
Collaborative and Corpus-Driven Approaches

towards Lexicalized Grammar-based Natural Language Processing

by

Naoki YOSHINAGA

A Dissertation

Submitted to

the Graduate School of

the University of Tokyo

on December, 2004

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Information Science and Technology
in Computer Science

Thesis Supervisor: Jun’ichi TSUJII
Professor of Computer Science

��������

This dissertation proposes two approaches for constructing essential components of lexicalized

grammar-based natural language processing (NLP). We first provide a framework for developing

static components such as grammar resources and parsing technologies collaboratively across the

grammar formalisms. We second propose two corpus-driven methods of acquiring generic lexical

resources, which are dynamic in nature, for lexicalized grammars.

The first part of this dissertation proposes grammar conversion as a means of abstracting away

surface differences between the individual formalisms, and presents a methodology for collabo-

rative development of the static components of lexicalized grammars. Grammar conversion has

been so far proposed for sharing grammar resources between the formalisms. We show that, by

constructing a strongly equivalent grammar in a particular formalism from one given in another

formalism, one can gain a deeper insight into generic parsing techniques that are used for efficient

implementation of parsers for the formalisms, through comparison between the parsers using the

strongly equivalent grammars. We proposed a grammar conversion from LTAG to HPSG-style

grammar, and then conducted two sets of experiments from viewpoints of resource sharing and

parsing comparison. A large-scale LTAG grammar, the XTAG English grammar, was successfully

converted into an HPSG-style grammar. Empirical comparisons between LTAG and HPSG parsers

with dynamic programming and CFG filtering were then conducted using the strongly equivalent

grammars, respectively. We thereby suggest a definite way of improving these generic parsing

techniques.

The second part of this dissertation concerns two corpus-driven methods of augmenting lexical

resources for lexicalized grammars. We first propose a filtering method of subcategorization frames

acquired from raw corpora, and acquire a reliable set of SCFs to augment lexicons of lexicalized

grammars. We perform clustering of words according to their alternation behaviors, and use the

obtained clusters to guide filtering. We applied this filtering method to hand-coded lexicons of lex-

icalized grammars, and successfully filtered out less plausible SCFs from the noisy SCFs acquired

from raw corpora. We second propose a method of constructing a probabilistic lexicon with accu-

rate estimates of co-occurrence probabilities between words and SCF, by using the PLSA model for

smoothing the co-occurrence probabilities estimated from raw frequency counts. Given accurate

estimates for co-occurrence probabilities between words and SCFs, a reliable set of lexicons can

be reconstructed by thresholding. We applied this smoothing method to SCFs for HPSG acquired

from annotated corpora, and successfully decreased the test-set perplexity of the co-occurrence

probabilities by the interpolated model based on the PLSA model.

Acknowledgements

I spent so many nights in the laboratory; the statistics says it is more than 40% of the nights during

my doctor course. When I fell into a restless sleep in a sofa bed, I sometimes dreamed of ideas

that finally contributed to the individual algorithms described in this dissertation. I might therefore

have to thank the laboratory environment, including the sofa beds and carpets, before individual

persons.

Yet first of all, I would like to thank my supervisor, Prof. Jun’ichi Tsujii, for his encouragement,

helpful suggestions and criticisms throughout these five years. He showed me a range of possible

directions of my research, not only from computational viewpoints but also from linguistic view-

points. These directions help me to characterize this mysterious study as meaningful. I would also

like to express my gratitude to the members of my dissertation committee: Prof. Satoru Miyano

(chair), Prof. Masami Hagiya, Prof. Hiroshi Imai, and Prof. Sadao Kurohashi of the University of

Tokyo and Prof. Yuji Matsumoto of Nara Institute of Science and Technology, who have been good

enough to give this work a very serious review.

I am also indebted to Prof. Kentaro Torisawa of Japan Institute of Science and Technology

and Mr. Yusuke Miyao for their comments on approaches to the theme focused in this dissertation.

Prof. Kentaro Torisawa inculcated the philosophy as a researcher in me, with which I was im-

pressed much during the master course. Mr. Yusuke Miyao led me to this exciting research area in

computational linguistics. Most of the ideas in this dissertation were elaborated through a number

of discussions with him.

I next express my gratitude to Dr. Yuka Tateisi and Mr. Takuya Matsuzaki for discussions

on technical details and proofreading of this dissertation. Dr. Yuka Tateisi provided me several

valuable comments on the first part of this dissertation. Since the research is initially started as an

alternative to her study, I could make the research aim clearer through the meaningful discussions

with her from linguistic viewpoints. Mr. Takuya Matsuzaki provided useful comments on machine

learning techniques which are employed in the latter part of this dissertation to realize my original

ideas. Also, I could put my thoughts in order through discussions with him on the research aim and

approaches to lexical acquisition for lexicalized grammars.

I also express my gratitude to Dr. Takashi Ninomiya and Dr. Minoru Yoshida for their valuable

comments on my research. Dr. Takashi Ninomiya was a person who always embodies what a

researcher should be, which sometimes enjoys us. Dr. Minoru Yoshida would introduce to us his

‘products,’ which were sometimes fascinating and relaxed us. I should thank Mr. Yousuke Sakao

for his help in profiling an HPSG parser, and thank Dr. Yoshimasa Tsuruoka and Mr. Kazuhiro

Yoshida for their advice on probabilistic modeling. I deeply appreciate Ms. Hiroko Nakanishi for

her support in using the Enju parser. I would thank Mr. Kenta Oouchida for discussions on parsing

algorithms for LTAG. Special thanks are also due to Dr. Takaki Makino, Mr. Yutaka Mitsuishi,

Dr. Edson T. Miyamoto, Dr. Jin-Dong Kim, and Dr. Jun’ichi Kazama for their encouragement and

corrections for my papers on which this dissertation based. Furthermore, the latter two are my good

bicycle friends, and we shared a good time for cycling along with exploring various ramen shops.

Ms. Akane Yakushiji and Mr. Satoshi Simpuku are very good fellows with whom I studied,

discussed our research, and enjoyed research life. I and Ms. Akane Yakushiji often had a rapid-fire

two-people comedy act; I usually feed her when she talks to herself. Mr. Satoshi Shimpuku is one

of my best friends in the laboratory with whom I talked various kinds of matters for the two years

during the master course.

Among other laboratory members, I would like to thank Mr. Takashi Tsunakawa, Mr. Yuichiro

Matsubayashi, and Mr. Tadayoshi Hara for chatting about several interesting topics together.

Mr. Takashi Tsunakawa brought me to various restaurants and hot springs, driving his own car.

On Sunday, we enjoyed grade-B gourmet tours, which focused on tasty cuisine at up to 1,000-yen.

Mr. Yuichiro Matsubayashi is a real dedicated person, and inspired me to look for ‘a new hobby’

every-time, which involves magic, cocktail, poem and the like. Mr. Tadayoshi Hara kindly let me

enjoy his belongings. I must remember to return them back to him before the graduation.

I thank secretaries in the laboratory. Especially, I owed many things to Ms. Mika Tarukawa and

Ms. Minako Ito during my research stay at University of Sussex. Ms. Mika Tarukawa would kindly

serve me a good green tea in the morning.

I wish to thank Prof. Aravind Joshi, Dr. Anoop Sarkar, Dr. Rashmi Prasad, Dr. Carlos Prolo,

and Dr. Tonia Bleam for supporting and discussing on the LTAG framework during my visit to

University of Pennsylvania, September 2000. Especially, I have Dr. Anoop Sarkar to thank for his

help in applying his parser as part of our experiments. He accepted many requests for the facility

of his parser, and spent his precious time. He was also a good guidance during my research stay at

University of Pennsylvania, and kindly let me make copies of precious papers and dissertations.

During 2003 - 2004, I spent 10 months in Brighton, UK as a visiting researcher of University

of Sussex, Informatics Department, under the guidance of Prof. John Carroll. The most of the latter

part of this dissertation had been worked out during the days I spent in Brighton.

Among others, I would first express my best gratitude to Prof. John Carroll, who invited me

to another approaches to lexicalized grammar-based natural language processing, which broadened

my research perspectives. I am gratefully to Dr. Diana McCarthy, Dr. Alex Fang, Dr. Rob Koeling,

Mr. Xinglong Wang, and other faculty members for helpful discussions, and especially thank Alex

Fang for his help in using the acquired lexical resources. I wish to thank a Japanese colleague

Prof. Kentaro Inui of Nara Institute of Science and Technology, for variable discussions and letting

me use his laptop when my laptop crashed just one day before the deadline of ACL. I am grateful

again to the other Japanese colleague Dr. Takaki Makino for enjoying a trip together to London,

Seven Sisters Country Park, and southern west of UK by a car. I am also grateful to Dr. Anna

Korhonen of University of Cambridge for variable discussions related to subcategorization acqui-

sition.

I can never thank enough for Kate, a landlady of my room, and roommates Cheng and Duan for

every-day care, support, and sharing a good living environment. Kate sometimes cooked various

kinds of food for me; they are actually the best English food I experienced in UK. Cheng brought

me to Seven Sisters Country Park, the best place I visited during my research stay. Duan is not

only a good chemist but also a good cook of Vietnamese food, and would kindly serve some of the

results.

I also acknowledge anonymous reviewers of the journals, conferences and workshops, who

gave me helpful comments to refine ideas and experiments, and would like to thank all members of

the laboratory for their patience that allows me to stay at the laboratory.

Finally, I thank my parents and my brother for supporting me in these years, and Ms. Chieko

Akiyama for encouraging me all the time during the doctor course.

Contents

Contents v

Introduction 1

I Approach to Collaboration among Lexicalized Grammars 9

1 Background to Lexicalized Grammar Formalisms 11

1.1 Lexicalized Tree Adjoining Grammar . 12

1.2 Head-Driven Phrase Structure Grammar . 15

1.3 HPSG-style Grammar: HPSG’s Computational Architecture 19

1.4 Grammar Resources and Parsing Techniques for LTAG and HPSG 21

1.4.1 Grammar Resources and Parsing Techniques for LTAG 21

1.4.2 Grammar Resources and Parsing Techniques for HPSG 22

2 Grammar Conversion from LTAG to HPSG-style Grammar 25

2.1 Algorithm . 25

2.1.1 Conversion of Canonical Elementary Trees 27

2.1.2 Tree Division: Division of Non-canonical Elementary Trees 28

2.1.3 Tree Substitution: Substitution in Non-anchored Subtrees 31

2.1.4 Definition of ID Grammar Rules . 31

2.1.5 Extension to FB-LTAG . 35

2.2 Correspondence between HPSG-style Grammar and HPSG 35

2.3 Proof of Strong Equivalence for Grammar Conversion 37

2.3.1 Informal Sketch on the Proof of the Strong Equivalence 37

v

2.3.2 Definitions . 39

2.3.3 Proof for Tree Division and Tree Substitution 41

2.3.4 Proof for Conversion from Canonical LTAG to HPSG-style Grammar . . . 44

2.4 Chapter Summary . 48

3 Experiments on Collaboration between LTAG and HPSG 51
3.1 Experiments on Grammar Resource Sharing . 51

3.2 Experiments on Parsing Comparison . 55

3.2.1 Dynamic Programming Techniques . 55

3.2.2 CFG Filtering Techniques . 58

3.2.3 Comparison of Dynamic Programming Techniques 61

3.2.4 Comparison of CFG filtering techniques 67

3.3 Chapter Summary . 70

4 Related Work to Collaboration among Lexicalized Grammar Formalisms 73
4.1 Grammar Conversions between LTAG and Other Formalisms 73

4.2 Previous Studies on Parsing of Lexicalized Grammars 77

4.2.1 Related Work on Dynamic Programming 77

4.2.2 Related Work on CFG filtering . 79

4.3 Comparison between Parsers for Different Grammar Formalisms 80

4.4 Further Collaboration between LTAG and HPSG using Our Results 81

II Approach to Acquiring Lexical Resources from Corpora 83

5 Background to Subcategorization Frame Acquisition 85
5.1 Verb Subcategorization and Its Treatment in Lexicalized Grammars 85

5.2 Automatic SCF Acquisition . 88

5.2.1 SCF Acquisition for General SCF Types 89

5.2.2 SCF Acquisition for Lexicalized Grammars 90

5.3 Linguistic Knowledge on SCF behavior . 93

6 Filtering Method for SCF Lexicon Acquired from Raw Corpora 95
6.1 Estimation of SCF Confidence Vectors . 96

6.2 Clustering of SCF Confidence Vectors . 99

6.3 Cut-off Methods Exploiting the Obtained Clusters 101

vi

6.4 Experiments on Filtering SCF Lexicon Acquired from Raw Corpora 102

6.5 Related Work . 107

6.6 Chapter Summary . 108

7 Smoothing Method for SCF Lexicon Acquired from Annotated Corpora 111
7.1 Preliminaries . 112

7.1.1 Probabilistic Latent Semantic Analysis 112

7.1.2 EM Estimation for the Probabilistic Latent Semantic Analysis 114

7.2 Probabilistic Latent Semantic Analysis for Modeling Verb Subcategorization . . . 116

7.2.1 Model Definition . 116

7.2.2 EM Estimation of the Probabilistic Latent Semantic Model for SCFs 117

7.3 Smoothing Method for SCF Distributions . 118

7.4 Experiments on Smoothing SCF Lexicon Acquired from Annotated Corpora 119

7.5 Related Work . 122

7.6 Chapter Summary . 123

Conclusions 125

Bibliography 131

A Fine-grained 163 SCF Types 151

Index 163

vii

List of Figures

1.1 Lexicalized Tree Adjoining Grammar . 12

1.2 Derived tree and derivation tree . 13

1.3 Elementary trees that represent subcategorization frames 14

1.4 Elementary trees that represent recursive structures 14

1.5 HPSG sign (left) and its AVM description (right) 16

1.6 HPSG signs that represent subcategorization frames 16

1.7 HPSG signs that represent recursive structures . 17

1.8 ID schemata that represent head-subject, head-complement, and head-adjunct rela-

tions . 17

1.9 HPSG parse tree for a sentence “we can always run” and the head domain taken by

“can” . 18

1.10 Example of bottom-up parsing with an HPSG-style grammar 21

2.1 A canonical elementary tree and non-canonical elementary trees 26

2.2 An algorithm for converting a canonical elementary tree 27

2.3 Converting a canonical elementary tree for “think” 28

2.4 Dividing a multi-anchored elementary tree for “look for” 29

2.5 Converting a non-anchored subtree to a set of multi-anchored trees 29

2.6 An algorithm for dividing a non-canonical elementary tree MT into a set of sub-

trees ST , each of which has at most one anchor. 30

2.7 An algorithm for converting a non-anchored subtree NT into a set of multi-

anchored trees MT . 32

2.8 Grammar rules: the substitution rule and adjunction rule 33

2.9 LTAG and HPSG parsing of the phrase “what you think he loves” 34

2.10 Predicative auxiliary tree for “think” and modifier auxiliary trees for “always” and

“blue” . 36

ix

2.11 LTAG and HPSG parsing of the phrase “what you think he loves” (revisited) 38

2.12 Sketch for the tree substitution . 42

2.13 Sketch for the tree division . 42

2.14 The origination for the Sym and Leaf features in the HPSG lexical entries converted

from elementary trees . 45

3.1 Non-canonical elementary trees for verbs that take a PP complement 53

3.2 A non-canonical elementary tree for a verb that takes PP complement and its syn-

tactic alternation of wh-moved object of a P . 54

3.3 A non-canonical elementary tree that expresses it-cleft without gap 54

3.4 Example of head-corner parsing for an LTAG grammar 56

3.5 Example of CKY-style parsing for an HPSG grammar 57

3.6 Extraction of CFG from LTAG . 59

3.7 Ok-propagation from an essential edge to another 59

3.8 Extraction of CFG from HPSG . 60

3.9 Parsing performance with the XTAG English grammar for the ATIS corpus 62

3.10 Difference between factoring schemes in LTAG and HPSG: ambiguity between NP

and NP-NP constructions . 63

3.11 Difference between factoring schemes in LTAG and HPSG: ambiguity between NP

and NP-PP constructions . 64

3.12 Number of edges of a variant of Naive (Naiverf) and Naive 65

3.13 CF approximation of an HPSG-style grammar converted from LTAG 70

4.1 Exponential variations in the Arg feature . 76

4.2 An example of syntactic phrasal ambiguity for a phrase “human decadent” 78

4.3 An example of syntactic lexical ambiguity which the HPSG parser cannot factor out 79

5.1 LTAG lexical entries for “love,” “give,” and “think” 86

5.2 Metarule for lexicon organization . 87

5.3 An acquired SCF for a verb “yield” . 92

6.1 SCF probability distribution for “apply” . 96

6.2 Clustering algorithm for SCF confidence vectors 100

6.3 Precision and recall of SCFs filtered using frequency cut-off and confidence cut-off 105

6.4 Precision and recall of SCFs filtered using confidence cut-off and centroid cut-off . 106

x

7.1 Typical examples of conditional independence structures assumed in P (x|c) 113

7.2 Probabilistic Latent Semantic Analysis of co-occurrence between words and SCFs 117

7.3 The average number of SCF types assigned to words in WSJ Section 02 120

xi

List of Tables

3.1 Classification of elementary trees in the XTAG English grammar 52

3.2 The classification of multi-anchored trees . 52

3.3 The classification of trees with non-anchored subtrees 53

3.4 Parsing performance with the XTAG English grammar for the ATIS corpus 61

3.5 Size of extracted LTAGs (elementary trees) and CFGs approximated from them . . 67

3.6 Parsing performance (sec.) for Section 2 of WSJ 68

3.7 Number of essential edges generated in parsing of Section 02 of WSJ 68

3.8 Success rate (%) of phase 2 operations . 69

6.1 Precision and recall of XTAG SCFs filtered using frequency cut-off, confidence

cut-off, and centroid cut-off . 103

6.2 Precision and recall of ERG SCFs filtered using frequency cut-off, confidence cut-

off, and centroid cut-off . 104

7.1 The specification of SCFs for HPSG acquired from WSJ Sections 2-21 and their

subsets . 119

7.2 Test-set perplexity of P (fj |wi) against the test SCFs acquired from WSJ Section

24 for the SCF types are observed in WSJ Section 2 121

7.3 Test-set perplexity of P (fj |wi) against the test SCFs acquired from WSJ Section 24 122

xiii

Introduction

Researchers in the field of Natural Language Processing (NLP) have often argued on the questions

concerning whether in-depth syntactic and semantic information is critical to the performance of

NLP applications (Yakushiji et al. 2001; Li and Roth 2001; Sebastiani 2002; Chen and Ram-

bow 2003; Huang et al. 2004; Carreras and Màrques 2004). Although robust analysis of shallow

syntax including part-of-speech (POS) tags (Cutting et al. 1992; Brill 1994; Ratnaparkhi 1996;

Brants 2000), dependency structures (Kurohashi and Nagao 1994; Eisner 1996; Collins 1996;

Kudo and Matsumoto 2002; Yamada and Matsumoto 2003), and phrase structures (Jelinek et al.

1994; Magerman 1995; Collins 1997; Charniak 1997; Bod 2001; Collins 2003) has been suc-

cessfully employed in some systems that need to handle natural language texts (e.g., information

retrieval (Baeza-Yates and Ribeiro-Neto 1999) and text categorization (Sebastiani 2002)), intelli-

gent NLP applications such as information extraction, question answering, and machine translation

have been reported to require more information about what sentences involve (Copestake et al.

1995; Palmer et al. 1998; Harabagiu et al. 2001; Surdeanu et al. 2003). The research area that aims

at acquiring deep syntactic and semantic structures of sentences has thus emerged from behind the

success of shallow syntactic analysis (Gildea and Palmer 2002; Bouillon et al. 2003; Carreras and

Màrques 2004; Schulte im Walde and Brew 2002).

Among several attempts to provide in-depth syntax and semantic analysis, ‘lexicalization’ ap-

proaches to formalization of grammars have been extensively pursued in both syntactic (Kaplan

and Bresnan 1982; Gazdar 1988; Steedman 1986; Schabes et al. 1988; Pollard and Sag 1994) and

semantic theories (Pinker 1989; Jackendoff 1990; Dowty 1991; Levin 1993; Pustejovsky 1995).

In the established lexicalized grammar formalisms, syntactic constraints such as dependency and

constituency are abstracted away from grammar rules; those constraints are radically relocated into

lexical entries, and take the form of a subcategorization frame (SCF), a set of selectional constraints

on the types and the number of arguments of a predicate. Grammar rules therefore include only

a small number of construction-independent general rules, which interact with a richer lexicon to

1

capture syntactic generalization. Syntactic arguments of a predicate (e.g., verb) have thus a close

tie with semantic arguments of the predicates within their lexical entries. This integrated analysis

of syntactic and semantic structures is expected to meet the demand of the intelligent NLP systems.

Although the lexicalized grammar formalisms have potential to realize sophisticated NLP ap-

plications that require deeper linguistic analysis, such grammars have been rarely adopted in prac-

tical systems, due to the difficulty in developing indispensable components including grammar

resources, parsing technologies, and lexical resources1 suitable for the target domain. Because

lexicalized grammars are designed to handle both in-depth syntactic and semantic phenomena, the

design of grammar theories tends to be complicated, which also prevents us from achieving ef-

ficient processing environments. Although several theoretical and statistical parsing technologies

have been studied in individual formalisms, more efforts should be necessary for helping gram-

mar engineering and achieving enough efficiency for practical applications. On the other hand,

lexicalized grammars are inherently dependent on intricate lexicons, and developing the lexical

resources sets another bottleneck. Manual-development of comprehensive subcategorization lex-

icons has been proved to be costly and thus impractical. This is because predicates change their

behavior between sublanguages, domains and over time (Sekine 1998; Roland 2001). Thus we

need to establish both i) static components such as grammar resources and parsing technologies

and ii) dynamic lexical resources.

This dissertation proposes two methodologies for solving the above problems that set bottle-

necks in applying lexicalized grammars to practical applications. The first methodology accelerates

collaboration among lexicalized grammars in order to build static grammar resources and parsing

technologies. The second methodology tackles the problem to develop intricate lexicon resources

that are dynamic in nature.

Approach to Collaboration among Lexicalized Grammars

The first part of this dissertation describes a novel approach to collaboration among the lexical-

ized formalisms, towards constructing static components such as grammar resources and parsing

technologies that are generic within the lexicalized framework.

To date, individual lexicalized formalisms such as Lexicalized Tree Adjoining Grammar

(LTAG) (Schabes et al. 1988), Head-Driven Phrase Structure Grammar (HPSG) (Pollard and Sag

1994), and Combinatory Categorial Grammar (CCG) (Steedman 2000) have implemented gram-

1In this dissertation, we refer to lexical resources as associations between words and their lexical entry templates,
while we refer to grammar resources as grammar rules and lexical entry templates.

2

mars and their processing environments in each closed community. Some discussion of the corre-

spondences between the two formalisms has accompanied their development; i.e., their linguistic

relationships and differences have been investigated (Abeillé 1993; Kasper 1998), as has conversion

between two grammars in the two formalisms (Kasper et al. 1995; Tateisi et al. 1998; Becker and

Lopez 2000). These ongoing efforts towards collaboration have contributed to the development of

the two formalisms, particularly to the development of individual linguistic theories.

As have the linguistic theories elaborated, a wide range of parsers have been developed for

those grammars. Parsers that have been proposed independently of one another often share the

same parsing techniques that are claimed to be independent of individual grammar formalisms. Ex-

amples of such generic techniques are dynamic programming (Kasami 1965; Younger 1967; Earley

1970; Vijay-Shanker and Joshi 1985; Haas 1987), left-to-right parsing (Tomita 1986; Briscoe and

Carroll 1993; Schabes 1994; Nederhof 1998), reductions to Boolean matrix multiplication (Valiant

1975; Satta 1994; Rajasekaran and Yooseph 1998; Lee 2002), and two-phase (or guided) pars-

ing (Maxwell III and Kaplan 1993; Torisawa and Tsujii 1995; Yoshida et al. 1999; Barthélemy

et al. 2001; Kay 2000) including CFG filtering (Harbusch 1990; Poller 1994; Torisawa and Tsu-

jii 1996; Poller and Becker 1998; Torisawa et al. 2000; Kiefer and Krieger 2000). However, as

mentioned by Carroll (Carroll 1994) and other researchers, while these techniques are generic in

the sense that they can be used for efficient implementation of parsers for any grammar formal-

ism, their impact often varies from one formalism to another (Schabes and Waters 1995; Yoshida

et al. 1999). It seems that generic techniques actually interact with the characteristics of individual

grammar formalisms.

The proposed work is thus intended to provide a basis for accelerating collaboration between

the communities. It is built around a method of LTAG-to-HPSG grammar conversion, which is

expected to lower the technical barrier between the grammar formalisms. This differs from pre-

vious methods of conversion in that it guarantees strong equivalence between the original and the

obtained grammars;2 that is, the results of parsing (derivation trees) by an LTAG grammar can be

derived from those of the obtained HPSG-style grammar and vice versa. Having strongly equivalent

grammars based on two formalisms is valuable for both communities in the following way:

Sharing of grammar resources HPSG-based applications can make use of LTAG grammar re-

sources such as large-scale English (Doran et al. 2000) and French (Abeillé and Candito

2000) grammars that have been extensively developed. Our method of conversion can there-
2Chomsky (Chomsky 1963) first introduced the notion of strong equivalence between grammars, where both gram-

mars generate the same set of structural descriptions (e.g., parse trees). Kornai and Pullum (Kornai and Pullum 1990)
and Miller (Miller 1999) used the notion of isomorphism between sets of structural descriptions to provide the notion of
strong equivalence across grammar formalisms, which we have adopted in this research.

3

fore reduce the considerable workload involved in developing large-scale resources from

scratch. In this dissertation, we report on the conversion of a large-scale LTAG grammar.

