-style parsing for an HPSG grammar

2.2.2. CKY-style HPSG parser

One of the HPSG parsers used in our experiments, which we call the “conven-
tional” HPSG parser, is a CKY-style HPSG parser [HAA 87]. The parser uses a data
structure calleda triangular table. The triangular table storesedges, which corre-
spond to partial parse trees. An edge is described with a tuple consisting of a feature
structure that represents the root node of a partial parse tree and a span over the input.

Figure 3 illustrates an example of the CKY-style parsing for an HPSG grammar.
First, lexical entries for “we,” “ can,” and “run” are stored as edges E1, E2, and E3 in
the triangular table. Next, E2 and E3 are each unified with the daughter feature struc-
tures of an ID grammar rule. The feature structure of the mother node is determined
as a result of this unification and is stored in the triangular table as a new edge E4. An
ID grammar rule is then applied to E1 and E4, and a new edge E5 is generated. Since
the parse tree spans the whole input string, parsing of “we can run” ends.

The parser performs factoring when it generates a new edge. That is, it stores
an edge in the triangular table unless an equivalent edge exists in the cell. Note that
equivalent edges are those which have the same elements in the tuple.

2.3. CFG filtering techniques

CFG filtering is a parsing scheme that predicts possible parse trees by using a CFG
extracted from a given grammar. An initial offline step of CFG filtering is performed to
approximate a given grammar with a CFG, in other words, to extract a CFG backbone
from a given grammar (Context-Free (CF) approximation). The resulting CFG is used
as an efficient device for computing the necessary conditions for parse trees.

After the initial step, CFG filtering generally comprises two phases. In phase 1, the
parser first constructs possible parse trees by using the CFG obtained in the initial off-
line step, and then filters out CFG edges unreachable by top-down traversal starting
from roots of successful context-free derivations. In phase 2, it eliminates invalid
parse trees by using full constraints in the given grammar. We call the remaining CFG
edges that are used for phase 2essential edges.

Parsing comparison across formalisms 21

�

�� ��

� ��

�

�� ��

� �

5.1

5.ε

5.2

5.2.1 5.2.2

9.1

9.ε

9.2

9.2.1 9.2.2

Tree 5: Tree 9:

�

����	
��

�� ��

�� � ��

�� � �

5.ε
9.ε 9.1

5.1
9.2
5.2

5.2 5.2.1 5.2.2

9.2 9.2.1 9.2.2love think

Figure 4. Extraction of CFG from LTAG

okA

A*

A

A

C

B

2. Find a foot node

1. Find a supernodey

z

3. Find a subnode of a foot node

4. Check the node
number equality

ok

xA

C

B y

A x ok

2. Check the node
number equality

b) ok-flag is propagated to a root of auxiliary treea) ok-flag is propagated to a node other
than a root of auxiliary tree

1. Find a supernode

Figure 5. Ok-propagation from an essential edge to another

The parsers with CFG filtering for LTAG and HPSG follow the above parsing strat-
egy, but differ in their ways of approximating a grammar with CFG and eliminating
impossible parse trees in phase 2. In the following sections, we briefly describe the
CF approximation and the elimination of impossible parse trees for each formalism.

2.3.1. CF approximation of LTAG

In the CFG filtering techniques for LTAG [HAR 90, POL 98], every branching of
elementary trees in a given grammar is extracted as a CFG rule as shown in Figure 4.

Because the obtained CFG can reflect only local constraints given in each local
structure of the elementary trees, it generates invalid parse trees that connect local
trees extracted from different elementary trees. To eliminate such illegal parse trees, a
link between branchings is preserved asa node number which records a unique node
address (a subscript attached to each node in Figure 4). As depicted in Figure 5, we
can eliminate such parse trees by traversing essential edges in a bottom-up manner
and recursively propagatingan ok-flag from node numberx to node numbery when a
connection betweenx andy is allowed in the LTAG grammar. We call this propagation
ok-propagation [POL 94b].

2.3.2. CF approximation of HPSG

In the CFG filtering techniques for HPSG [TOR 96, TOR 00, KIE 00], a CFG is
extracted from a given HPSG grammar by recursively instantiating daughters of a
grammar rule with lexical entries and generated feature structures, as shown in Fig-

22 TAL. Volume 44 - n◦ 3/2003

Grammar rule

lexical
SYNSEM …

sign
SYNSEM …

sign
SYNSEM …

phrasal
SYNSEM …

Grammar rule

phrasal
SYNSEM …

sign
SYNSEM …

sign
SYNSEM …

phrasal
SYNSEM …

phrasal
SYNSEM …

�

�

�

�

�

� ���

� ���

sign
SYNSEM …

sign
SYNSEM …

��������	

Figure 6. Extraction of CFG from HPSG

ure 6. This procedure stops when new feature structures are not generated. We must
impose restrictions on the features (i.e., ignore them) or on the number of rule instan-
tiations or both in order to guarantee termination of the rule instantiation. A CFG is
obtained by regarding the initial and the generated feature structures as nonterminals
and bottom-up derivation relationships as CFG rules.

Although the resulting CFG reflects the local and global constraints of the whole
structure of lexical entries, it generates invalid parse trees that do not reflect the con-
straints given by the features that were ignored in the CFG. These parse trees are
eliminated in phase 2 by applying HPSG grammar rules that correspond to the applied
CFG rules. We call this rule applicationrule-application.

3. Grammar conversion

This section describes an algorithm for converting from LTAG to a strongly equiva-
lent HPSG-style grammar [YOS 02]. The conversion algorithm consists of two phases
of conversion: i) a conversion from LTAG intocanonical LTAG, LTAG which consists
only of canonical elementary trees, and ii) a conversion from the canonical LTAG into
an HPSG-style grammar. Substitution and adjunction are emulated by pre-determined
ID grammar rules.2 This algorithm can easily handle an FB-LTAG grammar by merely
extending the grammar rules to execute the feature structure unification in the same
way as in FB-LTAG. We give a formal proof of strong equivalence for the above two
phases of conversion in Appendices A.2 and A.3, respectively.

We definecanonical elementary trees, which have one-to-one correspondences
with HPSG lexical entries. Canonical elementary trees are elementary trees which

2. In this article, we assume that elementary trees consist of binary branching structures. A
unary branching can be regarded as a binary branching in which one daughter is the empty
category, and n-ary (n≥3) branchings can similarly be converted into binary branchings. This
conversion guarantees strong equivalence by virtue of being a one-to-one mapping.