Linguistic correspondence We are also able to explore the correspondences between linguistic

accounts given by the two formalisms. In the lexicalized framework, lexicon resources have

similar constraints such as subcategorization frames, which are considered to be indepen-

dent of individual formalisms. However, the grammar theories provide analogous linguistic

accounts on some of the other linguistic phenomena, as in the treatment of long-distance de-

pendencies in CCG and HPSG. Since the HPSG-style grammar obtained by our method has

both the computational architecture that underlies HPSG and the linguistic specifications that

were given in the original LTAG, the difference between the LTAG and HPSG formalisms

will be made apparent by comparing the obtained grammars with hand-crafted HPSG gram-

mars (Kay et al. 1994; Flickinger 2002). Such comparison will facilitate the development of

grammar theories.

Comparison of parsing technologies Grammar conversion can be used as a means of abstract-

ing away the surface differences between grammar formalisms, which are obstacles to carry

out a meaningful comparison among generic parsing techniques implemented for different

grammar formalisms. That is, by measuring the performance of parsers based on the original

grammar and the ones based on the obtained grammar, one can gain a deeper insight into

the generic parsing techniques and share techniques developed for parsers for different for-

malisms. Strongly equivalent grammars are also very helpful for incorporating techniques

that have been found to be efficient from the parsers based on one formalism to the parsers

based on another, because the grammar conversion defines a clear correspondence between

those grammars.

We theoretically validate our approach by providing a formal proof of strong equivalence for

our grammar conversion from LTAG to HPSG-style grammar, and empirically demonstrate our

methodology by utilizing the grammar conversion for sharing of grammar resources and parsing

comparison. We used the conversion algorithm which we implemented to successfully convert the

XTAG English grammar (XTAG Research Group 2001), which is a large-scale LTAG grammar, into

an HPSG-style grammar. In this dissertation, we investigated the types of linguistic phenomena

covered by the XTAG English grammar, and the correspondence to their analysis in the HPSG

formalism.

We focus on two generic parsing techniques in this dissertation, namely dynamic program-

ming (Sarkar 2000; Haas 1987) and CFG filtering (Harbusch 1990; Poller 1994; Torisawa and

4

Tsujii 1996; Poller and Becker 1998; Torisawa et al. 2000; Kiefer and Krieger 2000). We first see

how these techniques have been employed in parsers for the two particular grammar formalisms,

LTAG and HPSG. Since dynamic programming forms the basis of most contemporary parsing

techniques, a comparison of parsers using it allows us to roughly grasp the difference between the

performance of LTAG and HPSG parsers. Since the impact of CFG filtering for LTAG is quite

different from that for HPSG, CFG filtering can be a good material for demonstrating our method-

ology that improves generic parsing techniques through parsing comparison. Next, we show that

grammar conversion yielding an HPSG-style grammar from a given LTAG grammar reveals the

true nature of these generic parsing techniques. It follows from the experimental results that we

suggest parsing techniques for LTAG that can be more efficient than those implemented for the

original LTAG grammar, even though they use the same generic techniques.

Approach to Acquiring Lexical Resources from Corpora

The second part of this dissertation concerns novel approaches to acquire reliable ‘dynamic’ lexical

resources for lexicalized grammars from raw and annotated corpora in the target domain. Although

our collaborative approach within the lexicalized grammar formalisms facilitates the development

of static grammar resources, lexicon resources cannot be comprehensive enough to handle real-

world sentences. This is because predicates change their behavior between sublanguages, domains

and over time (Sekine 1998; Roland 2001), and such changes are difficult to predict in advance.

Thus we need to establish a method for dynamically acquiring appropriate lexical knowledge from

corpora.

There are two types of lexical resource available for lexicalized grammars. One is a lexicon

that includes only associations between words and SCF types, in other words, SCF co-occurrence

for words. A typical example of such lexicon is hand-coded lexicons, which are part of hand-

crafted lexicalized grammars (Doran et al. 2000; Abeillé and Candito 2000; Flickinger 2002). The

other type of lexical resource is a lexicon that includes not only associations between words and

SCF types but also co-occurrence frequency counts between words and SCF types in a particular

corpus, in other words, SCF distributions for words. A typical example of such lexicon is one

automatically acquired from annotated corpora (Xia 1999; Miyao et al. 2004). These resources

are precise enough to be employed for practical use, since they are built by human lexicographers

or acquired from annotated corpora by using elaborated heuristic rules. Their recall is, however,

reported not satisfactory for practical purpose (Roland 2001; Briscoe 2001), that is, they lack nec-

essary words (problem on unknown words) or lack necessary subcategorization frames (problem

5

on unknown associations between known subcategorization frames and known words) (Briscoe

2001).3 In this dissertation, we present two methods of augmenting the above two types of lexical

resources, respectively.

We first focus on a task that enhances the lexicons that include only associations between words

and SCF types, and propose a method of augmenting such lexicons by SCFs acquired from raw

corpora. A variety of methods have been proposed for automatic acquisition of general-purpose

SCFs from corpora (Brent 1993; Ushioda et al. 1993; Manning 1993; Ersan and Charniak 1996;

Briscoe and Carroll 1997; Carroll and Rooth 1998; Gahl 1998; Lapata 1999; Kuhn et al. 1998;

Sarkar 2000) (surveyed in (Korhonen 2002)). One interesting possibility is to use these techniques

to improve the coverage of existing large-scale lexical resources. However, there has been little

work on evaluating the impact of acquired SCFs with the exception of (Carroll and Fang 2004).

The problem when we integrate acquired SCFs into the target lexicon is the lower quality of the

acquired SCFs, since they are acquired in an unsupervised manner, rather than being manually

coded. If we attempt to compensate for the lack of recall by being less strict in filtering out less

likely SCFs, then we will end up with a larger number of noisy lexical entries, which will cause

erroneous parsing results. We thus need a method of selecting the most reliable set of SCFs from

the system output as demonstrated in (Korhonen 2002).

In this task, we make use of SCF co-occurrences for words in the target lexicon to guide filter-

ing of noisy acquired SCF lexicon. In the linguistic literature, SCF types taken by a single word is

known to correlate with each other, and their alternation relations called diathesis alternation have

been intensively studied (surveyed in (Levin 1993; McCarthy 2001)). In order to take advantages

of such alternation relations that are implicitly included in the target lexicon, we first obtain SCF

confidence vectors for words whose elements express how strong the evidence is that the word

has each SCF type. In order to capture SCF co-occurrence in the target lexicon, we next perform

clustering of SCF confidence vectors of words in the acquired SCF lexicon and the target lexicon.

Since each centroid value of the obtained clusters indicates whether the words in that cluster have

the SCF type, we eliminate SCFs acquired in error and predict possible SCFs according to the cen-

troids. We applied our clustering method to SCFs acquired from mobile phone corpus (Carroll and

Fang 2004), using the lexicons of the XTAG English grammar (XTAG Research Group 2001) and

the LINGO English Resource Grammar (ERG) (Copestake 2002), respectively. We then compared

the SCFs selected by our filtering method with SCFs obtained by naive frequency filtering in order

to investigate the effect of clustering.

3There is another problem for existing lexical resources, which is called unknown category problem, that is, a word
is expected to have a new SCF type which is not included in lexicons.

6

We second focus on the other type of lexical resource that includes co-occurrence frequency

counts between words and SCF types in a particular corpus, and propose a method of construct-

ing a probabilistic lexicon with accurate estimates of co-occurrence probabilities between words

and SCF types, by smoothing the co-occurrence probabilities estimated from the raw frequency

counts.4 In such probabilistic lexicons, accuracy of estimates of the co-occurrence probabilities is

quite important, because those probabilities determine the set of lexical entries that are employed

for parsing of a given sentence. When we acquire SCFs from a small amount of annotate corpora,

the resulting probability distributions are completely sparse. This implies that a parser may not be

able to employ necessary SCFs in parsing. On the other hand, when we acquire a probability from

a large amount of raw corpora, the resulting probability distributions are comprehensive but less

accurate. Such noisy distributions are quite problematic because they can deteriorate not only pars-

ing accuracy but also parsing efficiency (Sarkar et al. 2000). We thus need a method of acquiring

accurate and comprehensive SCF distributions not only to have better parsing accuracy but also to

determine an appropriate set of lexical entries that are employed in parsing.

In this task, we acquire accurate estimates of co-occurrence probabilities between words and

SCFs from a small amount of annotated corpora by using the Probabilistic Latent Semantic Analy-

sis (PLSA), which is a variant of latent class models, to perform smoothing of the observed accurate

but sparse co-occurrence probabilities. The PLSA captures co-occurrence events of observed vari-

ables (words and SCF types in this case) by assuming unobserved latent variables or classes. We

applied our smoothing method to SCFs of an HPSG grammar that is acquired from the Penn Tree-

bank (Marcus et al. 1993), and compared the test-set perplexity of the co-occurrence probabilities

estimated by linear interpolation using our PLSA model and raw observed frequency, with the test-

set perplexity of the co-occurrence probabilities estimated by a more simple model only using raw

observed frequency.

Thesis Structure The rest of this dissertation is structured as follows. Chapters 1 through 4

concern an approach to collaboration among grammar formalisms within the lexicalized grammar

framework, while Chapters 5 through 7 concern an approach to acquiring lexical resources from

corpora.

We first propose a grammar conversion from LTAG to HPSG-style grammar, and establish a

methodology for the collaboration between the LTAG and HPSG formalisms using the nature of

strong equivalence between an LTAG grammar and the HPSG-style grammar converted from the

4We assume that these lexicons assign probabilities to all possible associations between word and SCF types. The
lexicon thus included lexical entries whose probabilities are larger than 0. In this context, smoothing co-occurrence
probabilities between words and SCF types can be interpreted as an addition of plausible SCFs to the lexicons.

7

LTAG by the method we propose. Chapter 1 introduces the lexicalized grammar paradigm. We

focus on two instance formalisms, LTAG and HPSG, and describe their processing architectures

and existing resources including grammar resources and parsing techniques. Chapter 2 proposes a

grammar conversion from LTAG to HPSG-style grammar. A formal proof of the strong equivalence

between LTAG and HPSG-style grammar is provided in Section 2.3. Chapter 3 demonstrates our

methodology through sharing grammar resources and comparison between generic parsing tech-

nologies for the two formalisms. Chapter 4 mentions work related to collaboration among the

grammar formalisms.

We second describe a corpus-based extension of lexicalized grammar resources, making use of

reliable lexical resources that are manually-tailored or acquired from annotated corpora. Section 5

explains linguistic behavior of subcategorization frames (SCFs), the target of our lexical acquisi-

tion, and then reviews methods for automatically extracting SCFs from corpus data. Chapter 6

proposes a method of filtering out less plausible SCFs from the SCFs acquired from raw corpora,

exploiting co-occurrence tendency among SCF types in the target lexicon that includes only associ-

ations between words and SCF types. Chapter 7 proposes a method of obtaining accurate estimates

for co-occurrence probabilities between words and SCF types, for the target lexicon that includes

associations between words and SCF types along with their co-occurrence frequency counts.

8

Part I

Approach to Collaboration among
Lexicalized Grammars

9

Chapter 1

Background to Lexicalized Grammar
Formalisms

In this chapter we describe the lexicalized grammar paradigm (Schabes et al. 1988) and its two

instance formalisms (Schabes et al. 1988; Pollard and Sag 1994) we concern.

Most of current linguistic theories give lexical accounts of several linguistic phenomena that

used to be considered purely syntactic. The lexicon thus includes more information while grammar

rules are abstracted simply to express general grammatical construction. Following the description

given in (Schabes et al. 1988), we say that a grammar formalism is ‘lexicalized’ when it comprises:

Lexical entries: A finite set of (elementary) structures that are associated with words, which are

usually heads of these structures. These structures involve word-specific lexical/syntactic

constraints.

Grammar rules: A finite set of operations that compose elementary structures and generated

structures. These grammar rules represent general grammatical constructions.

The elementary structures define the domain of locality over which constraints are specified, and

these are local with respect to the lexical heads. The core constraint in the domain of locality for

the lexical head is a subcategorization frame which roughly represents a list of arguments for the

predicates (lexical heads). Arguments are words or phrases to complement the meaning of the

lexical head. We will mention detailed discussions for arguments and subcategorization frames in

Section 5.

In what follows, we describe the LTAG and the HPSG formalisms. An objective of our gram-

mar conversion is to provide a formal link between the two formalisms, and then to bridge these

11

�

�� ��

�

run

��

���

can

*

adjunction

��

�

we

substitution

α2

α1 β1anchor
foot node*
substitution node

α1, α2, β1: elementary trees

Figure 1.1: Lexicalized Tree Adjoining Grammar: basic structures (elementary trees) and compo-

sition operations (substitution and adjunction)

formalisms via strongly equivalent grammars obtained by the conversion. We therefore do not ex-

plain specific implementations of grammars in these formalisms, but describe the formal property

of grammars in these formalisms. Because the formal property of HPSG is not clearly defined

in the literature, we define HPSG-style grammar, the processing architecture that HPSG grammar

defines over the typed feature structure (Carpenter 1992). Finally, we introduce grammar resources

and parsing techniques developed for these formalisms.

1.1 Lexicalized Tree Adjoining Grammar

Lexicalized Tree Adjoining Grammar (LTAG) (Schabes et al. 1988) is a lexicalization approach

to Tree Adjoining Grammar (TAG) (Joshi et al. 1975), and defined by a set of elementary trees that

are composed by two operations called substitution and adjunction, as shown on Figure 1.1. An

elementary tree has at least one leaf node that is labeled with a terminal symbol (i.e., word) called

an anchor (marked with �). Elementary trees are classified as either initial trees (α1 and α2) or

auxiliary trees (β1). The label of one leaf node of an auxiliary tree is identical to that of its root

node, and this is specially marked (here, with ∗) as a foot node. In an elementary tree, leaf nodes

other than anchors and the foot node are called substitution nodes (marked with ↓).

In substitution, a leaf node (substitution node) is replaced by an initial tree, while in adjunction,

an auxiliary tree with the root node and a foot node labeled x is grafted onto a node with the same

symbol x. The results of analysis are described not only by derived trees (i.e., parse trees) but

also by derivation trees (Figure 1.2). The derivation trees represent the history of combinations of

trees, and are the deeper-level structural descriptions of LTAG. The left-hand side of Figure 1.2

12

derived tree
α1

β1α2

derivation tree
�

�� ��

���

can

�

we �

run

Figure 1.2: Derived tree and derivation tree

shows a derivation tree for the tree combination in Figure 1.1. In a derivation tree, each node

expresses each elementary tree, and an elementary tree expressed by an internal node is substituted

or adjoined by elementary trees expressed by its child nodes. Each branching thus expresses an

application of substitution and adjunction. In the right-hand side of Figure 1.2, an elementary tree

α1 is substituted by an elementary tree α2, and is adjoined by β2.1

FB-LTAG (Vijay-Shanker 1987; Vijay-Shanker and Joshi 1988) is an extension of the LTAG

formalism in which each node in the elementary trees has a feature structure, which contains a

set of grammatical constraints on the node. The constraints are to be satisfied through unification

during adjunction and substitution.

It is worth mentioning that the two key properties of LTAG elementary trees allow all depen-

dencies involving a particular word to be local within the lexical entries of the word; 1) extended

domain of locality (compared to CFG), and 2) factoring recursive structures from the domain of

locality. Kroch and Joshi (Kroch and Joshi 1986; Kroch 1987; Kroch 1989) built linguistic foun-

dation of the TAG formalisms by exploiting of these properties. The extended domain of locality

allows us to express properties related to a word (such as subcategorization, agreement, certain

types of word order variation) within the elementary tree anchored by the word. Figure 1.3 shows

example elementary trees of English LTAG grammar. Elementary trees α3, and α4 in the figure

represent subcategorization frames for the lexical anchors, “love” and “give.” The argument cate-

gory and their linear precedence constraints are explicitly expressed by the substitution nodes of an

1Strictly speaking, a derivation tree includes information on which nodes of an elementary tree take substitution or
adjunction by augmenting each branching with the node address in which those operations take place.

13

�

�� ��

�

love

α3

��

�

�� ��

�

give

α4

�� ��

�

�� ��

α5
�

��

ε �

loves

��

[NP I] love [NP Mary] [NP I] give [NP her] [NP a gift] [NP Who] loves [NP her]?

Figure 1.3: Elementary trees that represent subcategorization frames

��

�����

always

*

β2
�

����

think

β3

�� *

I always [VP run] [NP I] think [S that he is clever] He is [NP a man] [NP I] love

��

���

β4

*

���

����

love

���

ε

ε

Figure 1.4: Elementary trees that represent recursive structures

elementary tree and their positions within the tree structure.2 The elementary tree α5 expresses a

subject wh-extraction tree for α1. While dependency and constituency among predicates and their

arguments are roughly captured by putting them together within one elementary tree, recursive

structures of natural language such as adjunction and modification are expressed by one auxiliary

tree. Figure 1.4 shows example auxiliary trees. Auxiliary trees β2 and β3 respectively show modi-

2In the implemented LTAG grammars such as the XTAG English grammar (XTAG Research Group 2001), arguments
in predicates’ elementary trees are assigned subscripts according to their thematic roles.

14

fication of a verb phrase by an adverb “always” and an embedded clause of a verb “think.” Because

such modifiers and embedded clauses can repeatedly appear in a sentence, they are factored out as

single recursive structures, i.e., auxiliary trees. Another example is object-extracted relative clause

β4. The relative clause introduces to a sentence non-local dependency between an antecedent and

a predicate in the clause (the foot node and an anchor verb in the right-hand side of Figure 1.4. By

extending domain of locality to include an antecedent in an elementary tree of an anchor verb, this

non-local dependency is successfully expressed within the single elementary tree.

In short, the LTAG formalisms classify grammatical constructions into head-argument and

head-adjunct relations according to their recursiveness. Syntactic properties related to a lexical

anchor are explicitly described in the extended domain of locality given within each elementary

tree.

1.2 Head-Driven Phrase Structure Grammar

HPSG is a linguistic theory based on the lexicalized grammar formalism, and is characterized by

a modular specification of linguistic generalizations. It consists of lexical entries and Immediate

Dominance (ID) grammar rules which are further broken down into ID schemata and principles.3

All of them are described with typed feature structures (Carpenter 1992).

We should briefly introduce a formal property of the typed feature structures as a data structure.

The typed feature structure is a rooted directed acyclic graph structure whose nodes and edges

have an associated label. The label associated with a node is called type while a label associated

with an edge is called feature. In the following typed feature structures, we express features with

capitalized letters while we describe types with uncapitalized and italicized letters. Because the

value of features can be either a type or a typed feature structure, the typed feature structures can

represent a recursive structure like lists.4 Figure 1.5 exemplifies a typed feature structure and its

attribute-value matrix description. In the following, we describe typed feature structures by the

attribute-value matrix description.

In the HPSG formalism, syntactic properties related to a lexical head are expressed in a more

abstract way than in the LTAG formalisms. Figure 1.5 provides the definition of an HPSG sign,
3Strictly speaking, an HPSG grammar consists only of lexical entries and principles. One of the principles called

Immediate Dominance Principle mention that immediate dominance constituency should be licensed by one of the rule
schemata.

4The relations between types are represented by type hierarchy, and the unification is defined over the type hierarchy.
We omit the definition of these notions in this dissertation because feature structures in the FB-LTAG formalism are not
typed and we do not explicitly employ typing in the following feature structures except in the definition of the HPSG
feature structure.

15

sign
PHON list of string

SYNSEM

LOCAL

local

CAT

cat

HEAD
head
MOD synsem

CONTENT content

NONLOCAL

SUBCAT list of synsem

CONTEXT context

nonlocal

REL set of ref
SLASH set of local

synsem

sign

list of string

synsem

PHON

SYNSEM
LOCAL

NONLOCAL

local
cat

head

synsemCAT

HEAD

MOD

list of synsem

SUBCAT

context
content

CONTENTCONTEXT

nonlocal

set of local

set of ref

SLASH

REL

Figure 1.5: HPSG sign (left) and its AVM description (right)

sign
PHON <`` give’’>

SYNSEM

LOCAL

local

CAT

cat
HEAD verb

NONLOCAL

SUBCAT <NP NP NP>

nonlocal

REL {}

SLASH {}

synsem

sign
PHON <`` loves’’>

SYNSEM

LOCAL

local

CAT

cat
HEAD verb

NONLOCAL

SUBCAT <NP>

nonlocal

REL {}

SLASH {NP}

synsem

α2’ α3’ α4’
sign
PHON <`` love’’>

SYNSEM

LOCAL

local

CAT

cat
HEAD verb

NONLOCAL

SUBCAT <NP NP>

nonlocal

REL {}

SLASH {}

synsem

[NP I] love [NP Mary] [NP I] give [NP her] [NP a gift] [NP Who] loves [NP her]?

Figure 1.6: HPSG signs that represent subcategorization frames

which represents syntactic and semantic behavior of a word or a phrase. HEAD feature expresses

the characteristics of the head word of the sign, such as syntactic category. SUBCAT feature rep-

resents a subcategorization frame, a list of selectional constraints on the arguments of the head

word, while MOD feature represents a constraint on the modifiee of the head word (modifier).

Long-distance dependencies are captured by the use of NONLOCAL feature structures that involve

SLASH and REL features. Figure 1.6 exemplifies HPSG lexical entries for syntactic constructions

provided in Figure 1.3. While in LTAG subcategorization frames are represented by leaf nodes of

elementary trees, in HPSG they are represented by SUBCAT feature when they are local and by

SLASH feature when they are nonlocal, both of which are included in a lexical entry for the same

word. Head-adjunct relations, which are represented by relations between a foot node and anchors

in LTAG, are represented by the MOD feature, as shown in the left-hand side of Figure 1.7.

Unlike the LTAG formalism, in HPSG, the constraints on possible syntactic structures taken

16

sign
PHON <`` always’’>

SYNSEM

LOCAL

local

CAT

cat
HEAD

NONLOCAL

SUBCAT <>

nonlocal

REL {}

SLASH {}

synsem

sign
PHON <`` think’’>

SYNSEM

LOCAL

local

CAT

cat
HEAD verb

NONLOCAL

SUBCAT <NP S>

nonlocal

REL {}

SLASH {}

synsem

sign
PHON <`` love’’>

SYNSEM

LOCAL

local

CAT

cat
HEAD verb

NONLOCAL

SUBCAT <NP>

nonlocal

REL {}

SLASH {NP}

synsem

β2’ β3’ β4’

head
MOD VP

I always [VP run] [NP I] think [S that he is clever] He is [NP a man] [NP I] love

Figure 1.7: HPSG signs that represent recursive structures

HEAD
SUBCAT < >�

� �

HEAD
SUBCAT <>

�

Head-Subject Schema

HEAD
SUBCAT < , ,… , >�

��

HEAD �

Head-Complement Schema

…
� �

�

SUBCAT < >�

HEAD| MOD
�

�

HEAD
SUBCAT

�

Head-Adjunct Schema

HEAD
SUBCAT �

�

�

HC H C1 Cn-2H AH

Figure 1.8: ID schemata that represent head-subject, head-complement, and head-adjunct relations

by a head word are not explicitly included in lexical entries but are modularized into a set of

principles. There are three language-independent general principles that explicitly specify these

constraints. Immediate Dominance (ID) Principle breaks down the grammatical constructions into

the configurations of immediate constituency; local trees of depth one must be constructed by one

of Immediate Dominance (ID) Schemata. The ID schemata provide an abstract definition of gram-

matical relations such as head-complement, head-subject, head-adjunct, head-marker, head-filler

and the like. According to this notion of immediate constituency, other principles define the flow

of information in a global structure. The Head-Feature Principle describes the identity of the

HEAD Features between a phrase and its syntactic head. The Subcategorization Principle con-

strains the SUBCAT feature of the mother of a local tree, which expresses the fact that a head word

subcategorizes their arguments. Other principles describe construction-specific information flow.

Head-adjunct constraints, which LTAG formalized as adjunction operations, are provided not by

principle but by the Head-Adjunct Schema; the schema represents modification of head daughter

by non-head daughter, as show in the right-hand side of Figure 1.8.

Figure 1.8 shows examples of ID grammar rules for English provided in Pollard and

17

HEAD verb
SUBCAT < >

can

HEAD verb
SUBCAT < ,VP [SUBCAT< >] >� �

HEAD verb
SUBCAT < NP >

HEAD noun
SUBCAT <>

we
H

C H
head-subject
schema

HEAD verb
SUBCAT <NP, NP>

C
head-complement
schema

A

run

HEAD verb
SUBCAT <NP, NP>

H

always

HEAD adj [MODL verb]
SUBCAT < >

head-adjunct
schema

HEAD verb
SUBCAT < >

can

HEAD verb
SUBCAT < ,VP [SUBCAT< >] >� �

HEAD verb
SUBCAT < NP >

HEAD noun
SUBCAT <>

H

C H

HEAD verb
SUBCAT <NP, NP>

C

Head domain taken by ``can’’:

Figure 1.9: HPSG parse tree for a sentence “we can always run” and the head domain taken by

“can”

18

Sag (Pollard and Sag 1994). The information flow between a mother and the daughters of a lo-

cal tree is represented by the boxed numericals ‘ n ’ called tags that express structure-sharing;

the boxed numericals with the same number express the sharing of common values between

the two (sub-)feature structures. The Head Feature Principle is represented by structure-sharing

‘ 1 ’ between the HEAD feature structure, while the Subcategorization Principle is represented by

structure-sharing ‘ n ’ in the SUBCAT features. The three schemata represent linear precedence

configuration of daughters of a local tree according to values of the SUBCAT features. The left-

hand side and center of Figure 1.8 represent head-subject and head-complement relations, which

the head takes arguments according to its SUBCAT value. The right-hand side of Figure 1.8 shows

head-adjunct relation.

Using these definitions of principles and ID schemata, we define for each word head domain,

which is a notion analogous to extended domain of locality for a word in LTAG. The head domain of

a word is defined to be a syntactic tree structure that can be derived using values of features which

are related to word’s subcategorization frames (e.g, the SUBCAT, SLASH features).5 Figure 1.96 is

an example of a head domain of an auxiliary “can” in a sentence “we can run.” Due to immediate

constituency defined by the ID principle, the head domain is defined through a path from a head

word to its maximal projection, along with the siblings around the path.