Parsing comparison across formalisms 23

Canonical elementary tree Non-canonical elementary trees
a) Violation of Condition 1 b) Violation of Condition 2

�

�� ��

� �

think

*

Non-anchored subtree

Tree with non-anchored subtrees

�

�� ��

� ��

� ��

for

look

Multi-anchored tree
�

�� ��

� ��

� ��give

Figure 7. A canonical elementary tree and non-canonical elementary trees

Sym:

Arg:

Sym :
Leaf :
Dir : �����
Foot?: +

�

�

�� Sym :
Leaf :
Dir : ����
Foot?:

��

�

,think :

�

�� ��

� �

think

*

Sym :
Arg :

Arg :

Sym :
Leaf :
Dir :
Foot? :

Sym :
Arg :

�

Sym :
Arg :

Arg :

Sym :
Leaf :
Dir :
Foot? :

Sym :
Arg :

substitution node

trunk node trunk node

foot node

Left substitution rule Left adjunction rule

���� ����
+

�

�

�

�
�

�

�

�

�

�

� �

�

Figure 8. Conversion of LTAG elementary trees into HPSG lexical entries (left) and
the grammar rules: the substitution rule (center) and the adjunction rule (right)

satisfy two conditions. Condition 1: A tree has only one anchor, and Condition 2:
Every branching structure in a tree containstrunk nodes. Trunk nodes (nodes in bold
face in Figure 7) are nodes ona trunk (thick branches in Figure 7), which is a path
from an anchor to a root node other than the anchor [KAS 95]. Condition 1 guarantees
that a canonical elementary tree has only one trunk, while Condition 2 guarantees that
each branching consists of a trunk node, a leaf node, and their mother, as seen in the
example on the left-hand side of Figure 7. The right-hand side of Figure 7 shows non-
canonical trees. We call a subtree of depthn (n≥ 1) that includes no anchora non-
anchored subtree. Non-canonical elementary trees are first converted into canonical
trees, and then converted into HPSG lexical entries.

3.1. Conversion of canonical elementary trees

The left-hand side of Figure 8 depicts an example of conversion ofcanonical ele-
mentary trees. A canonical elementary tree is converted into an HPSG lexical entry by
regarding leaf nodes as arguments of the anchor and storing them in a stack (theArg
feature in the left-hand side of Figure 8) where each leaf node is expressed by a triplet
consisting of the symbol, the direction against the trunk, and the type (theLeaf, Dir,

24 TAL. Volume 44 - n◦ 3/2003

��

�� �

�� �

loves

α1

β1

��

�

he

��

�

what

α2

α3

�� �

� �

think��

�

you

α4
*

�

α1

Sym :
Leaf :
Dir :
Foot? :

Sym :
Arg :

Sym :

Sym :

Sym :

Sym :

think:

loves:

you

… A

… B

�

���

����

�

��

����

,

,

β1

he

α2

α4

α3

Arg :

Arg : Arg :

Arg :

what

… C

��

��

�����
�

Sym :
Leaf :
Dir :
Foot? :

Sym :
Leaf :
Dir :
Foot? :

Sym :
Arg :

�

�

���

����

Sym :
Leaf :
Dir :
Foot? :

�

���

����

Sym :
Leaf :
Dir :
Foot? :

�����

Sym :

�

���

����
Arg :

Sym :
Leaf :
Dir :
Foot? :

Sym :
Arg :

����

Sym :
Arg :

��

�

�

	

�

�

�

�
	

�

�

�

�

�

�

���

����

Sym :
Leaf :
Dir :
Foot? :

	

� �

�

�

�

���

����

Sym :
Leaf :
Dir :
Foot? :

�

�

	

� ���

�

�

�

LTAG derivation HPSG rule applications

Figure 9. LTAG and HPSG parsing of the phrase “what you think he loves”

andFoot? features in the left-hand side of Figure 8, respectively). The trunk symbol
is stored as theSym feature in order to explicitly determine the symbol of the mother
node in the rule applications.

Substitution and adjunction are emulated by grammar rules such as those shown
in the center and the right-hand side of Figure 8, respectively. A co-indexing boxn

indicates that two sub-feature structures share their values with each other. Both rules
pop an element in the value of theArg feature of a node and let the node subcategorize
for a node unifiable with the popped element. A substitution rule requires that theArg
feature of the node to be subcategorized should be an empty stack, while an adjunction
rule concatenates the values of theArg features of both daughters.

Figure 9 shows examples of rule application. The solid lines indicate the adjoined
tree (α1) and the dotted lines indicate the adjoining tree (β1). The adjunction rule is
applied in order to construct the branching marked with�, where “think” takes as its
argument the node having theSym feature’s value ofS. By applying the adjunction
rule, theArg feature of the mother nodeB becomes a concatenated stack of theArg
features of bothβ1, ‘ 8 ’, and α1, ‘ 5 .’ Note that when the construction ofβ1 has
been completed, theArg feature of the trunk nodeC will return to its former state (A).
We can continue constructingα1 in the same way as for the case where no adjunction
rules have been applied.

3.2. Conversion of non-canonical elementary trees

Non-canonical elementary trees are initially divided into multiple subtrees, each
of which has at most one anchor, by a procedure calledtree division, as shown in Fig-

Parsing comparison across formalisms 25

�

�� ��

� ��

� ��

for

look

cut off

��look_for ��look_for

identifier

cut-off nodes

�

�� ��

�

look
� ��

for

tree division

Multi-anchored tree Canonical trees

Figure 10. Conversion of multi-anchored trees into multiple canonical trees

�

�� �

�

substitution

all candidate canonical
trees for substitution

, …

Trees without non-anchored
subtrees

break points

on

next

��

� �� � , …

�� �on

next

next to

non-anchored
subtrees

��

��

next to

�

�� ��

� ��

� ��give ��

� ��

tree division

�

�� ��

� ��

give

give

give give give

tree
substitution

cut off

Tree with non-anchored
subtrees

canonical trees

Figure 11. Conversion of a tree with non-anchored subtrees into canonical trees and
trees without non-anchored subtrees

ures 10 and 11. Nodes that mark the separation of one tree into two are calledcut-off
nodes. A cut-off node is marked byan identifier to preserve the co-occurrence relation
among the multiple anchors. The tree division converts multi-anchored trees, which
only violate Condition 1, into canonical trees (Figure 10), while it converts trees with
non-anchored subtrees into canonical trees and non-anchored subtrees (Figure 11).

A procedure calledtree substitution converts the non-anchored subtrees into an-
chored trees. It causes a substitution at one substitution node on every deepest branch-
ing by every candidate tree for substitution, as shown in Figure 11. We should mention
that the substituted nodes are marked asbreak points to remember that the resulting
trees are obtained by substituting other trees at those nodes. The candidate trees for
substitution are selected from among all the canonical elementary trees and the ones
obtained by the conversion given in the previous paragraph. Because the candidate
trees for substitution include neither non-anchored subtrees nor auxiliary trees whose
root nodes do not originate from the root nodes of initial trees, the trees obtained by
this process will satisfy Condition 2. When they take substitution at one substitu-
tion node, they also satisfy Condition 1 and are canonical trees; otherwise, they are
multi-anchored trees and will be converted into canonical trees by the tree division.