1.3 HPSG-style Grammar: HPSG’s Computational Architecture

As seen in Sections 1.1 and 1.2, while LTAG developed the linguistic theory on the mathemati-

cally well-defined computational architecture, HPSG expresses a grammar with the typed feature

structures, more powerful framework which can describe any directed acyclic graph, and the set

of language-independent principles further restrict the form of grammars. We thus capture the

difference between the LTAG and the HPSG grammars in terms of 1) the difference between the

computational architecture that underlies the two formalisms and 2) the difference between the

ways of locating grammatical constraints in lexical entries, grammar rules, and principles (espe-

cially in HPSG). Because existing studies attempted capturing these two differences at once, they

obscure the formal property of the relation between the original and the obtained grammars. In this

dissertation, we rather focus on the difference between the computational architecture that underlies

the LTAG and HPSG formalisms, and then reveal the formal properties of it.

5In the work on conversion from HPSG to LTAG (Kasper et al. 1995), Kasper et al. refer these features as selector
feature.

6The value of category is presented for simplicity, and the irrelevant parts of the sign have been omitted.

19

We now define an HPSG-style grammar, the computational architecture of HPSG (Pollard and

Sag 1994), which are defined by the three general HPSG principles over the typed feature struc-

tures (Carpenter 1992). It consists of lexical entries and Immediate Dominance (ID) grammar

rules, each of which is described with typed feature structures. The greater generative power of

the underlying representation framework of HPSG allows us to obtain a trivial encoding of LTAG

in the typed feature structure, as described by Keller (Keller 1994, pp. 144–151).7 However, such

a conversion cannot meet our needs because the resulting grammar is far from the one defined

in (Pollard and Sag 1994), in that the resulting grammar does not satisfy the restriction on the pro-

cessing architecture imposed by the principles in HPSG, such as immediate constituency. Hence,

we restrict the form of an HPSG-style grammar to one that follows the HPSG formalism in the

following ways. A lexical entry for a particular word must express the characteristics of the word,

such as its subcategorization frame and grammatical category. ID grammar rules must represent

the constraints on the configuration of immediate constituency and not be a construction-specific

rule defined by lexical characteristics. These restrictions enable us not only to define a formal link

between computational architectures that underlies LTAG and HPSG, but also to clarify the rela-

tionships between linguistic accounts given using LTAG and HPSG by comparing the HPSG-style

grammar converted from LTAG with HPSG.

We should note that the HPSG-style grammar we have sketched above satisfies the requirement

on the processing architecture that is assumed in implemented HPSG parsers. This means that

we can apply any HPSG parsers to the obtained HPSG-style grammar. We should note that this

property of HPSG-style grammar is also indispensable for parsing comparison between LTAG and

HPSG parsers, because in parsing comparison we run LTAG and HPSG parsers using an LTAG

grammar and the HPSG-style grammar obtained by the grammar conversion, respectively.

Note that Pollard and Sag (Pollard and Sag 1994) provide detailed linguistic specifications for

the form of feature structures and adopt (language-specific) principles, as shown in Section 1.2.

In our definition, we assume that principles are implicitly encoded in lexical entries and when we

convert an LTAG grammar to an HPSG-style grammar we do not attempt to modularize linguistic

specifications in the LTAG into the corresponding HPSG principles. In this manner, our study

also investigates the utility of the HPSG processing architecture, which is defined by the HPSG

principles over the typed feature structure, as a means of expressing different linguistic theories

and intuitions.

Figure 1.10 illustrates an example of bottom-up parsing with an HPSG-style grammar. In the

7In their study, they simply represent a tree structure by nested lists like S-expressions in the programming language
LISP.

20

we can run

Grammar rule

unify

Sym: ��

Arg :
Sym�� ��

Arg ������

Sym�� ��

Arg ������

Sym�

Arg �

unify

�

�

we can run

Sym: ��

Arg :
Sym�� ��

Arg ������

Sym�� ��

Arg ������

Grammar rule

�Sym�

Sym�� ��

Arg ������

unify

unify

�

we can run

Sym: ��

Arg :
Sym�� ��

Arg ������

Sym�� ��

Arg ������

Sym�� ��

Arg ������

Sym�����

Arg �

Sym�

Arg �

	

Sym�

Arg �

	

�

Sym��

Arg �

Sym�

Arg �

	

�

	

�

�

Figure 1.10: Example of bottom-up parsing with an HPSG-style grammar

HPSG framework, a parse tree is generated by incrementally applying ID grammar rules to lexical

entries and constructing each of the branching structures one by one, while in LTAG it is done by

composing elementary trees with the two operations. Thus, the key points in the conversion are

1) how to encode the tree structure of an elementary tree as an HPSG lexical entry, and 2) how to

emulate substitution and adjunction by ID grammar rules. Note that there is no one-to-one corre-

spondence between elementary trees and HPSG lexical entries. This is because the head domain

defined by an HPSG lexical entry must take the form of the tree structure that can be decomposed

into immediate constituency (Figure 1.9), while the extended domain of locality defined by an

LTAG elementary tree can take arbitrary tree structure.

1.4 Grammar Resources and Parsing Techniques for LTAG and

HPSG

1.4.1 Grammar Resources and Parsing Techniques for LTAG

The LTAG and its variant formalisms have been applied to various NLP/CL applications such as

machine translation (Abeillé et al. 1990; Palmer et al. 1998), information retrieval (Chandrasekar

and Srinivas 1997), generation (Joshi 1987; McCoy et al. 1992; Stone and Doran 1997), sum-

marization (Baldwin et al. 1997), and psycholinguistic modeling (Joshi 1990; Kim et al. 1990;

Kinyon 1999). In the following paragraphs, we introduce existing grammar resources and parsing

technologies developed for the LTAG formalisms.

There are several grammars developed in the FB-LTAG formalism, including the XTAG En-

glish grammar, a large-scale English grammar (XTAG Research Group 2001) developed by the

21

XTAG Research group at the University of Pennsylvania. The XTAG Research Group has also

developed Korean, Chinese, and Hindi grammars. Development of a large-scale French gram-

mar (Abeillé and Candito 2000) has also started at the University of Pennsylvania, and is expanded

at University of Paris 7. The XTAG group also provided a grammar development environment

called the XTAG system, which is the most complete TAG workbench currently available (Doran

et al. 2000). It includes a graphical interface (Paroubek et al. 1992), a parser (Schabes 1994), and

a lexicon compiler.

Thanks to the mathematical foundation that underlies the LTAG framework, there are several

theoretical studies on parsing algorithms for LTAG. Some parsing algorithms that are originally de-

veloped for CFG are re-interpreted in the LTAG context. Examples include a CKY-style bottom-up

parser (Vijay-Shanker 1987), and Earley-style top-down parsers (Schabes and Joshi 1988; Schabes

1994; Nederhof 1999), and head-driven parsers (Lavelli and Satta 1991; van Noord 1994; Sarkar

2000), and parsers based on Boolean matrix multiplication (Satta 1994; Rajasekaran and Yooseph

1998). These parsers have at most the worst-case time complexity O(n6) for input length n with the

exception of (Satta 1994; Rajasekaran and Yooseph 1998), which requires O(M(n2)) where M(k)
is the time needed to multiply two k × k Boolean matrices. One of other parsing algorithms that

are claimed to be empirically efficient is two-phased (or guided) parsing (Harbusch 1990; Poller

1994; Poller and Becker 1998; Yoshida et al. 1999; Barthélemy et al. 2001), which uses a CFG

extracted from the original grammar to prune invalid parse trees before using the whole constraints

of the original grammar.

1.4.2 Grammar Resources and Parsing Techniques for HPSG

The HPSG formalism has been applied to various NLP/CL applications such as dialogue trans-

lation (Kay et al. 1994), machine translation (Copestake et al. 1995), information extrac-

tion (Yakushiji et al. 2001; Tsujii 2001), appointment scheduling (Uszkoreit et al. 1994), and

generation (Carroll et al. 1999). In the following paragraphs, we introduce existing grammar re-

sources and parsing technologies developed for the HPSG formalism.

Stanford University has been developing the English Resource Grammar (ERG), an HPSG

grammar for English, as part of the Linguistic Grammars Online (LinGO) project (Flickinger 2002).

In practical context, German (BABEL) and Japanese (JACY) HPSG-based grammars are developed

and used in the Verbmobil project (Kay et al. 1994). From the implemented English (ERG) and

Japanese (JACY) HPSG grammars, these groups also attempted to extract the components that are

common across these grammars and therefore may be useful in the development of new gram-

mars, and then provided them as the Grammar Matrix (Bender et al. 2002), which is open-source

22

starter-kit for the development of new HPSG grammars. The Grammar Matrix is demonstrated for

developing Greek, Italian, Norwegian HPSG grammars. The University of Groningen has inde-

pendently developed a wide-coverage HPSG-like grammar (Alpino) (Bouma et al. 2000). Uni-

versity of Tokyo has translated the XTAG English grammar into a large-scale HPSG-like grammar

(XHPSG) (Tateisi et al. 1998), and in parallel developed a wide-coverage underspecified HPSG-

like grammar for Japanese (SLUNG) (Mitsuishi et al. 1998), which is used in a high-accuracy

Japanese dependency analyzer (Kanayama et al. 2000). They have established a methodology for

developing large-scale grammars, the corpus-oriented grammar development (Miyao et al. 2004),

and have applied the methodology to the acquisition of robust English (Miyao et al. 2004) and

Japanese (Yoshida 2005) HPSG-like grammars. Stanford University has developed grammar de-

velopment environment called LKB (Linguistic Knowledge Builder), while University of Tokyo

uses grammar development environment called will (Imai et al. 1998) and its extension called

willex (Yakushiji et al. 2003) and Moriv.8

There are a variety of works on efficient parsing with HPSG, which allow the use of HPSG-

based processing in practical application contexts (Flickinger et al. 2000; Oepen et al. 2002). As in

the LTAG formalism, some parsing algorithms originally designed for CFG are imported in to the

HPSG framework. Examples include a CKY-style bottom-up parser (Haas 1987) and a left-corner

parser (Tomuro and Lytinen 2001). However, due to complex encoding of linguistic features in

the typed feature structures, cost of unification is the major obstacle to achieving an empirically

efficient HPSG parser. In order to solve inefficiency of unification, several algorithms have been

proposed (e.g., two-phased parsing (Torisawa and Tsujii 1996; Torisawa et al. 2000; Kiefer and

Krieger 2000) and a quick check (Malouf et al. 2003) method that immediately checks unifiability

of feature structures).

8�������������	
��������	��
��
����
���
����

23

http://www-tsujii.is.s.u-tokyo.ac.jp/moriv/

Chapter 2

Grammar Conversion from LTAG to
HPSG-style Grammar

This chapter describes in detail an algorithm for converting from LTAG to strongly equivalent

HPSG-style grammar, and discusses the correspondence between HPSG-style grammar and HPSG.

The formal proof of strong equivalence between an LTAG and the HPSG-style grammar converted

from the LTAG by the following grammar conversion is provided in Session 2.3.

2.1 Algorithm

As noted in Section 1.3, the grammatical constraints expressed in LTAG elementary trees should

be encoded in HPSG lexical entries, and substitution and adjunction should be emulated by ID

grammar rules. Thus, we propose a conversion algorithm which consists of 1) the conversion of

elementary trees into HPSG lexical entries and 2) the emulation of substitution and adjunction by

pre-determined ID grammar rules.

In the following description, we start by defining canonical elementary trees, which have a

one-to-one correspondence with HPSG lexical entries.1

Definition 2.1.1 (Canonical elementary tree) Canonical elementary trees are elementary trees

that satisfy the conditions below:

1In this dissertation, we assume that elementary trees consist of binary branching structures. A unary branching
can be regarded as a binary branching in which one daughter is the empty category, and n-ary (n ≥ 3) branchings
can similarly be converted into binary branchings. This conversion guarantees strong equivalence by virtue of being a
one-to-one mapping.

25

Canonical elementary tree Non-canonical elementary trees

a) Violation of Condition 1 b) Violation of Condition 2

think

�

�� ��

� � *

Non-anchored subtree

Tree with non-anchored subtrees

�

�� ��

� ��

� ��

for

look

Multi-anchored tree
�

�� ��

� ��

� ��give

Figure 2.1: A canonical elementary tree and non-canonical elementary trees

Condition 1: A tree has only one anchor,

Condition 2: Every branching structure in a tree contains trunk nodes,

where trunk nodes (nodes with bold face in Figure 2.1) are nodes on a trunk which is a path from

an anchor to the root node (the thick lines in Figure 2.1) other than the anchor (Kasper et al. 1995).

Conditions 1 and 2 respectively guarantee that a canonical elementary tree has only one trunk and

that each branching consists of a trunk node, a leaf node, and their mother which is also a trunk

node, as seen in the example on the left-hand side of Figure 2.1. The center and the right-hand

side of Figure 2.1 show non-canonical trees. We call a subtree of depth n(≥ 1) that includes no

anchor a non-anchored subtree (the right-hand side of Figure 2.1). Non-canonical elementary trees

are converted to canonical trees before converting into HPSG lexical entries by the algorithm in the

next section.

It should be noted that trunk nodes in canonical elementary trees are analogous to heads in the

HPSG formalism in each immediate constituency where they select a category next to be combined.

Thus a canonical elementary tree expresses the head domain defined by the lexical head. However,

we avoid using the term head instead of the term trunk because the trunk nodes do not always

have one-to-one correspondence to the notion of head in the HPSG formalism. We will discuss the

notion of head in HPSG-style grammar in Section 2.2.

26

������ � ��	
	����
�
�
	���� ��

 T
������� � ���� �
�����
	��� L

��
�
���
 �
	�
�����

��	�
��
������
	����T�
�
��	

w � ndepth(T)

arg � !"

#
� i � 1 �
 �
��$�T�−1
ni−1 � ���	%�T& i − 1�
li � �
�#�T& i�
di � ���
���T& i�
ti � ���
�T& i�
bi � 〈ni−1, li, di, ti〉
arg � !bi" ⊕ arg

	� #
�

L � 〈arg, ndepth(T)−1〉
�
���	 〈w,L〉

	�

�
��$� returns the integer of depth of the anchor.
���	%� returns the non-terminal symbol of the trunk node.
�
�#� returns the non-terminal symbol of the leaf node

at depth i
���
��� returns the side of the trunk node (left or right)

for the leaf node at depth i
���
� returns + when the leaf node of at depth i

is a foot node or − when a substitution node

Figure 2.2: An algorithm for converting a canonical elementary tree T to an HPSG lexical entry L

2.1.1 Conversion of Canonical Elementary Trees

As discussed in the previous section, when we assume the trunk nodes in a canonical elemen-

tary tree to be heads that select a category to be subcategorized next, a canonical elementary tree

expresses the head domain of the lexical word. A canonical elementary tree can be therefore de-

composed into a list of immediate constituency.

The procedure �������������	����
��	��
�����
 in Figure 2.2 presents an algorithm for

converting a canonical elementary tree T into an HPSG lexical entry L. In the algorithm, arg is a

stack of branchings bi as described by a quadruplet 〈ni−1, li, di, ti〉 along the trunk. The parameter

ni−1 represents the mother node of the trunk node ni. The parameters li, di and ti represent the

27

Sym:

Arg:

Sym :
Leaf :
Dir : �����
Foot?: +

�

�

�� Sym :
Leaf :
Dir : ��	�
Foot?:

��

�

,think :

�

�� ��

� �

think

*

Sym: symbol of a trunk node
Leaf: symbol of a leaf node
Dir: the direction of a leaf node relative to the trunk
Foot?: the type of a leaf node

Figure 2.3: Converting a canonical elementary tree for “think” to an HPSG lexical entry

leaf node at a depth i; respectively, they represent the nonterminal symbol, the direction (the side

of the trunk node ni on which the leaf node is), and the type (whether the node is a foot node or

a substitution node). We call elements in this stack arguments of the word. Finally, the converted

lexical entry L is the pair 〈arg, n�����(T)−1〉 described by the arguments arg and the mother of the

anchor, namely, n�����(T)−1 where �����(T) is the depth of the tree T .

Figure 2.3 depicts an example of conversion of a canonical elementary tree for “think,” and

shows the design of a feature structure that express an HPSG lexical entry. A canonical elementary

tree is converted into an HPSG lexical entry by regarding leaf nodes as arguments of the anchor and

storing them in a stack. The resulting feature structures include the Sym feature and the Arg feature

that store the symbol ndepth(T)−1 and the arguments in arg, as a stack of feature structures with the

four features Sym, Leaf, Dir and Foot?, which correspond to ni−1, li, di and ti, respectively. In

parsing with the obtained HPSG-style grammar, the parser pops an element from the Arg feature to

select a node that is unifiable with that element. It follows that the node with an empty stack as its

Arg feature corresponds to the root node of the initial tree.

2.1.2 Tree Division: Division of Non-canonical Elementary Trees

Non-canonical elementary trees are initially divided into multiple subtrees, each of which has at

most one anchor, by a procedure called tree division, as shown in Figures 2.4 and 2.5. Nodes that

mark the separation of one tree into two are called cut-off nodes. A cut-off node is marked by

an identifier to preserve the co-occurrence relation among the multiple anchors. The tree division

converts multi-anchored trees, which only violate Condition 1, into canonical trees (Figure 2.4),

while it converts trees with non-anchored subtrees into canonical trees and non-anchored subtrees

28

�

�� ��

� ��

� ��

for

look

cut off

��look_for ��look_for

identifier

cut-off nodes

�

�� ��

�

look
� ��

for

tree division

Multi-anchored tree Canonical trees

Figure 2.4: Dividing a multi-anchored elementary tree for “look for” into a set of subtrees, each of

which has at most one anchor.

�

�� �

�

substitution

all candidate canonical
trees for substitution

, …

Trees without non-anchored
subtrees

break points

on

next

��

� �� � , …

�� �on

next

next to

non-anchored
subtrees

��

��

next to

�

�� ��

� ��

� ��give ��

� ��

tree division

�

�� ��

� ��

give

give

give give give

tree
substitution

cut off

Tree with non-anchored
subtrees

canonical trees

Figure 2.5: Converting a non-anchored subtree to a set of multi-anchored trees

(Figure 2.5).

The procedure �	�	��������	������������ in Figure 2.6 represents an algorithm for divid-

ing a non-canonical elementary tree MT into a set of subtrees ST . It starts by selecting one anchor

A,2 and the single-anchored tree CT of that anchor A, which consists of the trunk nodes and their

sibling nodes, is then picked up (��� in Figure 2.6). We traverse the path from the root node to the
2We describe how the function ������ in the algorithms in this section and the next section select an anchor/a leaf

node respectively in Section 2.2.

29

���	
� �
�
���
�
���� �����
���� ���� MT
�	
�	
� � ��� �� ����� ���� �� ���� �
� �
���� ST

��������� �������������
������������MT�

�� �

��
������MT� ! "

�����
 {MT}
����

A �! �������MT�

〈CT, T 〉 �! ��������MT# A� · · · �$�

������� T �
 T
SST �! �������������
������������T�

ST �! SST ∪ ST
�
� �������

ST �! ST ∪ {CT}
�����
 ST

�
� ��

�
�

���	
� �
�
���
�
���� �����
���� ���� MT
�
� �
���� �� MT A

�	
�	
� � ���� �� � ��
�
���� �����
���� ���� CT
�
� ���� ��� ��
�� T

��������� ��������MT# A�

�� �

T �! φ
��� i �! 1 �� ������MT# A��$

��
�
������� ����
%�i���
〈MT ′, T 〉 �! ����MT# �� ����
%�i��� · · · �&�

Address �! �����������
%�i��
���%�Address# MT ′# T� · · · �'�

T ! T ∪ T
MT �! MT ′

�
� ��

�
� ���

CT �! MT
�����
 〈CT, T 〉

�
�

������ returns the number of anchors.
������� returns one of anchors (default: the left-most one).
������ returns the integer of depth of the anchor.
���
%� returns the trunk node at depth i
�� � returns the sibling node of the trunk node.
���� cuts off the tree at the sibling node of the trunk node and

returns a subtree whose root node is the sibling node.

�
�����returns true if not a leaf node.
��������returns address in the elementary tree.
���%� marks an address for each cut-off node.

Figure 2.6: An algorithm for dividing a non-canonical elementary tree MT into a set of subtrees

ST , each of which has at most one anchor.

30

anchor A, cut off the sibling node3 ����������i�� if it is not a leaf node, and store the address of

the elementary tree in the cut-off node as an identifier (��� and ��� in Figure 2.6).

2.1.3 Tree Substitution: Substitution in Non-anchored Subtrees

The non-canonical elementary trees which violate Condition 2 have non-anchored subtrees. These

non-anchored subtrees are first extracted by the algorithm in the previous section, and are then

converted into multi-anchored trees by substituting a substitution node on the branching whose

daughters do not consist of an anchor by every candidate tree for substitution, by a procedure called

tree substitution, as shown in Figures 2.5. The candidate trees for the application of this process

are selected from among all the canonical elementary trees and the ones obtained by the algorithm

in the previous section. Substituted nodes are marked as breaking points to record the origination

of these nodes. Note that non-anchored subtrees are not selected as candidates for substitution,

because their root nodes originate from internal nodes of the elementary trees. This guarantees

that the multi-anchored trees obtained by this process will satisfy Condition 2. These trees can be

converted into single-anchored trees, to which we can apply the algorithm in Section 2.1.1, by the

algorithm in the previous section.

The procedure ������������	����������������� in Figure 2.7 represents an algorithm

for converting a non-anchored subtree NT into multi-anchored trees MT . For each branching

structure that consists of substitution nodes or foot nodes, one substitution node S is selected (���

in Figure 2.7). The function �����	���� applies a substitution to the node it of every candidate

tree which is substitutable for S (��� in Figure 2.7).

Because the candidate trees for substitution include neither non-anchored subtrees nor auxiliary

trees, the trees obtained by this process will satisfy Condition 2. When they take substitution at one

substitution node, they also satisfy Condition 1 and are canonical trees; otherwise, they are multi-

anchored trees and will be converted into canonical trees by the tree division. The resulting trees

consist only of canonical trees because the tree substitution creates multi-anchored trees without

non-anchored subtrees, which are divided into canonical trees.

2.1.4 Definition of ID Grammar Rules

In this section, we provide the definition of the grammar rules which emulate substitution and

adjunction respectively and are thus called substitution rule and adjunction rule (in Figure 2.8). In
3It should be noted that the path from the foot node to the root node (spine: (Kasper et al. 1995)) in an auxiliary tree

must not be cut because the spine represents the chain of head signs between the root node and the foot node, which are
unified with the same internal node in the other trees.

31

������ � 	
	'�	�$
�
� ��

 NT
������� � (
�
# �����'�	�$
�
� ��

(MT

��
�
���

���	����

��	�
��	�$
�
����

�NT�
�
��	

BR � 	�����NT�
MT � {NT}
#
�
��$ BR �	 BR

S � (
�
���BR� · · · �)�

IT � �	������S�
MMT � φ
#
�
��$ MT �	 MT

T MT � (��(�����
�MT& S& IT � · · · �*�

���%�S�
MMT � T MT ∪MMT

	� #
�
��$

MT � MMT

	� #
�
��$

�
���	 MT

	�

	����� returns the deepest branchings whose daughters
do not consist of an anchor.

�	������ returns all candidate trees whose root node is the
same as the leaf node.

(
�
��� returns one of leaf nodes (default: the left-most one).
(��(�����
�causes substitution to the leaf node and

returns a set of resulting multi-anchored trees.
���%� marks the substituted node

Figure 2.7: An algorithm for converting a non-anchored subtree NT into a set of multi-anchored

trees MT

the figure, we give rules for the case where left-hand daughters correspond to the trunk nodes. Of

course, there are symmetric rules for the right-hand case. These rules are independent of the input

LTAG because they do not depend on any given characteristics for the LTAG.

32

Sym :
Arg :

Sym :
Arg :

Right substitution rule Right adjunction rule

�

�

�

� �

Arg :

Sym :
Leaf :
Dir :
Foot? :

trunk node

����

�

�
�

Sym :
Arg :

foot node

�

�Arg :

Sym :
Leaf :
Dir :
Foot? :

trunk node

����
+

�

�
�

Sym :
Arg :

�

substitution node

Figure 2.8: Grammar rules: the substitution rule and adjunction rule

Substitution rule: The Sym feature of the node to which substitution is applied must be identical

to the Leaf feature (‘ 3 ’4 in the left-hand side of Figure 2.8) of the trunk node. The substitution rule

percolates the tail elements (‘ 2 ’ in the left-hand side of Figure 2.8) of the Arg feature of the trunk

node to the mother in order to continue constructing the tree. The value of the Arg feature of the

node for substitution must be an empty stack 〈 〉, because this node must be unified only with the

node that corresponds to the root node of the initial tree. The value “−” or “+” of the Foot? feature

explicitly determines whether the next rule to be applied is the substitution rule or the adjunction

rule.

Adjunction rule: The Sym feature of a foot node must be identical to the Leaf feature of the

trunk node (‘ 3 ’ in the right-hand side of Figure 2.8). The value of the Arg feature of the mother

node is a concatenated stack of the Arg features of both of its daughters (‘ 2 ’ and ‘ 4 ’ in the right-

hand side of Figure 2.8). This allows the parser to construct the tree which corresponds to the

adjoining tree and then to continue constructing the tree which corresponds to the adjoined tree.

Figure 2.9 shows examples of rule application. The solid lines indicate the adjoined tree (α1)

and the dotted lines indicate the adjoining tree (β1). The adjunction rule is applied in order to

construct the branching marked with �, where “think” takes as its argument the node having the

Sym feature’s value of S. By applying the adjunction rule, the Arg feature of the mother node B

becomes a concatenated stack of the Arg features of both β1, ‘ 8 ’, and α1, ‘ 5 .’ Note that when the

construction of β1 has been completed, the Arg feature of the trunk node C will return to its former

4Recall that the numbers in tags express only the sharing of common values between the (sub-)feature structures, and
hence the numbering does not convey any side effects.