26 TAL. Volume 44 - n◦ 3/2003

Table 1. Classification of elementary trees in the XTAG English grammar (LTAG) and
lexical entries converted from them (HPSG)

Grammar A B C D Total

LTAG 326 763 54 50 1,193
HPSG 326 1,989 1,083 2,474 5,872

Table 2. Parsing performance with the XTAG English grammar for the ATIS corpus

Parser Parse time (sec.)

Naive 1.54
lem 20.76

4. Comparison of LTAG and HPSG parsers

4.1. Comparison of dynamic programming techniques

We compared a pair of dynamic programming techniques for LTAG [NOO 94] and
HPSG [HAA 87] described in Sections 2.2.1 and 2.2.2. Henceforth,lem refers to the
LTAG parser [SAR 00a],ANSI C implementation of the head-corner parsing.3 Naive
refers to C++ implementation of the CKY-style HPSG parser.

We converted the latest version of the XTAG English grammar [XTA 01], which
is a large-scale FB-LTAG grammar, into a strongly equivalent grammar by using the
grammar conversion described in Section 3.1. Table 1 shows a classification of the
elementary trees4 of the XTAG English grammar according to the conditions described
in Section 3.1.5 In the table,A shows the number of canonical elementary trees, while
B, C, andD respectively show the number of trees that violate only Condition 1, only
Condition 2, and both conditions. The second row indicates the number of HPSG
lexical entries converted from the LTAG elementary trees.

Table 2 shows the parsing speed results for 452 sentences from the ATIS cor-
pus [MAR 93]6 (average sentence length: 6.32 words). The machine used in the fol-
lowing experiments was a 1.26 GHz Pentium III with 4 GB memory. The results show
that the HPSG parser achieved a speed-up of a factor of 13. Figure 12 shows parse
time plotted against sentence length, where both axes use logarithmic scales. Since
the increase in parse time versus sentence length plotted on logarithmic scales is equal

3. The LTAG parser is available at: ftp://ftp.cis.upenn.edu/pub/xtag/lem/lem-0.14.0.tgz
4. These elementary trees should more strictly be calledelementary tree templates. That is, ele-
mentary trees are abstracted from lexicalized trees, and one elementary tree template is defined
for one syntactic construction, which is assigned to a number of words.
5. We eliminated 33 elementary trees because the LTAG parser could not produce correct
derivation trees with them; adjunction of these trees was sometimes not performed by the parser.
6. We eliminated 56 sentences because of parser time-outs, and 69 sentences because the LTAG
parser had bugs in its preprocessor preventing it from producing correct derivation trees.

Parsing comparison across formalisms 27

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 15 10 5 1

lo
g

(t
im

e)
 in

 m
ill

is
ec

on
ds

log (sentence length) in words

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 15 10 5 1

lo
g

(t
im

e)
 in

 m
ill

is
ec

on
ds

log (sentence length) in words

lem Naive

Figure 12. Parsing performance with the XTAG English grammar for the ATIS corpus

�

�� ��

� ��

felt

�

�� ��

� ��

felt

duplicated equivalent grammatical construction

States are not equivalent and not factored out

Sym:

Arg:

VP
Sym :
Leaf :
Dir : ����
Foot?:

��

�

Edges are equivalent and factored out

�

�� ��

� ��

felt

�

�� ��

� ��

felt

LTAG HPSG

Figure 13. Difference between factoring schemes in LTAG and HPSG

to the degree of polynomial order of the empirical time complexity, the graphs show
that the order of the empirical time complexity oflem is higher than that ofNaive.

As noted in Section 2.2, both parsers have an architecture that supports factor-
ing, but the ways in which they perform factoring differ. Remember that a state in
the LTAG parser is a quadruplet consisting of an elementary tree, a root node, a pro-
cessing node, and a span over an input, while an edge in the HPSG parser is a tuple
consisting of a feature structure and a span over an input. By considering how the
HPSG parser handles the HPSG-style grammar converted from the LTAG, we see that
the HPSG parser treats a branching as its minimal component and performs factoring
of edges when the edges’ feature structures are equivalent (the right-hand side of Fig-
ure 13). On the other hand, the LTAG parser treats an elementary tree as its minimal
component and performs factoring of states when the elementary trees of the states
have equivalent root nodes (the left-hand side of Figure 13). Since the root node cor-
responds to a feature structure whoseArg feature is an empty stack in HPSG, this
difference means that the HPSG parser factors out more partial parse trees than does
the LTAG parser. As illustrated in Figure 13, the LTAG parser cannot avoid duplicat-
ing equivalent grammatical constructions corresponding to fragments of elementary

28 TAL. Volume 44 - n◦ 3/2003

 10

 100

 1000

 10000

 100000

 15 10 5 1

lo
g

(t
he

 n
um

br
 o

f e
dg

es
)

log (sentence length) in words

 10

 100

 1000

 10000

 100000

 15 10 5 1

lo
g

(t
he

 n
um

br
 o

f e
dg

es
)

log (sentence length) in words

Naiverf Naive

Figure 14. Number of edges of a variant of Naive (Naiverf) which performs factoring
only when the factoring can be performed in lem (left) and Naive (right)

trees. This difference in factoring schemes leads to the difference in the empirical
time complexity.

To verify the above argument, we conducted a parsing experiment on the same
corpus by using a variant ofNaive (hereafterNaiverf) which performs factoring only
when the factoring could be performed by the LTAG parser.7 Since edges and states
generated by the LTAG and HPSG parsers represent partial parse trees, their numbers
are reliable indicators of empirical time complexity. Figure 14 shows the number of
edges plotted against sentence length, where both axes use logarithmic scales.8 The
increase in the number of edges ofNaiverf was higher than that ofNaive. Since the
parsing scheme ofNaiverf mimics that oflem, the difference in parse time between
lem andNaive and the difference in the number of edges betweenNaiverf andNaive
confirm that the difference in the factoring scheme is the major cause of difference in
the empirical time complexity.9

At first glance, these results are inconsistent with the fact that the theoretical bound
of worst time complexity for HPSG parsing is exponential, while LTAG parsing re-
quiresO(n6) for an input of lengthn. However, Carroll [CAR 94] demonstrated that
theoretical bounds of time complexity with respect to grammar size and input length
have little impact on performance for some unification-based parsing algorithms, and
attributed the reason to the specification of grammars (i.e., variations in grammar rules,
etc.). Sarkar et al. [SAR 00b] studied LTAG grammars extracted from the Penn Tree-
bank and reported that the theoretical bound of computational complexity does not
significantly affect parsing performance and that the most dominant factor is syntactic
lexical ambiguity,i.e., ambiguity of lexical entries for the same words. Our results are

7. We did not compare the states oflem with the edges ofNaive because an edge ofNaive does
not have a one-to-one correspondence with a state oflem.
8. Naive andNaiverf in fact duplicate a part of auxiliary trees when they adjoin to different trees.
Althoughlem can avoid this duplication, it has no serious effect on our conclusion.
9. lem andNaive also differ in their ways of handling linguistic features. However, we suppose
that their impact on parsing performance is mild compared to one by the difference in factoring.

Parsing comparison across formalisms 29

therefore convincing because factoring handles ambiguity in partial parse trees, which
is mostly caused by the syntactic lexical ambiguity.

We should note that there is other work that aims at avoiding the ambiguity caused
by syntactic lexical ambiguity. Evans and Weir [EVA 98] have asserted that the com-
paction of substructures in elementary trees has a great impact on parsing perfor-
mance. In their research, several elementary trees for each word were converted into
finite-state automata, and merged into a single finite-state automaton. Chen and Vijay-
Shanker [CHE 97] use underspecified tree descriptions to allow ambiguous node la-
bels in elementary trees. In the conventional HPSG parser, some of this compaction
is dynamically executed by factoring. Furthermore, the factoring method enables an-
other kind of compaction that merges equivalent edges headed by different words.
Existing methods cannot perform this kind of compaction, since these techniques are
applied separately to the elementary trees for each word. Shaumyan et al. [SHA 02]
evaluated an automaton-based parser with an LTAG grammar extracted by a method
proposed by Xia [XIA 99], and showed results similar to ours. However, the grammar
they used had far less syntactic lexical ambiguity than the XTAG English grammar.
Our results with the XTAG English grammar are a strong indication of the importance
of compaction of substructures in elementary trees.

It should be noted that the above investigation also suggests another way of fac-
toring in LTAG. We can merge two states which have equivalent unprocessed parts,
as depicted in Figure 13, into a single state when they cover the same span of input.
This kind of factoring that merges edges with equivalent unprocessed parts has been
proposed for CFG by Leermakers [LEE 92]. In his parser, the edges in Earley parsing
are merged if their rules have a common unprocessed suffix. As exemplified by the
application ofNaive to an HPSG-style grammar converted from LTAG, this kind of
factoring is applicable to LTAG parsing. Our study empirically attested to its effec-
tiveness in LTAG parsing, not by implementing complex parsing algorithms, but by
simply applying the existing HPSG parser potentially equipped with such a function-
ality to the grammar converted from LTAG.

4.2. Comparison of CFG filtering techniques

Following on from the comparison of dynamic programming techniques, we
compared a pair of CFG filtering techniques for LTAG [HAR 90, POL 98] and
HPSG [TOR 00, KIE 00] described in Sections 2.3.1 and 2.3.2. We chose the fil-
tering technique of Poller and Becker [POL 98] because it is the most sophisticated
algorithm for CFG filtering for LTAG. Hereafter, we refer to its C++ implementation
asPB. The other filtering technique for HPSG wasTNT [TOR 00]. We modified the
CF approximation of the originalTNT by instantiating both daughters and restricting
the number of rule instantiations, as shown in [KIE 00], to approximate the obtained
HPSG-style grammar with CFG. In phase 1,PB andTNT performed Earley [EAR 70]
and CKY [YOU 67] parsing, respectively. Note that the CFG filtering techniques for
LTAG used the same CF approximation, as did the CFG filtering techniques for HPSG,

30 TAL. Volume 44 - n◦ 3/2003

Table 3. Size of extracted LTAGs (elementary trees) and CFGs approximated from
them (above: the number of nonterminals; below: the number of rules)

Grammar G2 G2-4 G2-6 G2-8 G2-10 G2-21
LTAG 1,488 2,412 3,139 3,536 3,999 6,085
CFGPB 65 66 66 66 67 67

716 954 1,090 1,158 1,229 1,552
CFGTNT 1,989 3,118 4,009 4,468 5,034 7,454

18,323 35,541 50,115 58,356 68,239 118,464

Table 4. Parsing performance (sec.) for Section 2 of WSJ

Parser G2 G2-4 G2-6 G2-8 G2-10 G2-21
PB 1.4 9.1 17.4 24.0 34.2 124.3
TNT 0.044 0.097 0.144 0.182 0.224 0.542

Table 5. Number of essential edges generated in parsing of Section 02 of WSJ

Parser G2 G2-4 G2-6 G2-8 G2-10 G2-21
PB 791 1,435 1,924 2,192 2,566 3,976

TNT 63 121 174 218 265 536

as described in Sections 2.3.1 and 2.3.2. Comparison ofPB andTNT thus suffices to
investigate the effect of the CF approximations for LTAG and HPSG.

We acquired LTAGs by the method proposed in [MIY 03] from Sections 2-21 of
the Wall Street Journal (WSJ) in the Penn Treebank [MAR 93] and their subsets.10 We
converted them into strongly equivalent HPSG-style grammars by using the grammar
conversion described in Section 3.1. Table 3 shows the size of CFGs approximated
from the strongly equivalent grammars. Gx, CFGPB , and CFGTNT henceforth refer
to the LTAG extracted from Sectionx of WSJ and the CFGs approximated from Gx

by PB andTNT, respectively. CFGTNT is much larger than CFGPB . By investigat-
ing parsing performance using these CFGs as filters, we conclude that larger size of
CFGTNT caused the better parsing performance.

Table 4 shows the parse time for 254 sentences of lengthn(n≤10) from Section
2 of WSJ (average sentence length: 6.72 words).11 This result shows not only that
TNT was much faster thanPB, but also that the performance difference between them
increased when the larger grammars were used.

To estimate the degree of CF approximation, we measured the number of essential
(inactive) edges of phase 1. Table 5 shows the number of essential edges.PB produces

10. The elementary trees in the LTAGs are binarized.
11. We used a subset of the training corpus to avoid using default lexical entries for unknown
words, because there are various ways to assign default entries for automatically extracted gram-
mars and this would have an uncontrolled effect on parsing performance.

Parsing comparison across formalisms 31

Table 6. Success rate (%) of phase 2 operations

Operations G2 G2-4 G2-6 G2-8 G2-10 G2-21
ok-propagation (PB) 38.5 34.3 33.1 32.3 31.7 31.0

rule-application (TNT) 100 100 100 100 100 100

Grammar rule

Grammar rule

�

�

�

�

Sym :
Arg :

Arg :

Sym :
Leaf :
Dir :
Foot? :

Sym :
Arg :

�

����

�

�

�

�
�

Sym :
Arg :

Arg :

Sym :
Leaf :
Dir :
Foot? :

Sym :
Arg :

�

����

�

�

�

�
�

Sym :

love:
��

��

����� ,Arg :

Sym :
Leaf :
Dir :
Foot? :

�

�

���

����

Sym :
Leaf :
Dir :
Foot? :

Sym :
Arg :

���

Sym :

Arg :

��

�

���

����

Sym :
Leaf :
Dir :
Foot? :

Sym :
Arg :

���

Sym :
Arg :

��
�

�� ��

� ��

love

� ���

� ���

��������	

Figure 15. CF approximation of an HPSG-style grammar converted from LTAG

a much greater number of essential edges thanTNT. We then investigated the effect
of different numbers of essential edges on phase 2. Table 6 shows the success rates of
ok-propagation and rule-application. The success rate of rule-application (forTNT) is
100%, while that of ok-propagation (forPB) is quite low.12 These results indicate that
CFGTNT is superior to CFGPB with respect to the degree of CF approximation.