33

��

�� �

�� �

loves

α1

β1
��

�

he

��

�

what

α2

α3

�� �

� �

think
��

�

you

α4 *

�

substitution

substitution

substitution

adjunction

LTAG derivation

α1

… A

… B

β1

… C

Sym :
�

���

����
Arg :

Sym :
Leaf :
Dir :
Foot? :

�

�

�

	 �

Sym :

Arg :

�

���

����

Sym :
Leaf :
Dir :
Foot? :

�

���

����

Sym :
Leaf :
Dir :
Foot? :

��

�

	

�

�

�

Sym :

Arg :

�

���

����

Sym :
Leaf :
Dir :
Foot? :

�

� �

�

�Sym :
Leaf :
Dir :
Foot? :

Sym :
�

���

����
,Arg :

�

��

���	�
�

Sym :
Leaf :
Dir :
Foot? :

�

�
�

	

Sym :
�

��

���� ,Arg :

Sym :
Leaf :
Dir :
Foot? :

�

���

����

Sym :
Leaf :
Dir :
Foot? :

�

�

�
�

�

α3

Sym :
Arg :

� ���

you

α4

Sym :
Arg :

���

α2
what

Sym :
Arg :

����

Sym :
Arg :

��

right adjunction rule

left substitution rule

right substitution rule

left substitution rule

you

think

love

HPSG rule applications

Figure 2.9: LTAG and HPSG parsing of the phrase “what you think he loves”
34

state (A). We can continue constructing α1 in the same way as for the case where no adjunction

rules have been applied.

2.1.5 Extension to FB-LTAG

The algorithms in Section 2.1 produce the conversion of an LTAG, and are easily extensible to

handle an FB-LTAG grammar by merely storing a feature structure for each node, together with the

symbol, in the Sym feature and Leaf feature. The grammar rules are also extended to execute the

feature structure unification done in FB-LTAG.

2.2 Correspondence between HPSG-style Grammar and HPSG

The above algorithms provide a formal link between LTAG and HPSG-style grammar, which we

defined as the computational architecture assumed in HPSG. In this section, we discuss the linguis-

tic correspondence between an HPSG-style grammar and HPSG (Pollard and Sag 1994) according

to the syntactic head, which is a central notion in HPSG. We will discuss the difference between

an HPSG-style grammar converted from an implemented LTAG grammar and HPSG in Section 3.1

Elaboration on HPSG signs In order to derive HPSG from an HPSG-style grammar that we have

obtained, we must elaborate on the sign of the HPSG-style grammar. As we have seen in 1.2, HPSG

provides a modular specification of linguistic generalization by using principles and ID schemata

in the context of the lexicalist framework.5 On the other hand, our HPSG-style grammar implicitly

captures some of the principles and ID schemata of the definition in Section 1.2 in the following

way. The Immediate Dominance Principle is satisfied by the use of the ID grammar rules. In

the ID grammar rules, the Subcategorization Principle is expressed by the structure-sharing of the

Sym and Leaf features which correspond to the HEAD feature in HPSG. We should note that a

non-empty value for the Arg feature of the foot node in the adjunction rules roughly corresponds

to the SLASH feature in HPSG, which supports the Nonlocal Feature Principle. The Arg feature

thus corresponds to concatenation of the SUBCAT and SLASH features of HPSG. Other principles,

such as the Head Feature Principle, are implicitly encoded in a trunk of the tree structure of the

LTAG elementary trees. We will extract such principles in the LTAG context and subdivide the

ID grammar rules into HPSG rule schemata by analyzing feature percolation (Tateisi et al. 1998).

There are the following two issues in order to further elaborate an HPSG-style grammar.
5HPSG-specific linguistic theories such as binding theory must be implemented in the obtained HPSG-style grammar

by defining additional features or special mechanisms.

35

��

�����

always

*

�

����

think

�� *

I always [VP run][NP I] think [S that he is clever]

predicative auxiliary tree

��

����	

blue

*

blue [NP sky]

modifier auxiliary tree

subcategorize

modify modify

Figure 2.10: Predicative auxiliary tree for “think” and modifier auxiliary trees for “always” and

“blue”

The distinction between predicative and modifier auxiliary trees Auxiliary trees in LTAG are

of a predicative or a modifier type (Kroch 1989; Schabes and Shieber 1994), which introduces

head-complement (or head-filler) relation and head-adjunct relation, respectively. More precisely,

the former introduces a predicate that subcategorizes for a phrase of the category of its foot node,

while the latter introduces a modifying, dislocated phrase, or a complement. This distinction is, in

rough terms, made by determining which daughter is the head, a foot node or a trunk node. Tateisi

et al. (Tateisi et al. 1998) distinguished these trees by manually analyzing feature percolation

in auxiliary trees and by assigning HPSG rule schemata separately to each auxiliary tree.6 In this

dissertation, we consider that all trunk nodes are heads, that is, treat all auxiliary trees as predicative

trees, but we can manually or semi-automatically determine the above categories by providing some

linguistic cues or by analyzing feature percolation.

Head selection How we should implement the function ��
��� in Figure 2.6 that selects the

anchor A is not entirely clear. Since most multi-anchored trees represent compound expressions

or idioms, such as “look up” and “kick the bucket,” this problem can be replaced with the prob-

lem of which word of a phrase is the syntactic/semantic head. In the HPSG framework, some

of such compound expressions are handled as simplex entries as words with spaces (e.g., “look

up”) (Copestake et al. 2002). However, in some idioms, their meanings are sometimes metaphori-

6The author wishes to thank Yuka Tateisi for her comments on distinction for predicative and modifier trees in her
translation of the XTAG English grammar into an HPSG grammar

36

cal and thus non-decomposable into the parts of the expressions (e.g., “kick the bucket,” compared

with “take advantage of ”). Riehemann (Riehemann 2001) proposed an approach to such idiosyn-

cratic constructions, which licenses such constructions by having phrasal entries used when the

phrase are constructed by a parser. We must also consider a similar issue to do with how we should

implement the function ��
��� in Figure 2.7 that selects the leaf node S to be substituted. Since

elementary trees with non-anchored subtrees represent constructions that require a specification

beyond immediate dominance, such as it-clefts and equative be, this problem may be rephrased

as one of finding which leaf node takes the dominant syntactic role and should be substituted in

carrying out HPSG analysis. We currently simply select an anchor or a substitution node from the

left-most node, though we can solve these problems by using linguistic ideas such as projection.

2.3 Proof of Strong Equivalence for Grammar Conversion from

LTAG to HPSG-style Grammar

This section provides a formal proof for a strong equivalence between LTAG and an HPSG-style

grammar converted from LTAG by our grammar conversion. In what follows, we first mention an

informal sketch on how the strong equivalence is guaranteed for LTAG and the obtained HPSG-

style grammar. We then proceed the formal proof, which comprises two parts. Part one proves that

strong equivalence is guaranteed for the conversion from LTAG G to canonical LTAG G′ by the

tree division and the tree substitution. Part two proves that strong equivalence is guaranteed for the

conversion from canonical LTAG G′ to an HPSG-style grammar G′′.

2.3.1 Informal Sketch on the Proof of the Strong Equivalence

In this section, we discuss how our algorithm guarantees strong equivalence between the gram-

mar it obtains and the original grammar. In the obtained grammar, the grammar rules are applied

only to those feature structures which correspond to nodes which are substitutable for/adjoinable

with the canonical elementary trees of the original LTAG because the branchings encoded in the

respective values of Arg specify the nodes to be subcategorized next. Strong equivalence also holds

for the conversion of non-canonical elementary trees. For trees that violate Condition 1, we can

distinguish the cut-off nodes from substitution nodes thanks to the identifiers, which allow recov-

ery of the co-occurrence relation between the divided trees. For trees that violate Condition 2, we

can identify those nodes to which substitution is to be applied in a combined tree because they are

marked as breaking points, and thus consider the combined tree as two trees in the LTAG derivation.

37

��

�� �

�� �

loves

γ1

β1
��

�

he

��

�

what

γ3

γ5

�� �

� �

think
��

�

you

γ2 *

�

substitution

substitution

substitution

adjunction

LTAG derivation

γ1

… A

… B

γ2

… C

Sym :
�

���

����
Arg :

Sym :
Leaf :
Dir :
Foot? :

�

�

�

	 �

Sym :

Arg :

�

���

����

Sym :
Leaf :
Dir :
Foot? :

�

���

����

Sym :
Leaf :
Dir :
Foot? :

��

�

	

�

�

�

Sym :

Arg :

�

���

����

Sym :
Leaf :
Dir :
Foot? :

�

� �

�

�Sym :
Leaf :
Dir :
Foot? :

Sym :
�

���

����
,Arg :

�

��

���	�
�

Sym :
Leaf :
Dir :
Foot? :

�

�
�

	

Sym :
�

��

���� ,Arg :

Sym :
Leaf :
Dir :
Foot? :

�

���

����

Sym :
Leaf :
Dir :
Foot? :

�

�

�
�

�

δ2:

Sym :
Arg :

� ���

you

γ4

Sym :
Arg :

���

γ3

what

Sym :
Arg :

����

Sym :
Arg :

��

right adjunction rule

left substitution rule

right substitution rule

left substitution rule

you

think

love

δ1:

HPSG rule applications

Figure 2.11: LTAG and HPSG parsing of the phrase “what you think he loves” (revisited)
38

We can thus avoid overgeneration by having the identifiers checked in the substitution rules, and

avoid undergeneration by substituting all candidate trees for substitution nodes in the algorithm in

Section 2.1.3.

Strong equivalence enables us to recover an LTAG derivation tree from an HPSG parse tree by

following the history of rule applications and mapping each of them to substitution or adjunction.

Let us take the case of Figure 2.11 as an example. We start by following the trunk node when the

substitution rule was applied, or the foot node when the adjunction rule was applied. We then reach

“love,” and recognize it as the anchor of an elementary tree whose root node is identical to that

of the parse tree. We then follow the path from the anchor to the root node to recognize γ1 and

combinations between γ1 and other elementary trees. Since we start by finding an application of

the substitution rule, we can map it to the substitution of γ5 to γ1 by recognizing the sibling node

of the trunk node as the root node of γ3 and by recursively recovering the partial derivation from

the sibling subtree. Then, the next rule is the adjunction rule (marked with �), and we find that the

node A takes adjunction. We thus remember the length of the value of the Arg feature of the node

A, and follow the trunk with handling rule applications as ones for the adjoining tree γ2 until the

length of the Arg feature is equal to that for the node A. This is the case at the node C. This implies

that the construction of the adjoining tree γ2 is completed at the node C. We restart the recognition

of γ1. After handling another application of the substitution rule, we reach the root node S, and

complete the recognition of γ1 and thus the whole derivation tree.

2.3.2 Definitions

We first define LTAG, according to the definition of TAG given by Vijay-Shanker (Vijay-Shanker

1987). We then define a derivation tree, which is a structural description of LTAG, and introduce

the notion of strong equivalence.

We hereafter denote a tree as a set of pairs 〈p,X〉 where p ∈ N ∗, which is a free monoid of the

set of natural numbers, and X ∈ V , which is a finite set of alphabets (Gorn 1962). For example, a

tree in the left-hand side of Figure 2.3 is denoted as {(ε, S), (ε · 1,NP)(ε · 2,VP), (ε · 2 · 1, V), (ε ·
2 · 2, S), (ε · 2 · 1 · 1, think)}. An inequality p ≤ q is satisfied if and only if there is a r ∈ N ∗ such

that q = p · r. Another inequality p < q is satisfied if and only if p ≤ q and p �= q.

Definition 2.3.1 (Lexicalized Tree Adjoining Grammar (LTAG)) A lexicalized tree adjoining

grammar G is a quintuplet (Σ,NT , S, I, A) where Σ and NT are a finite set of terminal sym-

bols and a finite set of nonterminal symbols, respectively, S is a distinguished nonterminal symbol

called the start symbol, and I and A are a finite set of initial trees and a finite set of auxiliary trees,

39

respectively.7

Here, an elementary tree γ ∈ A ∪ I is a tree whose leaf nodes are labeled by X ∈ NT ∪ S

or x ∈ Σ, and whose internal nodes are labeled by X ∈ NT ∪ S. The symbol of one leaf node in

an auxiliary tree β ∈ A is identical to that of its root node, and is specially marked as a foot node.

Note that at least one leaf node, called anchor, in an elementary tree γ is labeled with x ∈ Σ, and

leaf nodes other than anchors and the foot node are marked as substitution nodes.

We hereafter use the notion of an address of a node in a tree. An address of a tree is a symbol

that indicates a unique node in the tree.

Next, we define a derivation for an elementary tree γ. Let us denote a tree that is derived from

an elementary tree γ by having substitution and adjunction into γ as γ′. When we produce γ′ from

an elementary tree γ by applying substitutions and adjunctions of several trees γ′
1, γ

′
2, . . . , γ

′
k to γ at

k distinct addresses a1, a2, . . . , ak, the production is denoted by γ′ → γ[a1, γ
′
1][a2, γ

′
2] . . . [ak, γ

′
k]

where k ≥ 1, and [ai, γ
′
i] indicates substitution at ai of γ′

i if ai is a substitution node, or indicates

adjunction at ai of γ′
i if ai is an internal node. This production is called a derivation for γ if

a1, a2, . . . , ak include all addresses of the substitution nodes in γ. A derivation for γ without

substitution and adjunction is denoted as γ′ → ε. The set of all possible derivations DG for LTAG

G = (Σ, NT , S, I , A) is then denoted as follows:

DG = {γ′
i → ε | 1 ≤ i ≤ m, γi ∈ A ∪ I, γi includes no substitution node.}

∪ {γ′
i → γi[a1, γ

′
i1

][a2, γ
′
i2

] . . . [ak, γ
′
ik

] | k ≥ j ≥ 1, i > m; γi, γij ∈ A ∪ I;
a1, a2, . . . , ak include all addresses of the substitution nodes in γi}

We use the above notations to define a derivation tree, which represents the history of combinations

of trees and is a structural description of LTAG.

Definition 2.3.2 (derivation tree) A derivation tree for LTAG G = (Σ, NT , S, I , A), ΥG, is

formed from any subset of the set of all derivations DG by uniquely relabeling identical elementary

trees in the derivations of the subset. A derivation tree ΥG must satisfy the following conditions:

• Because γi can be adjoined or substituted once, γ′
i can appear once respectively in the left-

hand side and the right-hand side of derivations in ΥG except for the one distinguished

elementary tree γS , which is the root of the derivation tree ΥG. The condition implies that

trees cannot be substituted or adjoined to more than one node.
7For simplicity, we omit the notion of adjoining constraints and the proof considering the adjoining constraints in

this dissertation, and then assume all internal nodes take selective adjoining constraints.

40

• γ′
S can appear once in the left-hand side of the derivation.

• The inequality i > ij ≥ 1 is necessary to avoid cyclic applications of substitution and

adjunction among elementary trees.

Next, we give the definition of strong equivalence between two grammars G1 and G2. Strong

equivalence is intuitively that the two grammars generate equivalent structural descriptions, struc-

tural description which are the most informative data structures given by G; examples of structural

descriptions are parse trees by CFG and derivation trees by LTAG. The following definition follows

from the one by Miller (Miller 1999, p. 7).

Definition 2.3.3 (strong equivalence) Let the set of all possible structural descriptions given by

two given grammars G1 and G2 be TD(G1) and TD(G2). The two given grammars G1 and G2

are strongly equivalent if and only if there is a bijective (i.e., one-to-one and onto) mapping from a

structural description of G1, ΥG1 ∈ TD(G1), to a structural description of G2, ΥG2 ∈ TD(G2).

In what follows, we assume that structural descriptions of LTAG are derivation trees in which

the root node of γS is labeled by the start symbol S in the definition 2.3.2.

2.3.3 Proof for Tree Division and Tree Substitution

In this section we give a proof that strong equivalence is guaranteed for grammars before and after

the two tree transformations.

We omit the proof of the substitution procedure, because the tree substitution depicted in Fig-

ure 2.12 is exactly the same as the one that Schabes and Waters (Schabes and Waters 1995, pp. 494–

495) defined and proved in their strong lexicalization procedure of CFG into Lexicalized Tree In-

sertion Grammar.

The tree division procedure is formalized in the following lemma.

Lemma 2.3.1 (The tree division) Let G = (Σ,NT , S, I, A) be an LTAG. Let γ ∈ A ∪ I be an

elementary tree and let μ be an internal node not on the spine with address p of γ that is labeled

by X . We divide γ at μ and obtain two trees γu, γv as follows. Let γu be a subtree except that a

node labeled by Y /∈ NT ∪ S is added to its root node, and let γv be a supertree, except that the

symbol of μ is relabeled by the symbol Y /∈ NT and by marking it for substitution as shown in

Figure 2.13. Define G′ = (Σ,NT ∪ {Y }, S, I ′, A′) where I ′ and A′ are created as follows:

If γ ∈ I then I ′ = (I − {γ}) ∪ {γu, γv} and A′ = A

If γ ∈ A then I ′ = I ∪ {γv} and A′ = (A − {γ}) ∪ {γu}

41

� �

� ��

uγ

1γ , …2γ

1uγ

, …

T’

2uγ

substitution

,

,

�-rooted initial trees

Figure 2.12: Sketch for the tree substitution

�

γ

uγ

vγ
Cut off Mark

cut-off nodes�

� �

�

�

Figure 2.13: Sketch for the tree division

Then, G′ is strongly equivalent to G; that is, there is a one-to-one onto mapping from the set of

derivation trees TD(G′) generated by G′ to the set of derivation trees TD(G) generated by G for

the same sentence.

Proof We show that there is a one-to-one mapping from a derivation tree ΥG′ ∈ TD(G′) to a

derivation tree ΥG ∈ TD(G).
Assume each derivation tree ΥG′ consists of elementary trees {γ1, . . . , γn}, γj ∈ A ∪ I for

1 ≤ j ≤ n. Then, we can represent the derivation tree ΥG′ by the set of derivations as shown in

the definition 2.3.2.

Because we assume that a derivation tree is rooted by an elementary tree whose symbol of the

root node is S, γv cannot appear as a root of derivation trees. Every occurrence of γv in ΥG′ must

42

thereby accompany with γu and vice versa. In the following procedure, we construct a one-to-one

mapping from ΥG′ to ΥG by replacing every occurrence of γu which takes a substitution of γv

with γ in derivations in ΥG′ .

1. When γu /∈ {γ1, . . . , γn} or γv /∈ {γ1, . . . , γn}, ΥG′ includes neither γu nor γv. ΥG′

therefore consists of γi ∈ (A ∪ I − {γ}) ⊂ A ∪ I , there is exactly the same derivation tree

ΥG in TD(G).

2. When γu ∈ {γ1, . . . , γn}, we can construct one derivation tree ΥG from Υ′
G as follows.

(a) We first replace every occurrence of γ′u in the right-hand side of derivations with γ′.

(b) We next replace every derivation whose left-hand side is either γ′u or γ′v.

i. When a root node with address ε of γv takes substitution or adjunction, a pair

of two derivations whose left-hand side is γ′u and γ′v is denoted as γ′u →
γu[a1, γ

′
1] . . . [ah−1, γ

′
h−1][p, γ′v] and γ′v → γv[ε, γ′

h][bh+1, γ
′
h+1] . . . [bk, γ

′
k],

where k > h ≥ 1. Here we assume ai � p for 1 ≤ i < h without loss of

generality. We replace these two derivations with the following derivation:

γ′→ γ[a1, γ
′
1] . . . [ah−1, γ

′
h−1][p, γ′

h][p · 1 · bh+1, γ
′
h+1] . . . [p · 1 · bk, γ

′
k]

ii. If a root node with address ε in γv takes neither adjunction nor substitution, we

can also replace a pair of two derivations whose left-hand side are respectively γ′u

and γ′v with one derivation whose left-hand side is γ′ in a similar way as above.

(c) By repeating the above replacements at most the number of pairs of two derivations for

γu and γv, we can obtain a set of derivations ΥG without γ′u and γ′v. The replacement

in (a) is valid since γu includes both root node and foot node of γ, and thus γ can

substitute or adjoin every node at which γu does. In the procedure (b), we replace

exactly the same number of γ′u as the procedure (a). The resulting derivations including

γ′ is valid in G because γ′ appear only once in the right-hand side and the left-hand side

of the derivations, respectively.

The resulting derivation tree ΥG is the same as ΥG′ except that every occurrences of γu which

takes a substitution of γv with γ. Since γu which takes a substitution of γv is the same as γ except

that one internal node is added, this does not cause effect on the frontier string. Also, when Υ1
G′

and Υ2
G′ are mapped to Υ1

G and Υ2
G that are equivalent with each other, Υ1

G′ and Υ2
G′ are also

equivalent owing to the formulation of the above mapping.

43

On the other side, we can also construct a one-to-one onto mapping from ΥG to ΥG′ by replac-

ing every occurrence of γ in ΥG by γu which takes a substitution of γv.

In this way, we can construct a one-to-one onto mapping from a derivation tree ΥG′ ∈ TD(G′)
to a derivation tree ΥG ∈ TD(G) for the same sentence. This indicates that G is strongly equivalent

to G′. �

2.3.4 Proof for Conversion from Canonical LTAG to HPSG-style Grammar

We prove that strong equivalence is guaranteed for a conversion from canonical LTAG G to an

HPSG-style grammar G′. We first define an HPSG parse, which is a structural description of an

HPSG-style grammar. We then prove strong equivalence by giving a bijective mapping from a

derivation tree by G to an HPSG parse by G′.

Definition 2.3.4 (HPSG-style grammar converted from LTAG) Given a canonical LTAG G =

(Σ, NT , S, I , A), an HPSG-style grammar G′ converted from G is denoted by a sextuplet (Σ, NT ,

S, ΔI , ΔA, R) where δi ∈ ΔI and δj ∈ ΔA are lexical entries converted from γi ∈ I and γj ∈ A,

respectively, and R denotes the substitution and adjunction rules. δi is denoted as follows: δi =

(s0, (s1, l1, d1, t1), . . ., (sk, lk, dk, tk)) where k ≥ 1, s0 ∈ Σ ∪ NT is the symbol of the mother

node of the anchor in γi, and sj ∈ Σ ∪ NT , lj ∈ Σ ∪ NT , dj ∈ {right , left}, tj ∈ {+,−} are

values of Sym, Leaf, Dir, and Foot? features in the j-th element of the Arg feature in δi. When the

length of the Arg feature of δi is 0, δi is denoted as δi = (s0, φ).

First, we introduce the notion of origination for the Sym and Leaf features in HPSG lexical

entries in order to define an HPSG parse, which represents the histories of rule applications to

lexical entries and is a structural description of an HPSG-style grammar. We define the origination

of the feature in δi as 〈p, γi〉, which indicates that the value of the feature originates from the symbol

of a node with address p in γi. Figure 2.14 shows examples of the originations for HPSG lexical

entries δ1 and δ2 converted from LTAG elementary trees γ1 and γ2 for “think” and “love.” In the

figure, a subscript attached to an internal node in the elementary trees indicates the address of the

node.

Next, we define a rule history for δi, which is a history of rule applications to a lexical entry

δi. We take each rule application to δi and its ancestor nodes as an element of the sequence of rule

applications for δi if and only if the applied rule pops an element that originates from an element of

the Arg feature in δi. For example in Figure 2.11, a lexical entry for “think” and its ancestor nodes

A and B take the right adjunction rule, the left substitution rule, and the left substitution rule in this

order. Among these applied grammar rules, the right adjunction rule and the first left substitution

44

γ2:γ1:

thinklove

Sym :
Leaf :
Dir :
Foot? :

Sym :
�

���

����
,Arg :

��

��

���	�
�

Sym :
Leaf :
Dir :
Foot? :

�Sym :
�

��

���� ,Arg :

Sym :
Leaf :
Dir :
Foot? :

�

�

���

����

Sym :
Leaf :
Dir :
Foot? :

�

�� ��

� �

think

*

ε

ε 1. ε 2.

ε 1 1. . ε 2 2. .

�

�� �

���

love

ε

ε 1. ε 2.

ε 1 1. . ε 2 2. .

<ε 2, γ2>.<ε 1 1, β1>. .

<ε 2 2, γ2>. .

<ε, γ2>

<ε 1, γ2>.

<ε 2 2, γ1>. . <ε 2, γ1>.

<ε 2 2, γ1>. .

<ε, γ1>

<ε 1, γ1>.
origination

δ1: δ2:

Figure 2.14: The origination for the Sym and Leaf features in the HPSG lexical entries converted

from elementary trees

rules pop an element that originates from an element of the Arg feature in the lexical entry. Thus,

applications of these grammar rules are chosen as an element of the sequence of rule applications

for the lexical entry of “think.”

Assuming that δi is denoted as the one given in definition 2.3.4, when 〈aj , γi〉 is the origination

of lj and 〈b, γij 〉 is the origination of sij unified with lj in the grammar rule, a sequence of rule

applications for δi is denoted as follows:

δ′i → δi[xi1 , yi1][xi2 , yi2] . . . [xik , yik],

where k ≥ j ≥ 1, (xij , yij) is (ai, δ′ij) if tj = −, or (b, δij) if tj = +. Each [xij , yij] ex-

presses an application of one grammar rule to the lexical entry δi and its ancestors, and assume

that these are sorted according to the order of the rule applications in the bottom-up manner. When

xi1 , xi2 , . . . xik include b where k ≥ h ≥ 1 and th = + or aj where k ≥ j ≥ 1, and tj = − in

the sequence of rule applications for δi, we call the sequence of rule applications a rule history for

δi. When the length of the Arg feature of δi is 0, a rule history for δi is denoted by δ′i → ε. For

example in Figure 2.11 and the tree naming given in Figure 2.14, rule histories for a lexical entry

45

δ1, δ2 for “love” “think” in the HPSG parse tree can be denoted as follows:

δ′1 → δ1[ε · 2 · 2, δ′5][ε · 1, δ′3].

δ′2 → δ2[ε · 2, δ1][ε · 1, δ′4]

where delta3, delta4, and delta5, are lexical entries for “what”, “you”, “love.” Note that the

application of the right adjunction rule in this example is denoted by [ε · 2, δ1], which includes the

information in the adjoined tree γ1.

Lemma 2.3.2 Given an HPSG-style grammar G′ = (Σ, NT , S, ΔI , ΔA, R), a rule history for

δi ∈ ΔI ∪ ΔA must be the following form.

• When the length of the Arg feature of δi is 0, δ′i → ε

• When the length of the Arg feature of δi is not 0, and

– When δi ∈ ΔI , δ′i → δi[a1, δ
′
i1

][a2, δ
′
i2

] . . . [ak, δ
′
ik

].

– When δi ∈ ΔA, δ′i → δi[a1, δ
′
i1

] . . . [ah−1, δ
′
ih−1

][b, δih][ah+1, δ
′
ih+1

] . . . [ak, δ
′
ik

] where

th = +.

Proof When the length of the Arg feature of δi is 0, no rule application is assigned as a rule

application for δi because it is defined according to elements in the Arg feature. The rule history

for δi is thus denoted as δ′i → ε.

When δi ∈ ΔI , the elements in the Arg feature of δi keep their order until the grammar rules

consume all the elements. This is because both substitution and adjunction rules do not change the

order of the Arg feature, and also do not remove an element of the Arg feature without unifying it

with another node. The rule history for δi is thus denoted as δi[a1, δ
′
i1

][a2, δ
′
i2

] . . . [ak, δ
′
ik

].
When δi ∈ ΔA, the elements in the Arg feature of δi keep their order during rule applications

until the grammar rules consume all the elements as in the case where δi ∈ ΔI . One difference

is that there exists h so that 1 ≤ h ≤ k and th = +, in other words, it includes exactly one

element lh where th = + that originates a foot node. The rule history for δ is then denoted by

δ′i → δi[a1, δ
′
i1

] . . . [ah−1, δ
′
ih−1

][b, δih][ah+1, δ
′
ih+1

] . . . [ak, δ
′
ik

] where th = +. �
By using lemma 2.3.2, we can define the set of rule histories by G′ = (Σ, NT , S, ΔI , ΔA, R)

as follows:

DG′ = {δ′i → ε | 1 ≤ i ≤ m, γi ∈ I, the length of the Arg feature of δi is 0 }
∪ {δ′i → δi[a1, δ

′
i1

] . . . [ak, δ
′
ik

] | m < i ≤ n, k ≥ j ≥ 1, δi, δij ∈ ΔI}
∪ {δ′i → δi[a1, δ

′
i1

] . . . [ah−1, δ
′
ih−1

][b, δih][ah+1, δ
′
ih+1

] . . . [ak, δ
′
ik

]
| n < i, k ≥ h ≥ 1, k ≥ j ≥ 1, th = +, δi ∈ ΔA, δij ∈ ΔI}

46

We use the above notations to define an HPSG parse,8 which represents the history of rule appli-

cations and is a structural description of an HPSG-style grammar.

Definition 2.3.5 (HPSG parse) Given an HPSG-style grammar G′ = (Σ, NT , S, ΔI , ΔA, R)

converted from G, an HPSG parse ΨG′ is formed from a subset of the set of all rule histories DG′

by renaming identical lexical entries in the rule histories of the subset uniquely. An HPSG parse

ΨG′ must satisfy the following conditions:

• δ′i where δi ∈ ΔI can appear once respectively in the left-hand side and the right-hand side

of rule histories except for the one distinguished lexical entry δS where δ′S appears once in

the left-hand side of the rule history for δS .

• δ′i where δi ∈ ΔA must appear only once in the left-hand side of the rule history for δi.

• 1 ≤ ij < i for the rule history for δi ∈ ΔI .

• 1 ≤ ij < i where j �= h, and ih > i, for the rule history for δi ∈ ΔA.

The third and fourth conditions are necessary to avoid cyclic applications of grammar rules to

lexical entries.

Lemma 2.3.3 Let G = (Σ, NT , S, I , A) be a canonical LTAG and G′ = (Σ, NT , S, ΔI , ΔA,

R) be an HPSG-style grammar converted from G. Then, we can map a derivation tree ΥG by G

one-to-one onto to an HPSG parse ΨG′ by G′.

Proof We first show a mapping from ΨG′ to a set of derivations ΥG′ , and then show that ΥG′

is a valid derivation by G. Suppose an HPSG parse satisfying definition 2.3.5. We can map it one-

to-one to a set of derivations ΥG′ with the following procedure. For each δi where δi ∈ ΔA, we

eliminate [b, δih], which corresponds to an application of the adjunction rule, and insert the element

[b, δ′i] to the right-hand side of the rule history for δih at the position immediately after [b · x, δ′i−1]
where x = 1 or 2. Then, we obtain a set of derivations ΥG′ by replacing δij and δ′ij with γij and

γ′
ij

in the rule history for δi and by regarding it as the derivation for γi in ΥG′ . This mapping

is one-to-one because the operation pair of eliminating [b, δih] and adding [b, δ′i] is a one-to-one

mapping.

Following the definition 2.3.2, we show that ΥG′ is a valid derivation tree by G. First, every

substitution and adjunction in the derivations in ΥG′ must be valid in G. Since the substitution
8We omit the proof showing that an HPSG parse by G corresponds to a unique parse tree derived by G.

47

and adjunction rules preserve the order of the elements in the Arg feature of δi, substitution rules

always unify the symbol of the substitution node with the symbol of the root node of γij . This

unification represents the same constraint as the one imposed by substitution. We can give an

analogous argument for an adjunction rule. The substitution and adjunction in the derivations in

ΥG′ are then valid in G. Second, all addresses in the substitution nodes of γi must be included in

the derivation for γi. This is apparently guaranteed by definition of the rule history for δi. Third, γ′
i

can appear only once respectively in the right-hand side and the left-hand side of the derivations.

This is apparently guaranteed for γ′
i where γi ∈ I by definition 2.3.5, and is guaranteed for γ′

i

where γi ∈ A because δ′i does not appear in the right-hand side of rule histories, [b, δih] appears

only once in the rule history for δi, and the elimination of [b, δih] accompanies the addition of [b, γ′
i]

once to the right-hand side of the derivation for γih . Fourth, the elements in the right-hand side of

the derivation for γi must be [aj , γ
′
ij

] where ij < i. This is apparently guaranteed for γ′
i where

γi ∈ I by definition 2.3.5, and is guaranteed for γ′
i where γi ∈ A because the addition of [b, γ′

i] for

the derivation for γ′
ih

satisfies ih > i from definition 2.3.5.

The frontier string is preserved before and after this mapping from ΨG′ to ΥG′ , because δi stores

the same linear precedence constraints between δi and δj for i �= j as the constraints between γi

and γj . Thus, an HPSG parse ΨG′ by G′ is mapped one-to-one onto a derivation tree ΥG′ that is

valid in G.

We can construct a mapping from ΥG onto an HPSG parse ΨG by inverting the procedure for

the above mapping from ΨG′ onto ΥG′ . The obtained ΨG is a valid HPSG parse by G′ because we

can give an analogous argument for the validity of the rule histories in ΨG.

2.4 Chapter Summary

We proposed an algorithm for the conversion of grammars from an arbitrary FB-LTAG grammar

into a strongly equivalent HPSG-style grammar. Our algorithm first convert LTAG elementary trees

into a set of tree structures that have only one word and can be decomposed into immediate con-

stituency. We then convert the tree structures into HPSG feature structures by encoding the tree

structures in stacks. A set of pre-determined rules manipulates the stack to emulate substitution

and adjunction. The nature of strong equivalence guaranteed by the grammar conversion enables

us to obtain parsing results of an LTAG grammar from parsing results of the HPSG-style grammar

obtained by conversion. The definition of strong equivalence and a formal proof on the strong

equivalence between the original and obtained grammars are also provided. The obtained gram-

mar successfully abstracted away surface differences on computation devices that underlie the two

48

formalisms. Our method thus enables the sharing of LTAG resources with the HPSG community,

the application of HPSG technologies to LTAG grammars, and the clarification of the differences

between linguistic analysis according to the two grammar formalisms.

49

Chapter 3

Experiments on Collaboration between
the LTAG and HPSG formalisms

This chapter demonstrates applications of grammar conversion to collaboration between the

LTAG and HPSG formalisms. Section 3.1 shows experiments on grammar resource sharing, which

converts a sizable LTAG grammar into an HPSG-style grammar, and shows specification of the

obtained HPSG-style grammar. Section 3.2 conducts comparison between parsers for the LTAG and

HPSG formalisms, and clarifies their algorithmic differences that cause performance difference.

3.1 Experiments on Grammar Resource Sharing

We applied our conversion algorithm to the latest version of the XTAG English gram-

mar (XTAG Research Group 2001),1 a large-scale LTAG grammar for English. We successfully

converted all elementary trees2 in the XTAG English grammar to HPSG lexical entries. Table 3.1

shows the classification of the elementary trees of the XTAG English grammar according to the

conditions we introduced in Section 2.1. In the table, A shows the number of canonical elementary

trees, while B, C, and D respectively show the number of trees that violate only Condition 1, only

Condition 2, and both conditions. The second row shows the number of the obtained HPSG lexical

entries converted from the LTAG elementary trees.

1We used the grammar attached to the latest distribution of the LTAG parser which we used in the parsing experiment.
This parser is available at: ��������������	�������	��	������������������������

2These elementary trees should more strictly be called elementary tree templates. That is, elementary trees are
abstracted from lexicalized trees, and one elementary tree template is defined for one syntactic construction, which is
assigned to a number of words.

51

ftp://ftp.cis.upenn.edu/pub/xtag/lem/lem-0.14.0.tgz

Table 3.1: Classification of elementary trees in the XTAG English grammar (LTAG) and lexical

entries converted from them (HPSG)

Grammar A B C D Total

LTAG 326 763 54 50 1,193

HPSG 326 1,989 1,083 2,474 5,872

Table 3.2: The classification of the non-canonical elementary trees in Table 3.1: multi-anchored

trees (corresponding to B)

Construction # of trees

Compound expressions 413

Verb with PP 194

Idioms 140

Others 16

Total 763

Table 3.2 shows how multi-anchored elementary trees are employed in the XTAG English gram-

mar. The table shows that they are mainly used for compound expressions or idioms. Although such

multi-word expressions are reported to be an important issue in the HPSG formalism (Riehemann

2001; Copestake et al. 2002), the obtained grammar is able to handle them when multi-anchored

trees that represent multi-word expressions are converted into multiple lexical entries. Another

case of multi-anchored trees is multi-anchored trees for verbs that take a prepositional phrase as

their complement, in which a preposition is specified as another anchor. Such a case is shown in

Figure 3.1.3 The obtained grammar expresses this construction by cut-off nodes to require specified

subtrees. In linguistic specifications in HPSG, on the other hand, such constraints are expressed

by having a PFORM feature, which takes the values that represent the type of the corresponding

prepositional phrase. This HPSG account seems to be consistent with the obtained grammar, that

is, the LTAG analysis.

Table 3.3 shows the grammatical phenomena represented by elementary trees with non-
3We borrow examples in this section from elementary trees included in the current version of the XTAG English

grammar (XTAG Research Group 2001). For simplicity, we omit some leaf node anchored by an empty category and an
internal node that has such a leaf node.

52

�

�� ��

� ��

� ��

to

give

�

�� ��

� ��

� ��

on

depend

[NP I] give [NP a gift] to [NP his sister] [NP I] depend on [NP you]

��

Figure 3.1: Non-canonical elementary trees for verbs that take a PP complement (the preposition

is specified as another anchor)

Table 3.3: The classification of the non-canonical elementary trees in Table 3.1: trees with non-

anchored subtrees (corresponding to C ∪ D)

Construction # of trees

Verb with PP 85

It-cleft 12

Others 7

Total 104

anchored subtrees. These elementary trees express constructions requiring specifications beyond

immediate dominance. As we can see in Table 3.1 (C ∪ D), these trees are expanded to include

quite a large number of lexical entries. This result leads us to expect that these constructions

might be difficult to handle in the standard HPSG formalism. The most common case of such

constructions is single-anchored elementary trees for verbs that take a prepositional phrase as their

complements. These elementary trees have non-anchored subtrees that express the expanded PP

structure (Figure 3.2) (see also discussion on PP complement verbs (XTAG Research Group 2001,

pp. 117–121)). This construction allows the extraction of the object of the preposition, and ex-

presses the verb taking the object of the preposition as its argument rather than taking the PP as

shown in Figure 3.2. In the HPSG formalism, on the other hand, this NP extraction is explained

by using the SLASH feature, and the predicate-argument relation between the verb and the object

53

�

�� ��

� ��

� ��glance

�

��

�

��

��

� ��glance

�

��

ε

[NP I] glance [P over] [NP the papers] [NP What] did [NP you] glance [P over]?

Expanded PP

argument

Figure 3.2: A non-canonical elementary tree for a verb that takes PP complement and its syntactic

alternation of wh-moved object of a P

It was [Ad fortunately] [NP that John won the prize]

it

�

�� ��

� � ��

�

ε

was �� �

Figure 3.3: A non-canonical elementary tree that expresses it-cleft without gap

of the preposition is expressed by linking the argument in the predicative-argument structure (the

CONTENT feature) with the object of the preposition. This construction is hence explained dif-

ferently in LTAG and HPSG. Further case is a kind of it-clefts without gaps (Figure 3.3) (see also

discussion on it-clefts (XTAG Research Group 2001, pp. 122–123)). These structures are handled

as adjunct extraction in HPSG (Pollard and Sag 1994, pp. 384–388), which allow interaction be-

tween extracted adjuncts (e.g., prepositional phrases and adverbs) and their modifiees through the

SLASH feature of the modifiees.

As exemplified by these cases, the treatment of some linguistic phenomena in the obtained

54

HPSG-style grammar is analogous to the one employed in the HPSG formalism, especially in the

way to specify a syntactic structure taken by a node subcategorized by a trunk node (or a head in

HPSG). However, these grammars differ in the treatment of some type of unbounded dependency,

which conveys dependency beyond the the locality normally assumed in LTAG. Further elaboration

would be necessary for the conversion of elementary trees that include such convoluted unbounded

dependencies.

3.2 Experiments on Parsing Comparison

In this section, we perform a comparison between LTAG and HPSG parsers based on generic pars-

ing techniques. As described in Introduction, we focus on two generic parsing techniques, namely,

dynamic programming (Sarkar 2000; Haas 1987) and CFG filtering (Harbusch 1990; Poller 1994;

Torisawa and Tsujii 1996; Poller and Becker 1998; Torisawa et al. 2000; Kiefer and Krieger 2000).

In what follows, we introduce dynamic programming and CFG filtering in Sections 3.2.1

and 3.2.2, respectively, and also review how these techniques have been employed in parsers for

LTAG and HPSG. We then compare LTAG and HPSG parsers in Section 3.2.3 and 3.2.4, respec-

tively. Since dynamic programming forms the basis of most contemporary parsing techniques, a

comparison of parsers using it allows us to roughly grasp the difference between the performance

of LTAG and HPSG parsers. Since the impact of CFG filtering for LTAG is quite different from

that for HPSG, CFG filtering can be a good material for demonstrating our methodology towards

improving generic parsing techniques through parsing comparison. After showing each set of ex-

periments, we also identify the algorithmic difference between the LTAG and HPSG parsers that

causes performance difference, and then suggest the way of improving generic parsing techniques.

3.2.1 Dynamic Programming Techniques

The LTAG and HPSG parsers with dynamic programming used in our experiments (van Noord

1994; Haas 1987) perform factoring, a common-sense parsing technique that avoids generating

duplicate equivalent partial parse trees. In the following sections, we briefly describe how factoring

is accomplished in parsers for the two formalisms.

Head-corner parser for LTAG

One of the LTAG parsers used in our experiments is a head-corner LTAG parser (Sarkar 2000).

Its parsing algorithm is a chart-based variant of van Noord’s (van Noord 1994). The parser uses a

55

�

�� ��

�

run

α2 �

�� ��

�

run

α2

��

���

can

*

��

���

can

*

β1 β1

S1: run S3: run

S4-1: S4-2: can

�

�� ��

�

run

α2�

�� ��

�

run

α2

��

�

we

α1
��

�

we

α1

S5: can run

S6-1: we S6-2: we

S7: we can run

Accept

2 3

2 3 1 3

2 3

2 3

1 3

2 3

0 1

0 1

we
0 1 2 3

�

��

0 3

�

��

� ��

�

can run

predict

predict predict

Figure 3.4: Example of head-corner parsing for an LTAG grammar

data structure called an agenda. The agenda stores states to be processed. A state is represented

by a quintuplet consisting of an elementary tree, its root node, its processing node, a span of the

foot node over the input, and a span of the tree over the input, which denote the processed and

unprocessed parts of the tree.

Figure 3.4 depicts the process of head-corner parsing for the sentence “we can run.” In the

figure, nodes in bold face, arrows in states, arrows between states,4 and superscripts (subscripts)

of processing nodes (foot nodes) respectively indicate processing nodes, directions of processing,

relations between the states, and spans of the trees (the foot nodes) over the input string. In head-

corner parsing, the parser traverses a tree from one leaf node called the head-corner to the root

node. This tree traversal is called head-corner traversal. During head-corner traversal, the parser

recognizes the siblings of the processing node and possible adjunctions at this node. In Figure 3.4,

the parser first performs prediction, which pushes into the agenda a new state of an initial tree α1
whose root node matches the symbol S corresponding to the sentence (state S1 in Figure 3.4). The

parser proceeds in a bottom-up manner from the head-corner “run” to S by pushing into the agenda

new states which are generated by moving the processing nodes of states in the agenda, until the

4Dotted arrows between states imply that there is at least one intermediate states between them.

56

we can run

Grammar rule

unify
E1 E2 E3
Sym: ��

Arg :
Sym�� ��

Arg ������

Sym�� ��

Arg ������

Sym�

Arg �

unify

�

�

we can run

Sym: ��

Arg :
Sym�� ��

Arg ������

Sym�� ��

Arg ������

Grammar rule

�Sym�

Sym�� ��

Arg ������

unify

unify

�

we can run

Sym: ��

Arg :
Sym�� ��

Arg ������

Sym�� ��

Arg ������

Sym�� ��

Arg ������

Sym�����

Arg �

E4

E5

Sym�

Arg �

	

Sym�

Arg �

	

�

Sym��

Arg �

Sym�

Arg �

	

�

	

�

�

we

can

run

E1

E2

E3

A triangular table

we

can

run

we

can

run

E1

E2

E3

E1

E2

E3

E4 E4

E5

Figure 3.5: Example of CKY-style parsing for an HPSG grammar

processing nodes reach to the root node and recognizes the elementary tree. When moving up to

the node VP in α2 (S3), the parser executes adjunction at the processing node VP and predicts a

new state S4-1 for the adjoining tree β1. After recognizing β1 (S4-2), the parser tries to execute

substitution at the sibling of VP (S5). To cause substitution at the sibling NP, the parser predicts a

new state S6-1 for α1. Then, the parser proceeds to the root S of α2 (S8). Since there is no state to

be processed in the agenda, parsing of “we can run” ends.

The parser performs factoring when it generates a new state. That is, it pushes a state in the

agenda only when an equivalent state does not exist in the agenda. Note that equivalent states are

those which have the same quintuplet.

CKY-style HPSG parser

One of the HPSG parsers used in our experiments is a CKY-style HPSG parser (Haas 1987). The

parser uses a data structure called a triangular table. The triangular table stores edges, which

correspond to partial parse trees. An edge is described with a tuple consisting of a feature structure

that represents the root node of a partial parse tree and a span over the input.

Figure 3.5 illustrates an example of the CKY-style parsing for an HPSG grammar. First, lexical

57

entries for “we,” “can,” and “run” are stored as edges E1, E2, and E3 in the triangular table.

Next, E2 and E3 are each unified with the daughter feature structures of an ID grammar rule.

The feature structure of the mother node is determined as a result of this unification and is stored in

the triangular table as a new edge E4. An ID grammar rule is then applied to E1 and E4, and a new

edge E5 is generated. Since the parse tree spans the whole input string, parsing of “we can run”

ends.

The parser performs factoring when it generates a new edge. That is, it stores an edge in the

triangular table unless an equivalent edge exists in the cell. Note that equivalent edges are those

which have the same tuple.

3.2.2 CFG Filtering Techniques

CFG filtering is a parsing scheme that predicts possible parse trees by using a CFG extracted from

a given grammar. An initial offline step of CFG filtering is performed to approximate a given

grammar with a CFG, in other words, to extract a CFG backbone from a given grammar (Context-

Free (CF) approximation). The resulting CFG is used as an efficient device for computing the

necessary conditions for parse trees.

After the initial step, CFG filtering generally comprises two phases. In phase 1, the parser first

constructs possible parse trees by using the CFG obtained in the initial off-line step, and then filters

out CFG edges unreachable by top-down traversal starting from roots of successful context-free

derivations. In phase 2, the parser applies full constraints in the given grammar to the remaining

CFG edges, and eliminates parse trees that are not licensed by those constraints. The number of

the remaining CFG edges therefore indicates the degree of approximation, and we call those edges

essential edges.

The parsers with CFG filtering for LTAG and HPSG follow the above parsing strategy, but differ

in their ways of approximating a grammar with a CFG and eliminating impossible parse trees in

phase 2. In the following sections, we briefly describe the CF approximation and the elimination

of impossible parse trees for each formalism.

CF approximation of LTAG

CFG filtering techniques for LTAG were first proposed by Harbusch (Harbusch 1990) and subse-

quently studied by Poller (Poller 1994) and Poller and Becker (Poller and Becker 1998). In the

CFG filtering techniques for LTAG (Harbusch 1990; Poller and Becker 1998), every branching

of elementary trees in a given grammar is extracted as a CFG rule as shown in Figure 3.6. The

58

�

�� ��

� ��

�

�� ��

� �

5.ε 1

5.ε

5.ε 2 9.ε 1

9.ε

9.ε 2

Tree 5: Tree 9:

�

���	
��
�

�� ��

�� � ��

�� � �

5.ε
9.ε

love think

. . .

9.ε 2 1. . 9.ε 2 2. .5.ε 2 1. . 5.ε 2 2. .

.

5.ε 1. 5.ε 2.
9.ε 2.9.ε 1.

5.ε 2.

9.ε 2.

5.ε 2 1. . 5.ε 2 2. .

9.ε 2 1. . 9.ε 2 2. .

Figure 3.6: Extraction of CFG from LTAG

okA

A*

A

A

C

B

2. Find a foot node

1. Find a supernodey

z

3. Find a subnode of a foot node

4. Check the node
number equality

ok

xA

C

B y

A x ok

2. Check the node
number equality

b) ok-flag is propagated to a root of auxiliary treea) ok-flag is propagated to a node other
than a root of auxiliary tree

1. Find a supernode

Figure 3.7: Ok-propagation from an essential edge to another

nonterminal symbol of the left-hand side of each CFG rule is associated with a node number that

records a unique node address (a subscript attached to each node in Figure 3.6). In the phase 1,

they perform CFG parsing using CFG rules without the node numbers.

Because the obtained CFG can reflect only local constraints given in each local structure of

the elementary trees (e.g., a verb (V) and a noun phrase (NP) constitute a verb phrase (VP) in the

lower branching of the tree 5 as in Figure 3.6), it generates invalid parse trees that connect local

trees extracted from different elementary trees. To eliminate such illegal parse trees, a link between

branchings is preserved as a node number. As depicted in Figure 3.7, we can eliminate such parse

trees by traversing essential edges in a bottom-up manner and recursively propagating an ok-flag

from node number x to node number y when a connection between x and y is allowed in the LTAG

grammar. We call this propagation ok-propagation (Poller 1994). The left-hand side of Figure 3.7

59

Grammar rule

lexical
SYNSEM …

sign
SYNSEM …

sign
SYNSEM …

phrasal
SYNSEM …

Grammar rule

phrasal
SYNSEM …

sign
SYNSEM …

sign
SYNSEM …

phrasal
SYNSEM …

phrasal
SYNSEM …

�

�

�

�

�

� ���

� ���

sign
SYNSEM …

sign
SYNSEM …

�������	

Figure 3.8: Extraction of CFG from HPSG

includes ok-propagation between the split internal nodes in the same elementary tree, and from a

root node of an elementary tree to a substitution node of another tree. Since these constructions

concern only a local structure of a tree, we simply examine the equality between the node numbers.

The right-hand side of Figure 3.7 corresponds to the recognition of adjunction. When the ok-flag

is propagated to a root of an auxiliary tree, we first find the foot node of the auxiliary tree, and

next identify an internal node of another tree that takes adjunction. We then examine the equality

between the node numbers of the adjoined (and split) internal nodes.

CF approximation of HPSG

CFG filtering techniques for HPSG were proposed by Torisawa and Tsujii (Torisawa and Tsujii

1996) and subsequently studied by Kiefer and Krieger (Kiefer and Krieger 2000). In the CFG fil-

tering techniques for HPSG (Torisawa and Tsujii 1996; Torisawa et al. 2000; Kiefer and Krieger

2000), a CFG is extracted from a given HPSG grammar by recursively instantiating daughters of a

grammar rule with lexical entries and generated feature structures, as shown in Figure 3.8. This pro-

cedure stops when new feature structures are not generated. We must impose restrictions (Shieber

1985) on the features (i.e., ignore them) or on the number of rule instantiations or both in order to

guarantee termination of the rule instantiation. A CFG is obtained by regarding the initial and the

generated feature structures as nonterminals and bottom-up derivation relationships as CFG rules.

60

Table 3.4: Parsing performance with the XTAG English grammar for the ATIS corpus

Parser Parse time (sec.)

Naive 1.54

lem 20.76

The resulting CFG reflects the local and global constraints of the whole structure in lexical

entries, because generated HPSG signs by rule applications preserve the whole constraints that are

necessarily to construct syntactic structured determined by the constraints (recall the internal node

in the Figure 1.9). However, it still generates invalid parse trees that do not reflect the constraints

given by the features that were ignored in the CFG. These parse trees are eliminated in phase

2 by applying HPSG grammar rules that correspond to the applied CFG rules. We call this rule

application rule-application.