We can work out the reason for this difference by investigating how the CF ap-
proximation of HPSG approximates HPSG-style grammars converted from LTAGs.
As described in Section 3.1, the grammar conversion preserves the whole structure of
each elementary tree (precisely, a canonical elementary tree) in a stack, and grammar
rules manipulate the top element of the stack. A generated feature structure in the
approximation process thus corresponds to the whole unprocessed parts of a canoni-
cal elementary tree, as shown in Figure 15. This implies that successful context-free
derivations obtained by CFGTNT basically involve elementary trees in which all sub-
stitution and adjunction have succeeded. However, as mentioned in Section 2.3.1,
CFGPB (as well as a CFG produced by another work [HAR 90]) cannot avoid gener-
ating invalid parse trees that connect two local structures where adjunction takes place

12. This means that the extracted LTAGs should be compatible with CFG and were completely
approximated with CFGs. Preliminary experiments with the XTAG English grammar [XTA 01]
without features were 15.3(parse time (sec.))/30.6(success rate (%)) forPB and 0.606/71.2 for
TNT, for the same sentences.

32 TAL. Volume 44 - n◦ 3/2003

between them. We used G2-21 to calculate the percentage of ok-propagations that were
between two node numbers that take adjunction (the right-hand side of Figure 5) and
the success rate for this percentage. 87% of the total number of ok-propagations were
of this type but their success rate was only 22%. These results suggest that the global
constraints in a given grammar are essential to obtaining an effective CFG filter.

It should be noted that the above investigation also suggests another way of mak-
ing a CF approximation for LTAG. We first define a unique mode of tree traversal,
such as head-corner traversal [NOO 94] described in Section 2.2.1, on which we can
sequentially apply substitution and adjunction. We then recursively apply substitution
and adjunction on that traversal to elementary trees and generated tree structures. Be-
cause the processed parts of the generated tree structures are not used again, we regard
the unprocessed parts of the tree structures as nonterminals of a CFG. We can thereby
perform another type of CFG filtering for LTAG by combining this CFG filter with a
head-corner LTAG parsing algorithm [NOO 94] that uses the same tree traversal.

5. Conclusion

This article presented an approach for comparing parsers for different grammar
formalisms, making use of strongly equivalent grammars obtained by grammar con-
version. We showed that a parsing comparison between LTAG and HPSG is possi-
ble by giving a formal proof of strong equivalence for the grammar conversion pro-
cedure [YOS 02] and using this conversion to obtain strongly equivalent grammars.
As an application of our approach, we empirically compared two pairs of LTAG and
HPSG parsers based on dynamic programming and CFG filtering. We first obtained
strongly equivalent grammars by converting the XTAG English grammar and LTAG
grammars extracted from the Penn Treebank into HPSG-style grammars. Experiments
comparing parsers using dynamic programming showed that the different implemen-
tations of the factoring scheme caused a difference in the empirical time complexity
of the parsers. This result suggests that for LTAG parsing we can achieve a drastic
speed-up by merging two states whose elementary trees have the same unprocessed
parts. Another experiment comparing parsers with CFG filtering showed that the CF
approximation of HPSG produced a more effective filter than that of LTAG. This result
also suggests that we can obtain an effective CFG filter for LTAG by approximating
the LTAG with a CFG by applying substitution and adjunction along tree traversal and
regarding unprocessed parts of generated tree structures as nonterminals of the CFG.

Acknowledgements

The authors wish to thank Anoop Sarkar for his help in applying his parser and
Yousuke Sakao for his help in profiling the TNT parser. The authors are also indebted
to John Carroll and the anonymous reviewers for their valuable comments. The first
author was supported in part by JSPS Research Fellowships for Young Scientists.

Parsing comparison across formalisms 33

6. References

[BRI 93] BRISCOE E., CARROLL J., “Generalized probabilistic LR parsing of natural lan-
guage (corpora) with unification-based grammars”,Computational Linguistics, vol. 19,
num. 1, 1993, p. 25-60.

[CAR 92] CARPENTER B., The Logic of Typed Feature Structures, Cambridge University
Press, 1992.

[CAR 94] CARROLL J., “Relating complexity to practical performance in parsing with wide-
coverage unification grammars”,Proc. of the 32nd ACL, 1994, p. 287–294.

[CHE 97] CHEN J., VIJAY-SHANKER K., “Towards a reduced-commitment D-theory style
TAG parser”, Proc. of the fifth IWPT, 1997, p. 18–29.

[CHO 63] CHOMSKY N., “Formal properties of grammar”, LUCE R. D., BUSH R. R.,
GALANTER E., Eds.,Handbook of Mathematical Psychology, vol. II, p. 323–418, John
Wiley and Sons, Inc., 1963.

[EAR 70] EARLEY J., “An efficient context-free parsing algorithm”,Communications of the
ACM, vol. 6, num. 8, 1970, p. 451–455.

[EVA 98] EVANS R., WEIR D., “A structure-sharing parser for lexicalized grammars”,Proc.
of COLING–ACL, 1998, p. 372–378.

[HAA 87] H AAS A. R., “Parallel parsing for unification grammars”,Proc. of the 14th IJCAI,
1987, p. 615–618.

[HAR 90] HARBUSCH K., “An efficient parsing algorithm for Tree Adjoining Grammars”,
Proc. of the 28th ACL, 1990, p. 284–291.

[KAS 95] KASPERR., KIEFERB., NETTERK., VIJAY-SHANKER K., “Compilation of HPSG
to TAG”, Proc. of the 33rd ACL, 1995, p. 92–99.

[KEL 94] K ELLER B., Feature Logics, Infinitary Descriptions and Grammars, CSLI publica-
tions, 1994.

[KIE 00] K IEFER B., KRIEGERH.-U., “A context-free approximation of Head-Driven Phrase
Structure Grammar”,Proc. of the sixth IWPT, 2000, p. 135–146.

[KOR 90] KORNAI A., PULLUM G. K., “The X-bar theory of phrase structure”,Language,
vol. 66, 1990, p. 24–50.

[LEE 92] LEERMAKERS R., “A recursive ascent Earley parser”,Information Processing Let-
ters, vol. 41, num. 2, 1992, p. 87–91.

[MAR 93] M ARCUS M., SANTORINI B., MARCINKIEWICZ M. A., “Building a large anno-
tated corpus of English: the Penn Treebank”,Computational Linguistics, vol. 19, num. 2,
1993, p. 313–330.