3.2.3 Comparison of Dynamic Programming Techniques

We compared a pair of dynamic programming techniques for LTAG (van Noord 1994) and

HPSG (Haas 1987) described in Section 3.2.1. Henceforth, lem refers to the LTAG parser (Sarkar

2000), ANSI C implementation of the head-corner parsing.5 Naive refers to C++ implementation

of the CKY-style HPSG parser.

Table 3.4 shows the parsing speed results for 452 sentences from the ATIS corpus (Marcus et al.

1993)6 (average sentence length: 6.32 words). The machine used in the following experiments was

a 1.26 GHz Pentium III with 4 GB memory. The results showed that the HPSG parser achieved a

speed-up of a factor of 13 in terms of the average parse time. Figure 3.9 shows parse time plotted

against sentence length, where both axes use logarithmic scales. Since the increase in parse time

versus sentence length plotted on logarithmic scales is equal to the degree of polynomial order of

the empirical time complexity, the graphs show that the order of the empirical time complexity of

lem is higher than that of Naive.

As noted in Section 3.2.1, both parsers have an architecture that supports factoring, but the ways

in which they perform factoring differ. Remember that a state in the LTAG parser is a quintuplet

consisting of an elementary tree, a root node, a processing node, a span of the foot node over an
5The LTAG parser is available at: ��������������	�������	��	������������������������
6We eliminated 56 sentences because of parser time-outs, and 69 sentences because the LTAG parser had bugs in its

preprocessor preventing it from producing correct derivation trees.

61

ftp://ftp.cis.upenn.edu/pub/xtag/lem/lem-0.14.0.tgz

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 15 10 5 1

lo
g

(t
im

e)
 in

 m
ill

is
ec

on
ds

log (sentence length) in words

lem

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 15 10 5 1

lo
g

(t
im

e)
 in

 m
ill

is
ec

on
ds

log (sentence length) in words

Naive

Figure 3.9: Parsing performance with the XTAG English grammar for the ATIS corpus

62

�

�� ��

� ��

provide

�

�� ��

� ��

provide

duplicated equivalent grammatical construction

States are not equivalent and not factored out

��

i j i j

LTAG

Edges are equivalent and factored out

��

provide

��

provide

��

ice cream ice cream

Sym: �
Arg: < NP, NP, NP >

Sym: �
Arg: < NP, NP >

Sym: �
Arg: < NP >

Sym: �
Arg: < NP >

�

�� equivalent edgesfactoring

HPSG

Figure 3.10: Difference between factoring schemes in LTAG and HPSG: ambiguity between NP

and NP-NP constructions

input, and a span of the tree over an input, while an edge in the HPSG parser is a tuple consisting of a

feature structure and a span over an input. By considering how the HPSG parser handles the HPSG-

style grammar converted from the LTAG, we see that the HPSG parser performs factoring of edges

when the edges’ feature structures are equivalent (the right-hand side of Figure 3.10 and 3.11); this

means the factoring can be performed every internal node.7 On the other hand, the LTAG parser

performs factoring of states only when the elementary trees of the states have root nodes labeled the

same nonterminal (Figure 3.10 and 3.11).8 Since the root node corresponds to a feature structure

7The author wishes to thank Mika Tarukawa for suggesting this example.
8Strictly speaking, the factoring is performed when the states with equivalent root nodes substitute or adjoin to another

tree x. When the tree x take substitution or adjunction of the elementary trees, the generated states are equivalent because

63

�

�� ��

� ��

give

�

�� ��

� ��

give

duplicated equivalent grammatical construction

States are not equivalent and not factored out

��

i j i j

LTAG

Edges are equivalent and factored out

Sym: �
Arg: < NP >

Sym: �
Arg: < NP >

�

�� equivalent edgesfactoring

��

give the key to a puzzle

Sym: �
Arg: < NP, NP >

����

give the key to a puzzle

Sym: �
Arg: < NP, NP, NP >

HPSG

Figure 3.11: Difference between factoring schemes in LTAG and HPSG: ambiguity between NP

and NP-PP constructions

whose Arg feature is an empty stack in HPSG, this difference means that the HPSG parser factors

out more partial parse trees than does the LTAG parser. As illustrated in Figure 3.10 and 3.11,

the LTAG parser cannot avoid duplicating equivalent grammatical constructions corresponding to

fragments of elementary trees. It is also noteworthy that some of these ambiguities in elementary

trees are closely related to PP attachment ambiguity, which are expected to appear quite frequently

in real-world sentences. We hypothesize that this difference in factoring schemes leads to the

difference in the empirical time complexity.

To verify the above argument, we conducted a parsing experiment on the same corpus by using

they do include no information on the substituted or adjoined trees.

64

 10

 100

 1000

 10000

 100000

 15 10 5 1

lo
g

(t
he

 n
um

br
 o

f e
dg

es
)

log (sentence length) in words

Naiverf

 10

 100

 1000

 10000

 100000

 15 10 5 1

lo
g

(t
he

 n
um

br
 o

f e
dg

es
)

log (sentence length) in words

Naive

Figure 3.12: Number of edges of a variant of Naive (Naiverf) which performs factoring only when

the factoring can be performed in lem (above) and Naive (below)

65

a variant of Naive (hereafter Naiverf) which performs factoring only when the factoring could be

performed by the LTAG parser.9 Since edges and states generated by the LTAG and HPSG parsers

represent partial parse trees, their numbers are reliable indicators of empirical time complexity.

Figure 3.12 shows the number of edges plotted against sentence length, where both axes use log-

arithmic scales.10 The increase in the number of edges of Naiverf was higher than that of Naive.

Since Naiverf mimics the factoring scheme of lem, the difference in parse time between lem and

Naive and the difference in the number of edges between Naiverf and Naive confirm that the differ-

ence in the factoring scheme is the major cause of difference in the empirical time complexity.11

At first glance, these results are inconsistent with the fact that the theoretical bound of worst

time complexity for HPSG parsing is exponential, while LTAG parsing requires O(n6) for an input

of length n. However, Carroll (Carroll 1994) demonstrated that theoretical bounds of time com-

plexity with respect to grammar size and input length have little impact on performance for some

unification-based parsing algorithms, and attributed the reason to the specification of grammars

(i.e., variations in grammar rules, etc.). Sarkar et al. (Sarkar et al. 2000) studied LTAG gram-

mars extracted from the Penn Treebank and reported that the theoretical bound of computational

complexity does not significantly affect parsing performance and that the most dominant factor is

syntactic lexical ambiguity, i.e., ambiguity of lexical entries for the same words. Our results are

therefore convincing because factoring handles ambiguity in partial parse trees, which is mostly

caused by the syntactic lexical ambiguity.

It should be noted that the above investigation also suggests another way of factoring in LTAG.

We can merge two states which have equivalent unprocessed parts, as depicted in Figure 3.10, into

a single state when they cover the same span of input. This kind of factoring that merges edges with

equivalent unprocessed parts has been proposed for CFG by Leermakers (Leermakers 1992). In his

parser, the edges in Earley parsing are merged if their rules have a common unprocessed suffix.

As exemplified by the application of Naive to an HPSG-style grammar converted from LTAG, this

kind of factoring is applicable to LTAG parsing. Our study empirically attested to its effectiveness

in LTAG parsing, not by implementing complex parsing algorithms, but by simply applying the

HPSG parser potentially equipped with such functionality to the grammar converted from LTAG.

9We did not compare the states of lem with the edges of Naive because an edge of Naive does not have a one-to-one
correspondence with a state of lem.

10Naive and Naivetextitrf in fact duplicate parts of auxiliary trees when they adjoin to different trees. Although lem
can avoid this duplication, it has no serious effect on our conclusion.

11lem and Naive also differ in their ways of handling linguistic features. However, we suppose that their impact on
parsing performance is mild compared to one by the difference in factoring.

66

Table 3.5: Size of extracted LTAGs and CFGs approximated from them (above: the number of

nonterminals; below: the number of rules)

Grammar G2 G2-4 G2-6 G2-8 G2-10 G2-21 Gxtag

LTAG 65 66 66 66 67 67 21

1,488 2,412 3,139 3,536 3,999 6,085 1,226

CFGPB 65 66 66 66 67 67 21

716 954 1,090 1,158 1,229 1,552 202

CFGTNT 1,989 3,118 4,009 4,468 5,034 7,454 9,034

18,323 35,541 50,115 58,356 68,239 118,464 85,454

3.2.4 Comparison of CFG filtering techniques

Following on from the comparison of dynamic programming techniques, we compared a pair of

CFG filtering techniques for LTAG (Harbusch 1990; Poller and Becker 1998) and HPSG (Torisawa

et al. 2000; Kiefer and Krieger 2000) described in Section 3.2.2. We chose the filtering technique

of Poller and Becker (Poller and Becker 1998) because it is the most sophisticated algorithm for

CFG filtering for LTAG. Hereafter, we refer to its C++ implementation as PB. The other filtering

technique for HPSG was TNT (Torisawa et al. 2000). We modified the CF approximation of the

original TNT by instantiating both daughters and restricting the number of rule instantiations, as

shown in (Kiefer and Krieger 2000), to approximate the obtained HPSG-style grammar with a

CFG. In phase 1, PB and TNT performed Earley (Earley 1970) and CKY (Younger 1967) parsing,

respectively. Note that the CFG filtering techniques for LTAG used the same CF approximation, as

did the CFG filtering techniques for HPSG, as described in Sections 3.2.2. Comparison of PB and

TNT thus suffices to investigate the effect of the CF approximations for LTAG and HPSG.

We used the XTAG English grammar without linguistic features and LTAGs extracted by the

method proposed in (Miyao et al. 2003) from Sections 2-21 of the Wall Street Journal (WSJ) por-

tion in the Penn Treebank (Marcus et al. 1993) and their subsets.12 We converted them into strongly

equivalent HPSG-style grammars by using the grammar conversion described in Section 2.1.1.

Table 3.5 shows the size of CFGs approximated from the strongly equivalent grammars. Gxtag,

Gx, CFGPB , and CFGTNT henceforth refer to the XTAG English grammar, the LTAG extracted

from Section x of WSJ, the CFGs approximated from Gxtag and Gx by PB and TNT, respectively.

12The elementary trees in the LTAGs are binarized.

67

Table 3.6: Parsing performance (sec.) for Section 2 of WSJ

Parser G2 G2-4 G2-6 G2-8 G2-10 G2-21 Gxtag

PB 1.4 9.1 17.4 24.0 34.2 124.3 15.3

TNT 0.044 0.097 0.144 0.182 0.224 0.542 0.606

ratio (PB/TNT) 31.8 93.8 120.8 131.9 152.7 229.3 25.2

Table 3.7: Number of essential edges generated in parsing of Section 02 of WSJ

Parser G2 G2-4 G2-6 G2-8 G2-10 G2-21 Gxtag

PB 791 1,435 1,924 2,192 2,566 3,976 871

TNT 63 121 174 218 265 536 548

ratio (PB/TNT) 12.6 11.9 11.1 10.1 9.7 7.4 1.6

CFGTNT is much larger than CFGPB . By investigating parsing performance using these CFGs as

filters, we conclude that larger size of CFGTNT resulted in the better parsing performance.

Table 3.6 shows the parse time for 254 sentences of length n (n≤10) from Section 2 of WSJ

(average sentence length: 6.72 words).13 This result shows not only that TNT was much faster than

PB, but also that the performance difference between them increased when the larger grammars

were used.

To estimate the degree of CF approximation, we measured the number of essential (inactive)

edges of phase 1. Table 3.7 shows the number of essential edges. PB produces a much greater num-

ber of essential edges than TNT . We then investigated the effect of different numbers of essential

edges on phase 2. Table 3.8 shows the success rates of ok-propagation and rule-application. The

success rate of rule-application (for TNT) is 100% for LTAGs extracted from WSJ and relatively

high for the XTAG English grammar, while that of ok-propagation (for PB) is quite low.14 These

results indicate that CFGTNT is superior to CFGPB with respect to the degree of CF approximation.

13We used a subset of the training corpus to avoid using default lexical entries for unknown words, because there are
various ways to assign default entries for automatically extracted grammars and this would have an uncontrolled effect
on parsing performance.

14This means that the extracted LTAGs must be in a subclass of LTAG which is compatible with CFG and were
completely approximated with CFGs. Note that TNT does not guarantee the success ratio of 100% for the phase 2
operations.

68

Table 3.8: Success rate (%) of phase 2 operations

Operations G2 G2-4 G2-6 G2-8 G2-10 G2-21 Gxtag

ok-propagation (PB) 38.5 34.3 33.1 32.3 31.7 31.0 30.6

rule-application (TNT) 100 100 100 100 100 100 71.2

It is noteworthy in Table 3.6 that the performance difference between PB and TNT with the

XTAG English grammar Gxtag is smaller than the performance difference between the parsers with

automatically extracted grammars Gx. In order to approximate the XTAG English grammar, we

have not only restricted the number of rule instantiations to 5 but also have ignored the identifier

which we introduced in 2.1.2 to convert non-canonical elementary trees into HPSG lexical entries.

Due to these restrictions, the degree of approximation of Gxtag by TNT is worse than the degree of

approximation of Gx by TNT . Another factor would be the specifications of the original grammar.

As shown in Table 3.5, the variation of the branching structures in the elementary tree templates of

Gxtag (equal to the number of grammar rules in CFGPB) is smaller than that of Gx. This means

that Gxtag contains a number of structural ambiguities in the elementary trees, which are efficiently

packed in the CFG approximated by PB.

We can work out the reason for the performance difference between PB and TNT by investi-

gating how the CF approximation of HPSG approximates HPSG-style grammars converted from

LTAGs. As described in Section 2.1.1, the grammar conversion preserves the whole structure of

each elementary tree (precisely, a canonical elementary tree) in a stack, and grammar rules manip-

ulate the top element of the stack. A generated feature structure in the approximation process thus

corresponds to the whole unprocessed parts of a canonical elementary tree, as shown in Figure 3.13.

This implies that successful context-free derivations obtained by CFGTNT basically involve ele-

mentary trees in which all substitution and adjunction have succeeded. However, as mentioned

in Section 3.2.2, CFGPB (as well as a CFG produced by another work (Harbusch 1990)) cannot

avoid generating invalid parse trees that connect two local structures where adjunction takes place

between them. We used G2-21 to calculate the percentage of ok-propagations that were between

two node numbers that take adjunction (the right-hand side of Figure 3.7) and the success rate for

this percentage. 87% of the total number of trials of ok-propagations was of this type but their

success rate was only 22%. These results suggest that the global constraints in a given grammar are

essential to obtaining an effective CFG filter. This would decrease the number of essential edges

generated by PB.

69

Grammar rule

Grammar rule

�

�

�

�

Sym :
Arg :

Arg :

Sym :
Leaf :
Dir :
Foot? :

Sym :
Arg :

�

����

�

�

�

�
�

Sym :
Arg :

Arg :

Sym :
Leaf :
Dir :
Foot? :

Sym :
Arg :

�

����

�

�

�

�
�

Sym :

love:
��

��

���	� ,Arg :

Sym :
Leaf :
Dir :
Foot? :

�

�

��	

����

Sym :
Leaf :
Dir :
Foot? :

Sym :
Arg :

��	

Sym :

Arg :

��

�

��	

����

Sym :
Leaf :
Dir :
Foot? :

Sym :
Arg :

��	

Sym :
Arg :

��
�

�� ��

� ��

love

� ���

� ���

�������	

Figure 3.13: CF approximation of an HPSG-style grammar converted from LTAG

It should be noted that the above investigation also suggests another way of making a CF ap-

proximation for LTAG. We first define a unique mode of tree traversal, such as head-corner traver-

sal (van Noord 1994) described in Section 3.2.1, on which we can sequentially apply substitution

and adjunction. We then recursively apply substitution and adjunction on that traversal to elemen-

tary trees and generated tree structures. Because the processed parts of the generated tree structures

are not used again, we regard the unprocessed parts of the tree structures as nonterminals of a CFG.

We can thereby perform another type of CFG filtering for LTAG by combining this CFG filter with

a head-corner LTAG parsing algorithm (van Noord 1994) that uses the same tree traversal.

3.3 Chapter Summary

We illustrated the utility of our grammar conversion to bridge the LTAG and HPSG formalisms.

We first showed that we can obtain a large-scale HPSG-style grammar that is compatible with

HPSG systems, by converting from a large-scale LTAG grammar. The XTAG English grammar, a

large-scale LTAG grammar, was successfully converted into HPSG-style grammar. We next inves-

tigated the specification of the obtained HPSG-style grammar, and then discussed different ways of

70

encodings of grammatical constructions in the both framework by comparing accounts of several

linguistic phenomena by the obtained HPSG-style grammar and HPSG. We then empirically com-

pared two pairs of LTAG and HPSG parsers based on dynamic programming and CFG filtering.

Experiments comparing parsers using dynamic programming showed that the different implemen-

tations of the factoring scheme caused a difference in the empirical time complexity of the parsers.

This result suggests that for LTAG parsing we can achieve a drastic speed-up by merging two states

whose elementary trees have the same unprocessed parts. Another experiment comparing parsers

with CFG filtering showed that the CF approximation of HPSG produced a more effective filter

than that of LTAG. This result also suggests that we can obtain an effective CFG filter for LTAG by

approximating the LTAG with a CFG by applying substitution and adjunction along tree traversal

and regarding unprocessed parts of generated tree structures as nonterminals of the CFG.

71

Chapter 4

Related Work to Collaboration among
Lexicalized Grammar Formalisms

In this chapter, we discuss the work related to collaboration among lexicalized grammar for-

malisms. Section 4.1 mentions grammar conversion between LTAG and other grammar formalisms,

especially HPSG and those of mildly context-sensitive grammar formalisms, along with a compar-

ison of their results with our research. Section 4.2 describes studies on parsing algorithms of lexi-

calized grammars that are related to the two parsing techniques focused in our parsing comparison.

Section 4.3 discusses work on comparison between LTAG and HPSG parsers, and compares their

approaches with ours. Section 4.4 introduces further collaboration between the LTAG and HPSG

formalisms that exploits results of our grammar conversion.

4.1 Grammar Conversions between LTAG and Other Formalisms

Study on conversion among LTAG and other formalisms There are several studies on the

grammar conversion among different grammar formalisms including LTAG. Weir (Weir 1988),

Joshi et al. (Joshi et al. 1991), and Vijay-Shanker and Weir (Vijay-Shanker and Weir 1994) inves-

tigated the relation among Tree Adjoining Grammar (TAG) (Joshi et al. 1975), Head Grammar

(HG) (Pollard 1984), Combinatory Categorial Grammar (CCG) (Steedman 1986; Steedman 1985),

and Linear Indexed Grammar (LIG) (Gazdar 1988), which are in the class called mildly context-

sensitive formalism. In their research, these four grammar formalisms have been proven to be

weakly equivalent with each other in the sense that they generate the same set of strings. Vijay-

Shanker and Weir (Vijay-Shanker and Weir 1994) designed parsing algorithms for them by fully

73

exploiting this nature of weak equivalence. Doran and Srinivas (Doran and Srinivas 2000) con-

verted the XTAG English grammar (The XTAG Research Group 1995) into a CCG. They have

succeeded in building a wide-coverage CCG with a relatively small workload. Since these stud-

ies made use of weak equivalence between the grammar theories towards the collaboration among

the four grammar formalisms, further collaboration can be possible when we can obtain strongly

equivalent grammars as we show in this dissertation.

Manual translation from the XTAG English grammar to HPSG Tateisi et al. (Tateisi et al.

1998) have manually translated a subset of the XTAG English grammar (The XTAG Research

Group 1995), a large-scale English LTAG grammar, into an HPSG grammar. Their work differs

from our work in that their main objective was not to pursue the collaboration between the HPSG

and LTAG communities, but to construct a wide-coverage HPSG grammar by translating a large-

scale LTAG grammar into the HPSG framework. They manually investigated feature percolation

in the XTAG English grammar by assuming one of the pre-defined ID schemata to construct each

branching in the elementary trees. They have successfully achieved a large-scale HPSG gram-

mar with a relatively small workload, and also revealed linguistic correspondence between feature

percolation in the XTAG English grammar and those in HPSG grammar.

Their method, however, depended on a translator’s intuitive analysis of the original grammar,

and the translation was thus manual and dependent on the input LTAG, i.e., the XTAG English

grammar. The manual translation demanded considerable efforts on the part of the translator, and

obscured the existence or non-existence of strong equivalence between the original and obtained

grammars. Our method of grammar conversion differs from Tateisi’s method in that it is fully au-

tomatic, and can apply to any grammars in the LTAG formalism. We believe that these properties

are essential to catch up with the continuous update of the LTAG resources. This nature of strong

equivalence can much contribute to the LTAG communities, by supplying established HPSG tech-

nologies such as grammar debugging environments to them. It is nevertheless noteworthy that when

we attempt to acquire an HPSG grammar from an HPSG-style grammar converted from LTAG, we

will have to analyze feature percolation in an FB-LTAG grammar in order to modularize principles

from lexical entries, as demonstrated by Tateisi et al. through their translation.

Conversion from HPSG to LTAG Kasper et al. (Kasper et al. 1995) proposed a grammar con-

version from HPSG to LTAG, which is the direction opposite to our conversion, and a subsequent

study (Becker and Lopez 2000) discussed the relation between an original HPSG and the obtained

LTAG grammar. Their work aims at clarification of the linguistic relevance between the two gram-

74

mar theories which have developed in parallel. In their conversion, the head domain of an HPSG

lexical entry for each word is determined by applying possible grammar rules to the lexical entry

and by consuming the list-value of a selector feature (SF), which is basically SUBCAT feature in

the HPSG formalism. They then regard the generated tree structure as LTAG elementary trees.

The rule applications to an HPSG lexical entry terminate when a feature structure of the root of the

generated tree structure satisfies a certain condition. When the feature structure of the root of a gen-

erated tree structure has empty SF values, the tree is recognized as an initial tree; or when it shares

some non-empty SF value in common with one of the frontier nodes in the tree structure, the tree

structure is recognized as an auxiliary tree. This conversion is analogous to part of our conversion

from a canonical elementary tree to an HPSG lexical entry. However, given the greater generative

power of HPSG, the conversion required that some restrictions be placed on the input HPSG to

suppress its generative capacity. Moreover, Becker and Lopez (Becker and Lopez 2000) pointed

out that there was overgeneration and undergeneration of the LTAG grammars. Thus the results of

conversion do not guarantee strong equivalence. Furthermore, although Becker and Lopez asserted

that conversion from HPSG to LTAG is also beneficial to obtain speed efficiency from a theoreti-

cal viewpoint, our results in this dissertation have definitively proved that their assertion does not

hold from a viewpoint of empirical time complexity; that is, we achieved a drastic speed-up by

converting LTAG to HPSG.

The above conversions do not have the advantages we have addressed, which are only attainable

when strong equivalence is preserved. We should finally address a study that compile a TAG

grammar into a strongly equivalent grammar based on a different grammar formalism.

Conversion from TAG to Range Concatenation Grammar Boullier (Boullier 1998) and his

subsequent study (Boullier 1999) have proposed Range Concatenation Grammar (RCG) as an al-

ternative representation framework for TAGs and other grammar theories. They have established an

algorithm that converts TAGs into strongly equivalent RCGs. They claimed that they distinguished

grammar theories and their representation framework, and proposed a parsing algorithm for RCGs

converted from grammars in various linguistic theories (Barthélemy et al. 2001).

In this dissertation, our claim is that the choice of representation framework in each gram-

mar theory is not independent from the grammar theories, and thus we do not aim at having a

generic representation framework that is suitable for any lexicalized grammar formalisms.1 We

have instead proposed a conversion algorithm between lexicalized grammars in order to clarify

1Note that RCG is an abstract representation framework that is even independent from lexicalization approaches in
the lexicalized grammar formalisms.

75

β�:
�

���

wi

�� *

�

����

wi

�� *

wi: [ARG: < ������ >] wi: [ARG: < ������� >]

LTAG:

HPSG:

��������� expresses �� or ���

of possible variations of the ARG feature of X =

w1

[ARG: < ��������]

w2

[ARG: < ������>]

w3

[ARG: < ���>]

[ARG: < B2� �� >]

right adjunction rule

right adjunction rule

[ARG: < B1� ��� �� �] … X

32

LTAG HPSG

�

���

w1

�� *

�

���

w2

�� *

�

���

w3

adjunction adjunction

β���β�� β���β�� α���α��

�

���

w3

�

����

w3

β��: α�: α��:

wi: [ARG: < �� >] wi: [ARG: < ��� >]

Figure 4.1: Exponential variations in the Arg feature

the differences among processing architectures of the grammar theories. For example, as we have

experimented in Section 3.2.3, although the HPSG parser showed the lower empirical time com-

plexity than the LTAG parser, its theoretical bounds of time complexity is beyond polynomial. This

is because the number of the variations of the values of the Arg features in edges generated by an

HPSG parser could be exponential since they include concatenation of parts of the Arg features that

originate from different elementary trees, as shown in a synthetic example in Figure 4.1.2 On the

2This explosion of the variations of the Arg features is due to an auxiliary tree with the foot node of depth n≥2 (e.g.
βi, β

′
i in Figure 4.1.). In the LTAG grammars that describe natural language, these auxiliary trees are used to express

embedded structure (e.g., β3 in Figure 1.4). Because in practice these embedded structures can recursively appear at
the limited times (Sarkar et al. 2000), the poor computational treatment of HPSG parsers do not deteriorate the parsing
efficiency.

76

other hand in the LTAG parser, because states do not involve combinations of parts of different ele-

mentary trees, the number of states are bounded to O(n4) for a sentence of length n.3 Furthermore,

as experimented in Section 3.2.4, when we approximate an LTAG grammar with a CFG via the

HPSG-style grammar, we needed to ignore the identifier in the HPSG-style grammar, which was

introduced as a result of tree division. This turned out to deteriorate the degree of CF approxima-

tion in the experiments.4 Our claim is that parsers for a particular lexicalized grammar formalism

can make use not only of parsing techniques that are claimed to be generic within the lexicalized

grammar formalisms but also of parsing optimizations that are possible only under that grammar

formalism. Thus, instead of developing parsing techniques for a generic representational frame-

work, we assert to share generic parsing techniques within the lexicalized grammar formalisms by

a method of grammar conversion, and further to optimize those parsing techniques to be suitable

for each formalism in order to make use of individual specifications for the processing architecture

of the formalism.