[MAX 93] M AXWELL III J. T., KAPLAN R. M., “The interface between phrasal and func-
tional constraints”,Computational Linguistics, vol. 19, num. 4, 1993, p. 571–590.

[MIL 99] M ILLER P. H.,Strong Generative Capacity, CSLI publications, 1999.

[MIY 03] M IYAO Y., NINOMIYA T., TSUJII J., “Lexicalized grammar acquisition”,Proc. of
the 10th EACL companion volume, 2003, p. 127–130.

[NED 98] NEDERHOF M.-J., “An alternative LR algorithm for TAGs”, Proc. of COLING–
ACL, 1998, p. 946–952.

[NOO 94] VAN NOORD G., “Head corner parsing for TAG”,Computational Intelligence,
vol. 10, num. 4, 1994, p. 525-534.

34 TAL. Volume 44 - n◦ 3/2003

[POL 94a] POLLARD C., SAG I. A., Head-Driven Phrase Structure Grammar, University of
Chicago Press and CSLI Publications, 1994.

[POL 94b] POLLER P., “Incremental parsing with LD/TLP-TAGs”,Computational Intelli-
gence, vol. 10, num. 4, 1994, p. 549–562.

[POL 98] POLLER P., BECKER T., “Two-step TAG parsing revisited”,Proc. of TAG+4, 1998,
p. 143–146.

[SAR 00a] SARKAR A., “Practical experiments in parsing using Tree Adjoining Grammars”,
Proc. of TAG+5, 2000, p. 193–198.

[SAR 00b] SARKAR A., XIA F., JOSHI A., “Some experiments on indicators of parsing com-
plexity for lexicalized grammars”,Proc. of the 18th COLING workshop, 2000, p. 37–42.

[SCH 88] SCHABES Y., ABEILLÉ A., JOSHI A. K., “Parsing strategies with ‘lexicalized’
grammars: application to Tree Adjoining Grammars.”,Proc. of the 12th COLING, 1988,
p. 578–583.

[SCH 95] SCHABES Y., WATERS R. C., “Tree Insertion Grammar: A cubic-time parsable for-
malism that lexicalizes context-free grammar without changing the tree produced”,Com-
putational Linguistics, vol. 21, num. 4, 1995, p. 479–513.

[SHA 02] SHAUMYAN O., CARROLL J., WEIR D., “Evaluation of LTAG parsing with su-
pertag compaction”,Proc. of TAG+6, 2002, p. 201–205.

[TOM 86] TOMITA M., Efficient Parsing for Natural Language: A Fast Algorithm for Practi-
cal Systems, Kluwer Academic Publisher, 1986.

[TOR 95] TORISAWA K., TSUJII J., “Compiling HPSG-style grammar to object-oriented lan-
guage”, Proc. of the NLPRS, 1995, p. 320–325.

[TOR 96] TORISAWA K., TSUJII J., “Computing phrasal-signs in HPSG prior to parsing”,
Proc. of the 16th COLING, 1996, p. 949–955.

[TOR 00] TORISAWA K., NISHIDA K., MIYAO Y., TSUJII J., “An HPSG parser with CFG
filtering”, Natural Language Engineering, vol. 6, num. 1, 2000, p. 63–80.

[VIJ 85] VIJAY-SHANKER K., JOSHI A. K., “Some computational properties of Tree Adjoin-
ing Grammars”, Proc. of the 23rd ACL, 1985, p. 82–93.

[VIJ 87] VIJAY-SHANKER K., “A study of Tree Adjoining Grammars”, PhD thesis, Depart-
ment of Computer & Information Science, University of Pennsylvania, 1987.

[VIJ 88] VIJAY-SHANKER K., JOSHI A. K., “Feature structures based Tree Adjoining Gram-
mars”, Proc. of the 12th COLING, 1988, p. 714–719.

[XIA 99] X IA F., “Extracting Tree Adjoining Grammars from bracketed corpora”,Proc. of
the fifth NLPRS, 1999, p. 398–403.

[XTA 01] XTAG R ESEARCHGROUP, “A lexicalized Tree Adjoining Grammar for English”,
report num. IRCS-01-03, 2001, IRCS, University of Pennsylvania.

[YOS 99] YOSHIDA M., NINOMIYA T., TORISAWA K., MAKINO T., TSUJII J., “Efficient
FB-LTAG Parser and its Parallelization”,Proc. of PACLING, 1999, p. 90–103.

[YOS 02] YOSHINAGA N., MIYAO Y., “Grammar conversion from LTAG to HPSG”,The
European Student Journal on Language and Speech, , 2002, available at
http://hltheses.elsnet.org/eventpapers/essliproceed.htm.

[YOU 67] YOUNGERD. H., “Recognition and parsing of context-free languages in timen3”,
Information and Control, vol. 2, num. 10, 1967, p. 189–208.

Parsing comparison across formalisms 35

A. Formal proof of strong equivalence for the grammar conversion from LTAG
to HPSG-style grammar

The proof comprises two parts. Part one proves that strong equivalence is guar-
anteed for the conversion from LTAGG to canonical LTAGG′ by the tree division
and the tree substitution. Part two proves that strong equivalence is guaranteed for the
conversion from canonical LTAGG′ to an HPSG-style grammarG′′.

A.1. Definitions

Definition A.1 (Lexicalized Tree Adjoining Grammar (LTAG)) A lexicalized tree
adjoining grammar G is a quintuplet (Σ,NT , S, I, A) where Σ and NT are a finite
set of terminal symbols and a finite set of nonterminal symbols, respectively, S is a
distinguished nonterminal symbol called the start symbol, and I and A are a finite set
of initial trees and a finite set of auxiliary trees, respectively.13

Here, an elementary tree γ ∈ A ∪ I is a tree whose leaf nodes are labeled by
X ∈ NT ∪ S or x ∈ Σ, and whose internal nodes are labeled by X ∈ NT ∪ S. The
symbol of one leaf node in an auxiliary tree β ∈ A is identical to that of its root node,
and is specially marked as a foot node. Note that more than one leaf node, called
anchors, in an elementary tree γ are labeled with x ∈ Σ, and leaf nodes other than
anchors and the foot node are marked as substitution nodes.

We hereafter use the notion ofan address of a node in a tree. An address of a tree
is a symbol that indicates a unique node in the tree.