4.2 Previous Studies on Parsing of Lexicalized Grammars

In this section, we mention studies on parsing of lexicalized grammars that are related to dynamic

programming and CFG filtering, respectively. These two parsing techniques focus on two major

difficulties in parsing of lexicalized grammars. Dynamic programming focuses on duplication

of equivalent partial results, which stem from ambiguous partial parse trees in parsing of natural

languages. CFG filtering concerns the order to solve grammatical constraints in complex feature-

based grammars including lexicalized grammars.

4.2.1 Related Work on Dynamic Programming

There are other studies that aim at avoiding the ambiguity caused by syntactic lexical ambiguity in

LTAG. Evans and Weir (Evans and Weir 1998) have asserted that the compaction of substructures

in elementary trees has a great impact on parsing performance. In their research, several elementary

trees for each word were converted into finite-state automata, and merged into a single finite-state

3Let us recall the fact that the states of the LTAG parser was quintuplet consisting of an elementary tree, its root node,
its processing node, a span of the foot node over the input, a span of the tree over the input. The last two parameters
relate to the order of the number of the states, which could be expressed by a quadruplet whose elements range from 0
to n.

4For the test sentences in the experiment, the limited number of rule instantiations did not cause deterioration of the
success ratio of TNT’s phase 2 operations. Even when we increase the limit from 5 to 10, the ratio was unchanged for
the test sentences, which implies that the deterioration of the success ratio was completely due to ignoring the identifier.

77

duplicated equivalent grammatical construction

��

�� ��

�

��

ε �

human

��

�� ��

�

��

ε �

decadent

��

�

decadent

�� *

��

human

��� *

adjunction adjunction

Figure 4.2: An example of syntactic phrasal ambiguity for a phrase “human decadent”

automaton. Chen and Vijay-Shanker (Chen and Vijay-Shanker 1997) used underspecified tree de-

scriptions to allow ambiguous node labels in elementary trees. In the HPSG parser employed in

our experiments, some of this compaction is dynamically executed by factoring. Shaumyan et

al. (Shaumyan et al. 2002) evaluated an automaton-based parser with an LTAG grammar extracted

by a method proposed by Xia (Xia 1999), and showed results similar to ours. However, the gram-

mar they used had far less syntactic lexical ambiguity than the XTAG English grammar. Our results

with the XTAG English grammar are a strong indication of the importance of compaction of sub-

structures in elementary trees.

We should discuss in detail the differences between the ways to handle structural ambiguities

in the above LTAG parsers and the HPSG parser employed in our experiments. The structural

ambiguities in parse trees of lexicalized grammars can be classified into the ones which can be

packed prior to parsing (syntactic lexical ambiguity) and the ones which can be packed only during

parsing (syntactic phrasal ambiguity). The above LTAG parsers handle only the syntactic lexical

ambiguity, which appears as structural ambiguities in several elementary trees assigned for each

word, while the HPSG parser handle parts of syntactic lexical and phrasal ambiguities. Figure 4.2

shows an example of the syntactic phrasal ambiguity. Although both phrasal structures headed by

VP require the same NP subject, their head words are different and thus these ambiguous structures

are not factored out even in the LTAG parsers that can handle syntactic lexical ambiguity. Figure 4.3

shows an example of the syntactic lexical ambiguity which the HPSG parser cannot factor out. In

the HPSG parser, the edges for the V nodes in Figure 4.3 are not factored out because only parts of

the edges are equivalent. In order to handle such partially equivalent edges, modularization (Griffith

1995; Griffith 1996) of feature structures and packing of disjunctive feature structures (Miyao

78

duplicated equivalent grammatical construction

�

�� ��

�

loves

��

�

�� ��

�

��

ε �

loves

��

Figure 4.3: An example of syntactic lexical ambiguity which the HPSG parser cannot factor out

1999) have been studied in the unification-based formalisms. The packing of disjunctive feature

structures is analogous to automaton-based compaction of lexical entries when it is applied to

feature structures of lexical entries, and it further factors out the syntactic phrasal ambiguity when

it is applied to feature structures of (partially) equivalent edges. If we investigate the effect of

these different factoring schemes on the parsing performance, we can not only identify which type

of structural ambiguities is dominant in the lexicalized grammars but also determine the better

parsing architecture for the lexicalized grammars. However, it would require exhaustive sets of

experiments because structural ambiguities depend entirely on the specification of the grammars;

e.g., most of the (syntactic) structural ambiguities can be resolved when semantic constraints are

incorporated into grammars.

4.2.2 Related Work on CFG filtering

CFG filtering is first employed for parsing of the Lexical Functional Grammar (LFG) (Kaplan and

Bresnan 1982) by Maxwell and Kaplan (Maxwell III and Kaplan 1993). Because an LFG grammar

consists of an explicit CFG backbone and functional constraints, they incorporated some functional

constraints of a given LFG grammar into the CFG backbone and used the augmented CFG back-

bone to guide parsing. They achieved the better parsing performance by moving several functional

constraints including subcategorization frames of verbs into a CFG backbone. As also demon-

strated by Shieber (Shieber 1985), the order to solve grammatical constraints is quite important

in parsing of complex feature-based grammar formalisms including lexicalized grammars. In our

experiments, we compared two different ways of incorporating constraints of an LTAG grammar

79

into a CFG filter. We demonstrated for both hand-crafted and automatically extracted LTAG gram-

mars that global constraints related to subcategorization frames and non-local dependencies are

important to prune ambiguities of partial parse trees.

The effect of two-phased (or guiding) approaches to parsing also depends on the specification

of grammars. When intensively restricted grammars such as the LINGO English Resource Gram-

mar (Flickinger 2002) are used, the efficient processing of feature constraints (Nishida et al. 1999;

Malouf et al. 2003) are obligatory even when we use CFG filtering (Torisawa et al. 2000; Callmeier

2000).

4.3 Comparison between Parsers for Different Grammar Formalisms

There is only one work on a comparison between LTAG and HPSG parsers. Yoshida et al. (Yoshida

et al. 1999) reported a comparison between their LTAG parser and an HPSG parser (Nishida et al.

1999) on the same platform (LiLFeS programming language: (Makino et al. 1998)). They com-

pared the parsing efficiency of two given HPSG (Torisawa and Tsujii 1996) and LTAG (Yoshida

et al. 1999) parsers in terms of the parsing time and the number of the states/edges generated in

parsing by the parsers.5 The experimental results showed that the HPSG parser was more efficient

than the LTAG parser under their experimental settings.

Although their research showed empirical efficiency of the HPSG parser against the LTAG

parser, it was not a fair comparison not only because the LTAG and HPSG parsers they used do

not share the same generic parsing techniques but also because the HPSG grammar they used was

obtained by the manual translation by Tateisi et al. (Tateisi et al. 1998) and their translation did not

guarantee the equivalence between the original and obtained grammars. Thus it is problematic to

identify the algorithmic difference that causes the performance. As a consequence, their compari-

son was only a suggestion as an empirical comparison of HPSG and LTAG parsers, as they noted

in the paper.

On the other hand, we have performed a comparison between an HPSG parser with the HPSG

factoring method and an HPSG parser with the LTAG factoring method, due to clarification of

the correspondence between the original LTAG and converted HPSG-style grammars. We claim

that the comparison of parsers in different grammar formalisms is valid only when we perform the

experiments using the strongly equivalent grammars.

5We should mention that the LTAG parser employs the dynamic programming techniques analogous to the LTAG
parser used in our first parsing comparison, while the HPSG parser employs the same CFG filtering techniques used in
our second parsing comparison and further extends the algorithm by efficient unification techniques. The experimental
results showed that the HPSG parser was more efficient than the LTAG parser.

80

There is another work on parsing comparison between different grammar formalisms. Schabes

and Waters (Schabes and Waters 1995) showed strongly equivalent grammars based on context-free

grammars and Lexicalized Tree Insertion Grammar (LTIG), which is a variant of TAG as to sup-

press its generative capacity. The objective of their work was not on the parsing comparison but on

the strong lexicalization of CFG by LTIG. They reported that parsing with the TIG converted from

a CFG achieved a parsing speed that was higher by a factor of 5 to 10 than parsing with the original

CFG. It is noteworthy that they recognized their conversion from CFG to strongly equivalent LTIG

as a kind of transformation of the grammar, and compared it with the other transformation on CFG

such as the Greibach Normal Form (GNF: (Greibach 1965)) transformation and the Rosenkrantz

procedure (Rosenkrantz 1967). We consider that the difference between the grammar conversion

and these transformations lies in whether both input and output of the conversion are linguistic

formalisms or not.6 Conversion of grammars from one linguistic formalism to another is more

intricate than the above transformations, because the conversion involves not only mathematical

transformation but also linguistic correspondence between the two formalisms.

4.4 Further Collaboration between LTAG and HPSG using Our Re-

sults

There are two studies related to collaboration between the LTAG and HPSG formalisms. These

studies made use of an HPSG-style grammar converted from an LTAG grammar by our grammar

conversion and insights gained by results of parsing comparison, respectively.

Yakushiji et al. (Yakushiji et al. 2001) demonstrated that a debug tool willex designed for an

HPSG grammar can be used for debugging of an HPSG-style grammar converted from the XTAG

English grammar. In their study, they designed a grammar debugger for HPSG grammars using

HPSG parsers. In their experiments, several defects of the XTAG English grammar have been

successfully identified using HPSG parsers.

Oouchida et al. (Oouchida et al. 2004) established a concrete algorithm to approximate LTAG

with CFG based on the fundamental idea of CF approximation for LTAG that we provided in Sec-

tion 3.2.4, and derived a parsing algorithm for LTAGs. In their research, they observed the LTAG

processing architecture and identified the grammatical construction that increases the number of

non-terminals when applying the grammar rules to elementary trees during CF approximation of

6Note that the conversion from CFG to LTIG proposed by Schabes and Waters does not involve the linguistic corre-
spondence between CFG and LTIG. This is because not only CFG but also LTIG is a synthetic representation framework
and thus there is no linguistic requirement on the output LTIG, as is the same in CFG.

81

a given LTAG grammar, in order to obtain a better CFG approximation. Compared to the original

CFG filtering designed for HPSG, this approximation makes use of the nature of the processing

architecture chosen by LTAG, and is thus more suitable for parsing of LTAG. Their approach con-

forms to our claim that there must be different kind of optimization according to representation

framework chosen by linguistic theories. Oouchida et al. have thus achieved a parsing algorithm

that are not only empirically efficient but also has better bounds of theoretical time complexity

O(n6),7 which is not guaranteed when applying the HPSG parsers used in our experiments to

HPSG-style grammars converted from LTAGs.

7This is achieved by using an LTAG parser in phase 2 of the two-phase parser.

82

Part II

Approach to Acquiring Lexical
Resources from Corpora

83

Chapter 5

Background to Subcategorization
Frame Acquisition

In this chapter, we introduce a subcategorization frame (SCF) as an essential information that

should be included in lexical entries of lexicalized grammars. Section 5.1 describes linguistic phe-

nomenon of subcategorization and its treatment in lexicalized grammars. Section 5.2 next reviews

methods of acquiring SCFs automatically from raw or annotated corpora. Section 5.2.1 introduces

studies on acquiring general SCF types from corpora while Section 5.2.2 focuses on studies on ac-

quiring SCFs for lexicalized grammars. Section 5.3 finally mentions existing linguistic knowledge

on subcategorization behaviors.

5.1 Verb Subcategorization and Its Treatment in Lexicalized Gram-

mars

A subcategorization frame (SCF) for a word concerns arguments1 of the predicate. Arguments

are closely associated with the predicate and understood to complete its meaning, and then are

distinguished from adjuncts. For example, in 1a, “Mary” is an argument for a predicate “met,”

but “yesterday” is an adjunct. The sentence is ungrammatical (1c) without the argument while

grammatical without the adjunct (1b).

(1) a. He met Mary yesterday.
1Term argument in Section 2.1.1 slightly extends arguments in this context to modifiee for adjective/adverb. That is,

in auxiliary tree, an anchor word (modifier) modifies another word (modifiee) whose label is the same as the foot node,
and then we say that the modifiee is an argument of the modifier there.

85

��

��� ��

�

love

α1
��

��� ��

�

think

β1

��*���

��

��� ��

�

give

α2

��� ���

Figure 5.1: LTAG lexical entries for “love,” “give,” and “think” that exemplifies transitive, ditran-

sitive, and sentential complement verbs.

b. He met Mary.

c. * He met.

A correct and coherent characterization of the argument-adjunct distinction is crucial for both

defining and identifying SCF types. A variety of criteria have been proposed in the linguistic lit-

eratures to help make this distinction; examples include elimination test (Somers 1984), which

involves eliminating an element from a sentence and observing whether the remaining sentence

is still grammatical, and manually-tailored criteria and heuristics to examine argument-hood and

adjunct-hood (Meyers et al. 1994), which is demonstrated in the sizable COMLEX syntactic dic-

tionary (Grishman et al. 1994).

Given the argument-adjunct distinction, subcategorization concerns the specification of the

number and type of arguments which the predicate requires for well-formedness. For example,

some verbs take two NP complements (e.g., give and provide), while others do not (love and like).

Some verbs permit a whether-complement clause (ask, wonder), others permit a that-complement

clause (require, say), while others permit neither (give and provide) and others permit both (con-

sider). These specifications on the SCF types are sensitive to ‘grammatical functions,’ i.e., the

specific grammatical roles the arguments can bear when present.

In the context of lexicalized grammars, subcategorization information for a word is used to

select other words or phrases that the word can be combined with, and is thereby essential for

lexical entries. As we have seen in Chapter 1 and Sections 2.1 and 3.1, the constraints on arguments

of words are differently realized in individual grammar formalisms. In the LTAG formalism, the

constraints on grammatical categories of arguments of a word are explicitly expressed in labels

of leaf nodes in the elementary trees for the word. On the other hand, in the HPSG formalism,

86

��

��� ��

�

loved

���

��

�� ��

�

loved

���

�	

���

��

ε

1. Select subcategorization
(base lexical entry)

2. Derive lexical entries for possible
syntactic transformations

Metarule for passivization

…
��

�����

e.g., John loved Mary
e.g., Who loved Mary?

��

��� ��

�

loved

��

�

by

���

e.g., Mary is loved by John

��

������

��

����� ��

���

� �	���

by

Metarule for wh-movement

��

�����

?1, ?2: matching variables

�	

�

����� ��

�� �	
��

ε

?1, ?2: matching variables

input

input output

output

Figure 5.2: Metarule for lexicon organization: a case of deriving lexical entries for “loved”

these are simply listed in a feature structure for the word. For example, an elementary tree α1 in

Figure 5.1 shows an LTAG lexical entry for “love,” which expresses the fact that “love” must be

combined with one NP complement, i.e., a transitive verb, and an elementary tree β1 depicts a

lexical entry for “think,” which takes sentential complements.

Along with this SCF distinction, lexicalized grammars are usually equipped with an organized

architecture of lexicon that derives lexical entries from one subcategorization frame and one possi-

ble syntactic alternation; e.g., lexical rules in the HPSG framework (Pollard and Sag 1994; Briscoe

and Copestake 1999; Nakanishi et al. 2004) and meta-rules (Becker 1994; Becker 2000; Prolo

2002) and metagrammar (Candito 1996; Abeillé and Candito 2000; Yoon 2004) in the LTAG

framework. Figure 5.2 shows example generations of lexical entries by metarules; lexical entries

for “loved” are derived from its declarative (or base entry). A Metarule takes a lexical entry whose

structure matches the structural constraints specified by the left-hand side of the metarule, and ex-

ecutes structural replacement using structure matching variables (?1 and ?2 in Figure 5.2). The

87

key point is that metarules define syntactic alternations independently from each subcategorization

frame, and thus all lexical entries can be derived by selecting one subcategorization frame and by

applying possible syntactic alternations. Since the other architectures of lexical organization also

express lexical entries by the types of subcategorization frames and syntactic alternation rules, we

can decide possible lexical entries for words by selecting possible subcategorization frames for the

word and possible syntactic alternation for the frame. Subcategorization acquisition thus equals to

lexical acquisition if a grammar equips such organized architecture of lexicon.

We should mention that granularity of types of subcategorizations depends much on each lin-

guistic theory. Briscoe and Carroll (Briscoe and Carroll 1997) extended the subcategorization types

in two large-scale manually-tailored SCF lexicons (Boguraev and Briscoe 1987; Grishman et al.

1994), and identified 163 types of subcategorization frames, which are relatively independent from

individual linguistic theories. These comprehensive SCF types are listed in Appendix A. Imple-

mented lexicalized grammars usually have individual coding scheme of SCF types. The XTAG

English grammar (XTAG Research Group 2001) has only 57 types of subcategorization frames and

most of them are for compound expressions, while the LINGO English Resource grammar has finer

distinction for subcategorizations and the number of the SCF types is 216. These differences stem

from the fact that there are several different encodings of SCFs according to constraints the theories

consider. The interested reader is referred to relevant discussions in Chapter 1 and Section 3.1.

5.2 Automatic SCF Acquisition

Because the subcategorization information is the core constraints included in lexical entries of the

lexicalized grammars, it is quite important to determine the SCF types taken by a particular word. In

this section, we first address problems on the manual construction of large-scale subcategorization

lexicons. We then describe approaches to automatically acquiring subcategorization frames from

raw or annotated corpora.

Because variations of types of subcategorization frames for a word are much more diverse

than its part-of-speech variations, it is quite problematic to manually build comprehensive sub-

categorization lexicon; there are two problems reported for manually-tailored lexicons. First, the

manually-tailored lexicons tend to show high precision but disappointing recall. Briscoe and Car-

roll (Briscoe 2001) manually analyzed associations between SCF types and predicates in 35,000

words of corpora, and then compared the resulting SCF lexicon with two manually-tailored SCF

lexicons (Boguraev and Briscoe 1987; Grishman et al. 1994). Around 15% of the observed types of

associations were not included in manually-tailored lexicons. Second, a manually-tailored lexicon

88

lacks frequency information for SCFs that helps a lexicalized parser to accurately select the most

probable parse (Carroll et al. 1998; Zeman 2002; Collins 2003).

In order to compensate for these shortcomings, automatic acquisition of SCF lexicon has

emerged as one of the most important lexical acquisition tasks, and has been well studied in the

literature (Brent 1993; Ushioda et al. 1993; Manning 1993; Ersan and Charniak 1996; Briscoe and

Carroll 1997; Carroll and Rooth 1998; Gahl 1998; Lapata 1999; Kuhn et al. 1998; Sarkar 2000;

Korhonen 2002; Miyao et al. 2004; Nakanishi et al. 2004). These studies are different in SCF

types they assume and kinds of linguistic cues to identify arguments in the target corpora.

In what follows, we first introduce studies on the acquisition of general-purpose SCFs from

corpora. We then mention studies on the SCF acquisition for lexicalized grammars.

5.2.1 SCF Acquisition for General SCF Types

Brent (Brent 1993) initiated the automatic subcategorization acquisition task. In his study, only six

SCF types involving basic NP, sentential and infinitive phrases are extracted from raw corpora, by

making use of a number of lexical cues to find unambiguous SCF appearances. Although the results

show high precision, the recall is quite low. His approach is not extensible to all SCF types, and

frequency information of each SCF type is totally unreliable due to the use of only unambiguous

data.

Following Brent’s study, various studies attempted to acquire finer SCF types from sizable raw

corpora, making use of shallow analysis of sentences. Ushioda et al. (Ushioda et al. 1993) and

Manning (Manning 1993) first employed an NP chunker for SCF acquisition. In their study, a

finite-state NP chunker first parses part-of-speech tagged sentences. A set of SCF identification

rules then extract SCFs from chunked data. Following their research, Gahl el al. (Gahl 1998)

attempted the SCF acquisition in the context of corpus query systems. Lapata et al. (Lapata 1999)

tried to acquire diathesis alternation using an NP chunker and a set of linguistics heuristics.

These approaches represent a clear improvement over the initial approach by Brent. The use

of an NP chunker or a partial parser increases the number of corpus instances that include SCFs.

However, in these chunker-based methods, due to lack of grammatical constraints that determine

whether each chunk to be argument or adjunct, we need several heuristic rules that are difficult to

design; for example, longest-match principle, a heuristic rule that determines a phrase boundary, is

reported very unreliable.

In order to exploit more grammatical constraints to determine SCF types, some studies used

phrase-structure parsers instead of NP chunkers to capture phrasal constraints. Ersan and Char-

niak (Ersan and Charniak 1996) started the use of a phrase-structure parser for SCF acquisition.

89

Their PCFG parser equips 1,209 rules for VP expansion, which are mapped to 16 SCF types. For

example, if a rule VP → ADV NP is applied during parsing, this is mapped to a transitive SCF

type. Carroll and Rooth (Carroll and Rooth 1998) trained their CFG parser using Expectation

Maximization (EM) algorithm, with verb SCF as the hidden variable for the model. Briscoe and

Carroll (Briscoe and Carroll 1997) attempted to extract comprehensive 163 types of SCFs that are

extended from the types in two large manually-tailored SCF lexicons (Boguraev and Briscoe 1987;

Grishman et al. 1994), using a full phrase structure parser.

Because the above research assumed a pre-determined set of SCF types to be extracted, it

is problematic to apply their methods to new languages whose SCF types are not well studied.

Making use of corpus with dependency annotation, Sarkar and Zaeman (Sarkar and Zeman 2000)

first extracted associations between a predicate and its all dependants (‘observed frame’). Since

the dependants of a predicate include all of its arguments, observed frames subsume possible SCF

types. However, in real-world sentences, a predicate is almost always accompanied by one or

more adjuncts. They first determine subsumption relation among the observed frames according

to subsumption among elements of the frames. For example, the frame NP-PP subsumes NP, NP-

NP subsumes NP, and the like. They then identified correct SCF types by comparing frequency

differences between an observed frame and its smaller subsets; when an observed frame is too

infrequent and statistically rejected, then adding frequency counts of the observed frame to the

most frequent frame of its subset frames.

These research efforts tried to extract general-purpose SCF types from corpora, However, when

we want to extract SCFs with the individual SCF coding scheme defined by lexicalized grammars

or lexical resources, we need some method to abstract away differences between acquired SCF

types and the target SCF types or start with the target SCF type set. In the following section, we

introduce methods (Kuhn et al. 1998; Carroll and Fang 2004; Miyao et al. 2004) for acquiring

SCFs for lexicalized grammars.

5.2.2 SCF Acquisition for Lexicalized Grammars

First of all, Kuhn et al. (Kuhn et al. 1998) proposed semi-automatic method to acquire SCFs

for their LFG grammar. They acquired three SCF types for their LFG grammar, taking part-of-

speech tagged sentences as inputs. They first select sentences that include candidate verbs with

the target SCF types using heuristic rules. They next parse the sentences with the grammar three

times, each time hypothesizing a particular SCF type for the candidate verbs, and then select the

correct SCF among hypothesized SCFs that obtain parses, using linguistic knowledge-based filters.

90

Finally, putative SCFs are examined by a human lexicographer. Although this method yields better

precision and recall than a method without a grammar, we cannot obtain accurate SCF distributions

due to the use of (strict) filtering of the target sentences. It is also difficult for this method to scale

to finer SCF types the grammar defines.

Miyao et al. (Miyao et al. 2004) attempted to acquire HPSG lexical entries from parsed cor-

pora. Their research follows the previous research on lexicalized grammar acquisition (Miyao et al.

2003), which has been proposed for LTAG (Xia 1999; Chen and Vijay-Shanker 2000; Chiang 2000)

and CCG (Hockenmaier and Steedman 2002), and further pursues the grammar-engineering frame-

work called corpus-oriented grammar development. In their method, they first assume a certain set

of grammar rules in the target lexicalized grammar formalism. They then externalize linguistic

knowledge to (annotated) sentences, in other words, annotate grammatical constraints that signs of

each node in the parse trees must meet, in order to identify which grammar rule should be applied to

construct each branching structure. They then acquire HPSG lexical entries, by inversely applying

the identified grammar rule to each branching structure. Although resulting lexical entries are not

lexically organized as in hand-crafted grammars, a subsequent study by Nakanishi et al. (Nakanishi

et al. 2004) enable to decompose obtained lexical entries to SCFs (lexeme, in their study) and

syntactic alternation defined by lexical rules. In their study, they manually design lexical rules

that input one lexeme and output a lexical entry, and its inverse version that input a lexical entry

and output a lexeme. By applying inverse lexical rules to each lexical entry, SCFs are induced.

Thanks to the use of annotated corpora (Marcus et al. 1993) and heuristic rules that reflect linguis-

tic knowledge, they obtained reliable SCFs for verbs in the annotated corpus as by-product. From

viewpoints of SCF acquisition, as in the work by Sarkar and Zaeman (Sarkar and Zeman 2000),

their method extracts SCF types and SCFs altogether from corpus. By using linguistic knowledge

derived from the target linguistic theory instead of corpus-based statistics, they could obtain SCF

types appropriate for the grammar they design. The validity of the linguistic knowledge is empir-

ically attested by performing parsing experiments using the obtained lexical entries. However, as

described in (Roland 2001), verb subcategorizations vary from one corpus to another, according

to their discourse such as narrative, connected discourse, and single sentence production, and to

their semantic domain. We cannot obtain possible SCF types for infrequent verbs when we use a

finite size of annotated corpora.2 That is, acquired lexicon accurate enough, but recall is somewhat

disappointing for general purpose.

Finally, we introduce a method that makes use of acquisition methods for general-purpose SCF

2Briscoe and Carroll (Briscoe and Carroll 1997) discovered that manual analysis of 300 occurrences of each verb is
sufficient to obtain an adequate SCF distribution for gold-standard. However in the WSJ corpus, only 48 verbs out of
3603 verbs appeared more than 300 times.