Next, we definea derivation for an elementary treeγ. Let us denote a tree that
is derived from an elementary treeγ by having substitution and adjunction intoγ as
γ′. When we produceγ′ from an elementary treeγ by applying substitutions and ad-
junctions of several treesγ′

1, γ
′
2, . . . , γ

′
k to γ atk distinct addressesa1, a2, . . . , ak, the

production is denoted byγ′ → γ[a1, γ
′
1][a2, γ

′
2] . . . [ak, γ′

k] wherek ≥ 1, and[ai, γ
′
i]

indicates substitution atai of γ′
i if ai is a substitution node, or indicates adjunction

at ai of γ′
i if ai is an internal node. This production is calleda derivation for γ if

a1, a2, . . . , ak include all addresses of the substitution nodes inγ. A derivation for
γ without substitution and adjunction is denoted asγ′ → ε. The set of all possible
derivationsDG for LTAG G = (Σ, NT , S, I, A) is then denoted as follows:

DG = {γ′
i → ε | 1 ≤ i ≤ m, γi ∈ A ∪ I, γi includes no substitution node.}

∪ {γ′
i → γi[a1, γ

′
i1

][a2, γ
′
i2

] . . . [ak, γ′
ik

] | k ≥ j ≥ 1, i > m, γi, γij
∈ A ∪ I,

a1, a2, . . . , ak include all addresses of the substitution nodes inγi}
We use the above notations to definea derivation tree, which represents the history of
combinations of trees and is a structural description of LTAG.

13. The LTAG definition follows the definition of TAG given by Vijay-Shanker [VIJ 87]. Due
to limitations of space, we omit the notion of adjoining constraints and the proof including the
notion in this article, and then assume all internal nodes take selective adjoining constraints.

36 TAL. Volume 44 - n◦ 3/2003

Definition A.2 (derivation tree) A derivation tree for LTAG G = (Σ, NT , S, I , A),
ΥG, is formed from any subset of the set of all derivations DG by uniquely relabeling
identical elementary trees in the derivations of the subset. A derivation tree ΥG must
satisfy the following conditions:

– Because γi can be adjoined or substituted once, γ′
i can appear once respectively

in the left-hand side and the right-hand side of derivations in ΥG except for the one
distinguished elementary tree γS , which is the root of the derivation tree ΥG. The
condition implies that trees cannot be substituted or adjoined to more than one node.

– γ′
S can appear once in the left-hand side of the derivation.

– The inequality i > ij ≥ 1 is necessary to avoid cyclic applications of substitu-
tion and adjunction among elementary trees.

Next, we give the definition of strong equivalence between two grammarsG1 and
G2. Strong equivalence is intuitively that the two grammars generate equivalentstruc-
tural descriptions, which are the most informative data structures given byG; exam-
ples of structural descriptions are parse trees by CFG and derivation trees by LTAG.
The following definition follows from the one by Miller [MIL 99, p. 7].

Definition A.3 (strong equivalence) Let the set of all possible structural descrip-
tions given by two given grammars G1 and G2 be TD(G1) and TD(G2). The two given
grammars G1 and G2 are strongly equivalent if and only if there is a bijective (i.e.,
one-to-one and onto) mapping from a structural description of G1, ΥG1 ∈ TD(G1),
to a structural description of G2, ΥG2 ∈ TD(G2).

In what follows, we assume that structural descriptions of LTAG are derivation
trees in which the root node ofγS is labeled by the start symbolS in the definition A.2.

A.2. Proof of strong equivalence for the tree division and the tree substitution

The tree substitution of Section 3.2 is exactly the same as the one that Schabes and
Waters [SCH 95, pp. 494–495] defined and proved in their procedure of strong lexical-
ization of CFG. We briefly give a proof sketch that strong equivalence is guaranteed
for grammars before and after the tree division.

For the tree division of Section 3.2, we can readily construct a bijective mapping
between derivation trees by LTAGG and canonical LTAGG′ converted fromG by the
tree division. Assume that an elementary tree ofG, γ, is converted by the tree division
into a supertreeγu and a subtreeγv, both of which are elementary trees ofG′. We can
then map any derivation tree byG one-to-one onto a unique derivation tree byG′ by
replacing every occurrence ofγu which takes a substitution ofγv in derivations with
γ and vice versa. Note thatγv must accompanyγu becauseγv can be substituted only
into γu and cannot be the root of a derivation tree.

Parsing comparison across formalisms 37

A.3. Proof of strong equivalence for the conversion from canonical LTAG to an
HPSG-style grammar

We prove that strong equivalence is guaranteed for a conversion from canonical
LTAG G to an HPSG-style grammarG′. We first definean HPSG parse, which is a
structural description of an HPSG-style grammar. We then prove strong equivalence
by giving a bijective mapping from a derivation tree byG to an HPSG parse byG′.

Definition A.4 (HPSG-style grammar converted from LTAG) Given canonical
LTAG G = (Σ, NT , S, I , A), an HPSG-style grammar G′ converted from G is
denoted by a sextuplet (Σ, NT , S, ∆I , ∆A, R) where δi ∈ ∆I and δj ∈ ∆A are
lexical entries converted from γi ∈ I and γj ∈ A, respectively, and R denotes the
substitution and adjunction rules. δi is denoted as follows: δi = (s0, (s1, l1, d1, t1),
. . ., (sk, lk, dk, tk)) where k ≥ 1, s0 ∈ Σ ∪ NT is the symbol of the mother node of
the anchor in γi, and sj ∈ Σ ∪ NT , lj ∈ Σ ∪ NT , dj ∈ {right , left}, tj ∈ {+,−}
are values of Sym, Leaf, Dir, and Foot? features in the j-th element of the Arg feature
in δi. When the length of the Arg feature of δi is 0, δi is denoted as δi = (s0, φ).

First, we introduce the notion oforigination for the Sym and Leaf features in
HPSG lexical entries in order to definean HPSG parse, which represents the histories
of rule applications to lexical entries and is a structural description of an HPSG-style
grammar. We hereafter assume that each HPSG lexical entryδi is converted from a
canonical elementary treeγi. We define the origination of the feature inδi as〈p, γi〉,
which indicates that the value of the feature originates from the symbol of a node with
addressp in γi.

Next, we definea rule history for δi, which is a history of rule applications to a
lexical entryδi. Since the grammar rule must pop the value of theArg feature of one
daughter, we assign each rule application toδi as an element of the sequence of rule
applications forδi if and only if the applied rule pops an element that originates from
an element of theArg feature inδi. Assume thatδi is denoted as the one given in
definition A.4. When the origination oflj andsij

unified with lj in the grammar rule
are〈aj , γi〉 and〈b, γij

〉, respectively, a sequence of rule applications forδi is denoted
as follows:

δ′i → δi[xi1 , yi1][xi2 , yi2] . . . [xik
, yik

],

wherek ≥ j ≥ 1, (xij
, yij

) is (ai, δ′ij
) if tj = − or (b, δij

) if th = +. When
xi1 , xi2 , . . . xik

include b wherek ≥ h ≥ 1 and th = + or aj wherek ≥ j ≥ 1
andtj = − in the sequence of rule applications forδi, we call the sequence of rule
applicationsa rule history for δi. When the length of theArg feature ofδi is 0, a rule
history forδi is denoted byδ′i → ε.

Lemma A.1 Given an HPSG-style grammar G′ = (Σ, NT , S, ∆I , ∆A, R), a rule
history for δi ∈ ∆I ∪ ∆A must be the following form.

i) When the length of the Arg feature of δi is 0, δ′i → ε

38 TAL. Volume 44 - n◦ 3/2003

ii) When the length of the Arg feature of δi is not 0 and δi ∈ ∆I , δ′i →
δi[a1, δ

′
i1

][a2, δ
′
i2

] . . . [ak, δ′ik
].

iii) When the length of the Arg feature of δi is not 0 and δi ∈ ∆A, δ′i →
δi[a1, δ

′
i1

] . . . [ah−1, δ
′
ih−1

][b, δih
][ah+1, δ

′
ih+1

] . . . [ak, δ′ik
] where th = +.

Proof When the length of theArg feature ofδi is 0, no rule application is assigned
as a rule application forδi because it is defined according to elements in theArg
feature. The rule history forδi is thus denoted asδ′i → ε.

Whenδi ∈ ∆I , the elements in theArg feature ofδi keep their order until the
grammar rules consume all the elements. This is because both substitution and ad-
junction rules do not change the order of theArg feature, and also do not remove an
element of theArg feature without unifying it with another node. The rule history for
δi is thus denoted asδ′i → δi[a1, δ

′
i1

][a2, δ
′
i2

] . . . [ak, δ′ik
].

Whenδi ∈ ∆A, the elements in theArg feature ofδi keep their order until the
grammar rules consume all the elements as in the case whereδi ∈ ∆I . One difference
is that it includes exactly one elementlh whenth = +. The rule history forδ is then
denoted byδ′i → δi[a1, δ

′
i1

] . . . [ah−1, δ
′
ih−1

][b, δih
][ah+1, δ

′
ih+1

] . . . [ak, δ′ik
] whereth

= +.

By using lemma A.1, we can define the set of rule histories byG′ = (Σ, NT , S,
∆I , ∆A, R) as follows:

DG′ = {δ′i → ε | 1 ≤ i ≤ m, γi ∈ I, the length of theArg feature ofδi is 0}
∪ {δ′i → δi[a1, δ

′
i1

] . . . [ak, δ′ik
] | m < i ≤ n, k ≥ j ≥ 1, δi, δij

∈ ∆I}
∪ {δ′i → δi[a1, δ

′
i1

] . . . [ah−1, δ
′
ih−1

][b, δih
][ah+1, δ

′
ih+1

] . . . [ak, δ′ik
]

| n < i, k ≥ h ≥ 1, k ≥ j ≥ 1, th = +, δi ∈ ∆A, δij
∈ ∆I}

We use the above notations to definean HPSG parse, 14 which represents the history
of rule applications and is a structural description of an HPSG-style grammar.

Definition A.5 (HPSG parse) Given an HPSG-style grammar G′ = (Σ, NT , S, ∆I ,
∆A, R) converted from G, an HPSG parse ΨG′ is formed from any subset of the set
of all rule histories DG′ by renaming identical lexical entries in the rule histories of
the subset uniquely. An HPSG parse ΨG′ must satisfy the following conditions:

– δ′i where δi ∈ ∆I can appear once respectively in the left-hand side and the
right-hand side of rule histories except for the one distinguished lexical entry δS where
δ′S appears once in the left-hand side of the rule history for δS .

– δ′i where δi ∈ ∆A must appear only once in the left-hand side of the rule history
for δi.

– 1 ≤ ij < i for the rule history for δi ∈ ∆I .

14. Due to limitations of space, we omit the proof showing that an HPSG parse byG corre-
sponds to a unique parse tree derived byG.

Parsing comparison across formalisms 39

– 1 ≤ ij < i where j �= h, and ih > i, for the rule history for δi ∈ ∆A.

The third and fourth conditions are necessary to avoid cyclic applications of grammar
rules to lexical entries.

Lemma A.2 Let G = (Σ, NT , S, I , A) be canonical LTAG and G′ = (Σ, NT , S, ∆I ,
∆A, R) be an HPSG-style grammar converted from G. Then, we can map a derivation
tree ΥG by G one-to-one onto to an HPSG parse ΨG′ by G′.

Proof We first show a mapping fromΨG′ to a set of derivationsΥG′ , and then
show thatΥG′ is a valid derivation byG. Suppose an HPSG parse satisfying defini-
tion A.5. We can map it one-to-one onto a set of derivationsΥG′ with the following
procedure. For eachδi whereδi ∈ ∆A, we eliminate[b, δih

], which corresponds to
an application of the adjunction rule, and add the element[b, δ′i] to the right-hand side
of the rule history forδih

. Then, we obtain a set of derivationsΥG′ by replacingδij

andδ′ij
with γij

andγ′
ij

in the rule history forδi and by regarding it as the derivation
for γi in ΥG′ . This mapping is one-to-one because the operation pair of eliminating
[b, δih

] and adding[b, δ′i] is a one-to-one mapping.

Following the definition A.2, we show thatΥG′ is a valid derivation tree byG.
First, every substitution and adjunction in the derivations inΥG′ must be valid in
G. Since the substitution and adjunction rules preserve the order of the elements in
the Arg feature ofδi, substitution rules always unify the symbol of the substitution
node with the symbol of the root node ofγij

. This unification represents the same
constraint as the one imposed by substitution. We can give an analogous argument for
an adjunction rule. The substitution and adjunction in the derivations inΥG′ are then
valid in G. Second, all addresses in the substitution nodes ofγi must be included in
the derivation forγi. This is apparently guaranteed by definition of the rule history
for δi. Third, γ′

i can appear only once respectively in the right-hand side and the left-
hand side of the derivations. This is apparently guaranteed forγ′

i whereγi ∈ I by
definition A.5, and is guaranteed forγ′

i whereγi ∈ A becauseδ′i does not appear in
the right-hand side of rule histories,[b, δih

] appears only once in the rule history for
δi, and the elimination of[b, δih

] accompanies the addition of[b, γ′
i] once to the right-

hand side of the derivation forγih
. Fourth, the elements in the right-hand side of the

derivation forγi must be[aj , γ
′
ij

] whereij < i. This is apparently guaranteed forγ′
i

whereγi ∈ I by definition A.5, and is guaranteed forγ′
i whereγi ∈ A because the

addition of[b, γ′
i] for the derivation forγ′

ih
satisfiesih > i from definition A.5.

The frontier string is preserved before and after this mapping fromΨG′ to ΥG′ ,
becauseδi stores the same linear precedence constraints betweenδi andδj for i �= j
as the constraints betweenγi andγj . Thus, an HPSG parseΨG′ by G′ is mapped
one-to-one onto a derivation treeΥG′ that is valid inG.

We can construct a mapping fromΥG onto an HPSG parseΨG by inverting the
procedure for the above mapping fromΨG′ onto ΥG′ . The obtainedΨG is a valid
HPSG parse byG′ because we can give an analogous argument for the validity of the
rule histories inΨG.