91

������ �!" # �!$� %
	�
�%

#�&'(� �)�&'(� "��

#(*����� ���+ ,� �-�� ,�.��

#!�*/�'/*/ 0 1

#2!�3�(4!� 15�-6-�.1�

#2!�3(" � # * * �))1�

#�* * ��%�����% ""���

#4* �* ��%����
�% ""���

#4* �* "/*

#4* �* "/* #*!* 1��

Figure 5.3: An acquired SCF for a verb “yield”

types proposed by Carroll and Fang (Carroll and Fang 2004). In their study, they first acquire

fine-grained SCFs using the unsupervised method proposed by Briscoe and Carroll (Briscoe and

Carroll 1997) and Korhonen (Korhonen 2002). Figure 5.3 shows an example of one acquired SCF

entry for a verb “yield.” Each SCF entry has several fields about the observed SCF. We explain

here only its portion related to this study. The �!$� field is a word stem, the first number in the

(*����� field indicates an SCF type, and the 2!�3(" field shows how often words derivable from

the word stem appeared with the SCF type in the training corpus. The obtained SCFs comprise the

total 163 SCF types of relatively fine-grained SCFs, which are originally based on the SCFs in the

ANLT (Boguraev and Briscoe 1987) and COMLEX (Grishman et al. 1994) dictionaries. In this

example, the SCF type 24 corresponds to an SCF of transitive verb. They then obtain SCFs for the

target lexicalized grammar (the LinGO ERG (Copestake 2002) in their study) using a handcrafted

translation map from these 163 types to the SCF types in the target grammar. They reported that

they could achieve a coverage improvement of 4.5% (52.7% to 57.2%) but that average parse time

was doubled (9.78 sec. to 21.78 sec.). This is because they did not use any filtering method for

the acquired SCFs to suppress the increase of the lexical ambiguity. Note that their method is

extendable to any lexicalized grammars, if we could have a translation map from these 163 types

to the SCF types in the target grammar.

As we have discussed above, there are several problems in existing methods of acquiring lexical

resources for lexicalized grammars from raw or annotated corpora. When we use a method of

acquiring lexical resources from annotated corpora, the precision of the acquired SCFs is high

but it is dubious that the recall of the acquired SCFs is enough for our target domain. On the other

92

hand, when we attempt to integrate SCFs acquired from raw corpora into existing lexical resources,

it follows from results shown by Carroll and Fang (Carroll and Fang 2004) that we definitely need

some method to control the quality of SCFs acquired from raw corpora.

5.3 Linguistic Knowledge on SCF behavior

This section introduces linguistic characteristics of subcategorization that can be employed for

guiding filtering of noisy SCFs.

Because subcategorizations for a word involve information on arguments that complete the

predicate’s meaning, several studies in the linguistic literature (surveyed in (Levin 1993; McCarthy

2001)) have reported alternation relation among several SCFs for one word with the same meaning.

The alternation relation among SCFs for a word with the same meaning is called diathesis

alternation. For example, some ditransitive verb taking SCF type NP-NP takes another SCF type

NP-to_PP as follows:

(2) a. He gives [NP his father] [NP a letter]

b. He gives [NP a letter] [to_PP to his father]

c. She presents [NP her daughter] [NP a doll]

d. She presents [NP a doll] [to_PP to her daughter]

The alternation shown in the sentence 2a,2c and 2b,2d is called dative alternation. This alterna-

tion is known to be applicable to a verb of meaning similar to “give” and “present,” which con-

vey change of possession. The following sentences illustrate other alternations such as middle

causative/inchoative alternation NP ↔ none (3a ↔ 3b), body-part possessor ascension alternation

NP’s-NP ↔ NP-PP (4a ↔ 4b), and an alternation related to SCFs of predicative complements NP-S

↔ NP-NP (5a ↔ 5b).

(3) a. Tome broke [NP the window]

b. The window broke

(4) a. Mary kissed [NP’s John’s] [NP shin]

b. He considers [NP John] [PP in the shin]

(5) a. He considers [NP John] [S to be a good teacher]

93

b. He considers [NP John] [NP a good teacher]

Levin (Levin 1993) has argued that the alternation behavior of SCFs for a verb can be pre-

dictable by the meaning of the verb, and inversely constructed verb classes that share the same

alternation behavior of SCFs. Her hypothesis is attested against the established classes for verbs

that take alternations involving prepositional phrases. Dorr (Dorr 1997) and Dang et al. (Dang

et al. 1998) extended the Levin’s classification by adding intersective and novel classes, respec-

tively. Korhonen (Korhonen and Briscoe 2004) introduced 106 novel diathesis alternation as well

as supplied new classes that are not comprehensively covered in the extant classification. These

research efforts illustrated a regular behavior of SCF co-occurrences, which would be useful to

guide subcategorization acquisition.

In the following two chapters, we first solve the task of identifying whether a word can have

each observed SCF in order to augment lexicons that include only associations between words

and SCFs. We assume that there are classes whose element words have identical SCF types. We

obtain these classes by clustering acquired SCFs, using information available in the target lexicon,

and then use the obtained classes to eliminate less likely SCFs. We second solve another task

of obtaining accurate estimates for lexicons that include not only associations between words and

SCFs but also their co-occurrence probabilities. In this task, we model co-occurrences between

words and SCFs by the latent class models, assuming there are latent classes that govern the SCF

distributions. Both of these studies are motivated from the aforementioned linguistic knowledge on

the nature of SCF distributions.

94

Chapter 6

Filtering Method for SCF Lexicon
Acquired from Raw Corpora

In this chapter, we describe a method of filtering putative SCFs acquired from raw corpora, in

order to augment existing lexical resources that only include associations between words and SCFs,

such as hand-coded lexicons of lexicalized grammars. We make use of the reliable information on

co-occurrences between SCF types and words, which are available in the target lexical resource, in

order to guide filtering of less likely SCFs in the acquired noisy lexicon.

The basic idea of our method is first to obtain word classes whose element words have the

same set of SCFs, using not only acquired SCFs but also existing SCFs in the target lexicon. We

eliminate less plausible acquired SCFs and add plausible unseen SCFs for a word according to a

cluster to which the word belongs.

In the following sections, Section 6.1 introduces an SCF confidence of each SCF type for a

word. An SCF confidence vij is a probabilistic quantity that expresses how strong the evidence is

that the word wi has an SCF fj , and can be defined for both SCFs in the acquired and the target

lexicons. Section 6.2 describes a clustering method of SCF confidence vectors for words. Each

element of an SCF confidence vector for a word represents an SCF confidence of each SCF type

for the word. Section 6.3 mentions cut-off methods that exploit the obtained clusters along with

corpus-based statistics. Section 6.4 shows an application of our method to SCFs acquired from

raw corpora in order to augment hand-coded lexicons of two large-scale lexicalized grammars.

Section 6.5 shows related work to our filtering method using alternation behaviors between SCFs.

95

(true) probability distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NP None NP_to-PP NP_PP PP

subcategorization frame

pr
ob

ab
ili

ty

apply

recognition
threshold

Figure 6.1: SCF probability distribution for “apply”

6.1 Estimation of SCF Confidence Vectors

We first create an SCF confidence vector vi for each word wi using acquired SCFs and the SCFs

in the target lexicon. Each element vij in vi represents an SCF confidence of an SCF type fj for a

word wi, which expresses how strong the evidence is that the word wi has SCF fj . SCF confidence

vectors for words are objects of our clustering, and the clustering algorithm will be described in

Section 6.2.

Language Model with SCF Confidence In this study, we assume that a word wi appears with

each SCF type fj with a certain (non-zero) probability θij(= p(fj |wi) > 0 where
∑

j θij = 1),
but only SCFs whose probabilities exceed a certain threshold are regarded as SCFs for the word.

In other words, we regard an SCF fj for a word wi whose probability θij is less than a certain

threshold as a noise or a very exceptional usage for wi. We hereafter call this threshold recognition

threshold. Figure 6.1 depicts an imaginary (true) probability distribution of SCF for apply. We

regard a probability that the probability of that SCF exceeds the recognition threshold as an SCF

confidence of each SCF type, i.e., vij = P (θij > recognition threshold). In Figure 6.1, SCF types

NP, None, and PP are recognized as SCFs for “apply.” We can reflect the reliability of SCFs

associated with a word in the target lexicon by setting their SCF confidences close to 1.

One intuitive way to estimate an SCF confidence is to assume that an observed probability,

i.e., relative frequency which is obtained by the maximum likelihood estimation, is equal to a

96

probability θij of an SCF type fj for a word wi (θij = n(wi, fj)/
∑

j n(wi, fj) where n(wi, fj) is

a frequency that a word wi appears with an SCF type fj in corpora). When the relative frequency

of fj for a word wi exceeds the recognition threshold, its SCF confidence vij is set to 1, and

otherwise vij is set to 0. However, an observed probability is unreliable for infrequent words. For

example, when we use an SCF confidence derived from a relative frequency as above, we cannot

distinguish cases where a word w1 appears once with an SCF type fj and a word w2 appears 100

times, always with the SCF type fj , which are both the relative frequency 1. Moreover, when we

want to encode an SCF confidence of reliable SCFs in the target lexicon, we cannot distinguish the

SCF confidences of those SCFs with SCF confidences of the acquired SCFs.

Bayesian Estimation of SCF Confidence Another promising way to estimate an SCF confi-

dence, which we adopt in this study, is to assume a probability θij as a stochastic variable in the

context of Bayesian statistics (Gelman et al. 1995). In this context, a posteriori distribution of the

probability θij of an SCF type fj for a word wi is given by:

p(θij |D) =
P (θij)P (D|θij)

P (D)

=
P (θij)P (D|θij)∫ 1

0 P (θij)P (D|θij)dθij

, (6.1)

where P (θij) is a priori distribution, and D is the data we have observed. In this study, we assume

that every occurrence of SCFs in the data D is independent of each other. In other words, we regard

the data D as Bernoulli trials. When we observe the data D that a word wi appears n times in total

and x(≤ n) times with SCF type fj ,1 its conditional distribution is represented by a binomial

distribution:

P (D|θij) =
(

n

x

)
θx
ij(1 − θij)(n−x). (6.2)

To calculate the a posteriori distribution in Equation 6.1, we need to define the a priori dis-

tribution P (θij). The question is which probability distribution of θij appropriately reflects prior

knowledge. In other words, the a priori distribution should encode the knowledge we use to es-

timate SCFs for words unknown to us. We therefore determine the a priori distribution P (θij)
from distributions of observed probability values of fj for all the words seen in corpora2 by us-

1The values of !"#$%&' is used to obtain n and x.
2Note that we assume that P (θij) and P (θij′) are independent, although they are not independent when we consider

diathesis alternation between subcategorization frames which we introduced in Section 5.3. By further assuming that
P (θij) is equal to P (θj), we estimated a priori distribution separately for each type of SCF from words that appeared
more than 50 times in the training corpus in the following experiments.

97

ing a method described in (Tsuruoka and Chikayama 2001). In their study, they assume a priori

distribution as the beta distribution defined as:

p(θij |α, β) =
θα−1
ij (1 − θij)β−1

B(α, β)
, (6.3)

where B(α, β) =
∫ 1
0 θα−1

ij (1−θij)β−1dθij . The values of α and β are determined by moment esti-

mation.3 By substituting Equations 6.2 and 6.3 into Equation 6.1, we finally obtain the a posteriori

distribution p(θij |D) as:

p(θij |α, β,D) = c · θx+α−1
ij (1 − θij)n−x+β−1, (6.4)

where

c =
(n

x

)
B(α, β)

∫ 1
0 P (θij)P (D|θij)dθij

. (6.5)

When we set the recognition threshold to t, we can calculate an SCF confidence vij that a word

wi can have fj by integrating the a posteriori distribution p(θij |D) from the threshold t to 1:

vij =
∫ 1

t
c · θx+α−1

ij (1 − θij)n−x+β−1dθij . (6.6)

By using this SCF confidence, we represent an SCF confidence vector vi for a word wi in the

acquired SCF lexicon.4

In order to combine SCF confidence vectors for words acquired from corpora and those for

words in the target lexicon, we also define an SCF confidence vectors v′i for a word w′
i in the target

lexicon by:

v′ij =

{
1 − εfp w′

i has fj in the lexicon

εfn otherwise,
(6.8)

3The expectation and variance of the beta distribution are made equal to those of the observed probability values.
4By using the fact that

∫ 1

0
P (θij |α, β) = 1, we can calculate vij as follows.

vij =

∫ 1

t
c · θx+α−1

ij (1 − θij)
n−x+β−1dθij∫ 1

0
c · θx+α−1

ij (1 − θij)n−x+β−1dθij

=

∫ 1

t
θx+α−1

ij (1 − θij)
n−x+β−1dθij∫ 1

0
θx+α−1

ij (1 − θij)n−x+β−1dθij

(6.7)

98

where εfp and εfn expresses a probability that a mapping w′
i to fj in the lexicon is false (false

positive) and a probability that a mapping w′
i to fj excluded in the lexicon is in fact true (false

negative), both of which express unreliability of the lexicon. In this study, we trust the lexicon as

much as possible by setting εfp and εfn to the machine epsilon.

In the following experiments we focus on solving a problem called ‘missing of known SCF

types for unknown words.’ We express SCF confidence vectors for all the words known to the

target lexicon by Equation 6.8 while we express SCF confidence vectors for the words unknown to

the target lexicon (and hence included only in the acquired SCF lexicon) by Equation 6.6.5

6.2 Clustering of SCF Confidence Vectors

We next present a clustering algorithm of words according to their SCF confidence vectors. Given k

initial representative vectors called centroids, our algorithm iteratively updates clusters by assigning

each data object to its closest centroid and recomputing centroids until cluster members become

static, as depicted in Figure 6.2. This clustering algorithm determines whether the word takes each

SCF type or not.

Although this algorithm is roughly analogous to the k-Means algorithm, it is different from

k-Means in important respects. Because our clustering algorithm does not handle probabilistic

distributions on SCF types for words but SCF confidence vectors for words, the resulting clusters

are assumed to be word classes that express SCF co-occurrences for the member words. Each

element cij of the centroid ci of the clusters must thus not be a continuous quantity but a discrete

value of 1 or 0, which express whether the words in that classes Ci have the corresponding SCF

type fj or not.

We then derive a function d that calculates a probability which a word wi should have an SCF

set represented by a centroid cm:

d(vi, cm) =
∏

cmj=1

vij ·
∏

cmj=0

(1 − vij). (6.10)

5It should be noted that because human lexicographers must have carefully examined whether the SCF type is ap-
propriate for the word, εfn should be much higher than εfp in nature. This leads to another serious problem called
‘missing of known SCF types for known words.’ We can solve this problem by performing experiments using different
SCF confidence vectors for words that are included in both the target lexicon and the acquired SCF lexicon, as follows:

v′
ij =

{
1 − εfp w′

i has fj in the lexicon∫ 1

t
c · θx+α−1

ij (1 − θij)
n−x+β−1dθij otherwise.

(6.9)

99

������ � (
�
�+, �
	#��
	�

�
��
�(V = {v1, v2, . . . , vn} ⊆ Rm

� #�	���
	 d : Rm × Zm → R
� #�	���
	 �
 �
����
 � �
	��
��

μ : {vj1 , vj2 , . . . , vjl
} → Zm

�	����� �
	��
��(C = {c1, c2, . . . , ck} ⊆ Zm

������� � (
�
���(�
�(-Cj.

��
�
���
 ���(�
��	��(�#��
	#��
	�
��
��
�(�V& -Cj.�

�
��	

/$��
 ���(�
� �
��
�(��
 	
� (����
 �

#
�
��$ ���(�
� Cj

Cj = {vi | ∀cl, d(vi, cj) ≥ d(vi, cl)} · · · �)�

	� #
�
��$

#
�
��$ ���(�
�(Cj

cj = μ(Cj) · · · �*�

	� #
�
��$

	� /$��

�
���	 -Cj.

	�

Figure 6.2: Clustering algorithm for SCF confidence vectors

By using this function, we can determine the closest cluster as argmax
Cm

d(vi, cm) (��� in Figure 6.2).

After every assignment, we calculate a next centroid cm of each cluster Cm (��� in Figure 6.2)

by comparing a probability that the words in the cluster have an SCF type fj and a probability that

the words in the cluster do not have the SCF type fj :

cmj =

⎧⎪⎨
⎪⎩

1 when
∏

vi∈Cm

vij >
∏

vi∈Cm

(1 − vij)

0 otherwise.
(6.11)

This calculation of each element of the centroid is motivated by the nature of SCF confidence.

Since an SCF confidence of fj for a word wi expresses how strong the evidence is that the word

wi has an SCF type fj . Our objective of this clustering is to determine whether the word wi have

an SCF type fj , we assign it not to a continuous quantity but to a discrete value, which exactly

determine whether the word wi in that cluster have an SCF type fj . This is determined by SCF

confidences of all members in that cluster. As a result, the centroid expresses a SCF co-occurrence

for the words in that cluster. Since cluster member consist of both SCF confidence vectors obtained

100

from the acquired SCF lexicon and the target lexicon, SCF co-occurrence expressed by the previous

centroids can be changed when a large number of corpus evidences, i.e., observed SCF confidence

vectors, suggest that their class should have different SCF co-occurrence.

We should address the way to determine the number of clusters and initial centroids. In this

study, we assume that the most of the possible set of SCF types for words are included in the

target lexicon,6 and take advantages of the existing sets of SCF types for the words in the lexicon

to determine the number of clusters and initial centroids. We first extract SCF confidence vectors

from the lexicon of the grammar. By eliminating duplications from them and regarding εfp = 0
and εfn = 0 and in Equation 6.8, we obtain initial centroids cm. We then set the number of clusters

k to the number of cm.

6.3 Cut-off Methods Exploiting the Obtained Clusters

We finally update the acquired SCFs using the obtained clusters and corpus-based statistics. In

experiments, we compare the following three cut-off methods which exploit SCF relative frequency,

SCF confidence, and word classes obtained by clustering of SCF confidence vectors.

Frequency cut-off This cut-off method performs filtering of acquired SCFs by setting a thresh-

old for relative frequencies of SCFs. Korhonen (Korhonen 2002) reported that this filtering

method works better than the other filtering methods employed for SCF acquisition in the

literature (e.g., binomial hypothesis testing (Brent 1993; Manning 1993; Ersan and Charniak

1996; Briscoe and Carroll 1997; Lapata 1999; Sarkar and Zeman 2000) and log-likelihood

ratio (Dunning 1993; Gorrell 2002; Sarkar 2000)).

Confidence cut-off This cut-off method uses SCF confidence for SCFs instead of their relative

frequency in order to perform thresholding. Note that without thresholding, all the SCF

types are associated with each word, because the Bayesian estimation of SCF confidences

assigns nonnegative SCF confidences to all the SCF types for each word. We refer to the

above procedure as confidence cut-off t when the SCF confidences are estimated under the

recognition threshold t.

Centroid cut-off This cut-off method first obtains SCFs by eliminating an SCF type fj for a word

wi ∈ Cm when cmj is 0, because the element cmj of a centroid cm in a cluster Cm represents

6When the target lexicon is less accurate, we can determine the number of clusters using algorithms that determines
the number of clusters (Bischof et al. 1999; Pelleg and Moore 2000; Hamerly 2003).

101

whether the words in the cluster can have an SCF type fj . We further performs filtering of the

selected SCFs by setting a threshold for an SCF confidence. We refer to the above procedure

as centroid cut-off t when the SCF confidences are estimated under the recognition threshold

t.

Note that frequency cut-off and confidence cut-off use only corpus-based statistics to eliminate

SCFs. By comparing the frequency cut-off and the confidence cut-off t estimated under the recog-

nition threshold t, we can observe the impact of the SCF confidence estimation. On the other hand,

by comparing the confidence cut-off t and centroid cut-off t, we can evaluate the effect of the use

of word classes obtained by the clustering of SCF confidence vectors.

6.4 Experiments on Filtering SCF Lexicon Acquired from Raw Cor-

pora

We applied our filtering methods to SCFs acquired from 135,902 sentences of mobile phone news-

group postings archived by Google.com, which is the data used in (Carroll and Fang 2004). As

shown in Section 5.2.2, the system of (Briscoe and Carroll 1997) distinguishes 163 different SCF

types. The number of acquired SCFs was 14,783 for 3,864 word stems, while the number of

SCF types observed for at least one verb in the data was 97 out of 163. We then translated these

SCFs into the SCFs of the XTAG English grammar (XTAG Research Group 2001) and the LinGO

ERG (Copestake 2002)7 using translation mappings built by Ted Briscoe and Dan Flickinger. They

defined a map from 23 of the 163 SCF types into 13 (out of 57 possible) XTAG SCF types, and

129 of the 163 SCF types into 54 (out of 216 possible) ERG SCF types. These mappings are listed

in Appendix A. The acquired SCFs for which translation mappings are not defined are disregarded

in the following experiments.

In the following filtering experiments, we evaluate our method in terms of prediction of SCF

types for unknown words. We first chose test words from the words that are included both in the

acquired lexicon and the lexicon of the lexicalized grammar. We then split each lexicon of the the

lexicalized grammar into the lexicon for the test words (testing data) and the lexicon for the other

words (training data). We then applied our method to the acquired SCFs for the test words using

the training data. By evaluating the resulting SCFs with the testing data, we can estimate the extent

to which our method can safely filter out only less likely SCFs for words unknown to the grammar.

7We used the same version of the LinGO ERG as (Carroll and Fang 2004) (1.4; April 2003) but the map is updated.

102

Table 6.1: Precision and recall of XTAG SCFs filtered using frequency cut-off, confidence cut-off,

and centroid cut-off

Cut-off Threshold Precision Recall F1

frequency cut-off 0 0.300 0.657 0.412

0.1528 0.550 0.492 0.519

confidence cut-off 0.05 0 0.116 1 0.208

0.05 0.9080 0.667 0.629 0.647

centroid cut-off 0.05 0 0.590 0.700 0.640

0.05 0.87337 0.697 0.652 0.674

Here, we assume that the existing SCFs for the words in the lexicon are more reliable than the other

SCFs for those words.

The XTAG lexicon was split into 9,437 SCFs for 8,399 word stems as training and 423 SCFs

for 280 word stems as testing, while the ERG lexicon was split into 1,608 SCFs for 1,062 word

stems as training and 292 SCFs for 179 word stems as testing. Both testing words are randomly

selected. We extracted SCF confidence vectors from the training SCFs and the acquired SCFs for

the words in the testing SCFs. The number of the resulting data objects was 8,679 for XTAG and

1,241 for ERG.

The number of initial centroids8 extracted from the training SCFs was 49 for XTAG and 53 for

ERG. We then performed clustering of 8,679 data objects into 49 clusters and 1,241 data objects

into 53 clusters, and then evaluated the resulting SCFs by comparing them to the testing SCFs.

We evaluated the resulting SCFs for the test verbs in terms of precision and recall, which are

respectively defined as follows:

precision =
Correct SCFs for the words in the resulting SCFs

All SCFs for the words in the resulting SCFs
(6.12)

recall =
Correct SCFs for the words in the resulting SCFs

All SCFs for the words in the test SCFs
(6.13)

We set the recognition threshold for confidence cut-off and centroid cut-off to 0.05 in these exper-

iments. Following the naming conversion we introduced in Section 6.3, we refer to these cut-offs

as confidence cut-off 0.05 and centroid cut-off 0.05. We then obtained the threshold tbest for rela-

tive frequencies and SCF confidences that maximize F1 measure, which is the harmonic mean of
8We used the vectors that appeared for more than one word.

103

Table 6.2: Precision and recall of ERG SCFs filtered using frequency cut-off, confidence cut-off,

and centroid cut-off

Cut-off Threshold Precision Recall F1

frequency cut-off 0 0.170 0.736 0.276

0.1574 0.455 0.541 0.495

confidence cut-off 0.05 0 0.030 1.000 0.059

0.05 0.9536 0.500 0.610 0.549

centroid cut-off 0.05 0 0.416 0.651 0.507

0.05 0.8742 0.515 0.630 0.567

precision and recall.

F1 =
2 · recall · precision
recall + precision

(6.14)

tbest = argmax
t

F1 (6.15)

Table 6.1 and 6.2 show precision and recall with threshold tbest for the resulting SCFs using fre-

quency cut-off, confidence cut-off 0.05, and centroid cut-off 0.05. The acquired SCFs are com-

pletely noisy when we use no filtering method (frequency cut-off of threshold 0). This is quite

apparent for the resulting SCFs for ERG (F1 = 0.276). The centroid cut-off performs best among

all cut-offs. In the following, we examine the performance difference between these cut-off meth-

ods in detail, by ranging the recognition threshold to SCF confidences from 0.01 to 0.05.

We first compared confidence cut-off with frequency cut-off to observe the effect of Bayesian

estimation. Figure 6.3 shows precision and recall of the SCFs obtained using frequency cut-off

and confidence cut-off 0.01, 0.03, and 0.05 by varying threshold for the SCF confidences and

the relative frequencies from 0 to 1. The graph indicates that the confidence cut-offs achieved

higher recall than the frequency cut-off, thanks to the a priori distributions. Through a comparison

among the three confidence cut-offs, we can conclude that we can improve precision using higher

recognition thresholds while we can improve recall using lower recognition thresholds. This is

quite consistent with our expectations. We can also observe that the precision of confidence cut-

offs monotonously increased when we use the higher threshold for the SCF confidences, while the

precision of frequency cut-offs decreased when we increases the threshold for relative frequencies

above a certain value. This implies that SCF confidence is a better indicator to filter out implausible

SCFs.

104

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
ec

al
l

Precision

A

B C D

A: frequency cut-off
B: confidence cut-off 0.01
C: confidence cut-off 0.03
D: confidence cut-off 0.05

XTAG

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
ec

al
l

Precision

A

B

C

D

A: frequency cut-off
B: confidence cut-off 0.01
C: confidence cut-off 0.03
D: confidence cut-off 0.05

ERG

Figure 6.3: Precision and recall of the SCFs filtered using frequency cut-off and confidence cut-off:

the XTAG English grammar (above) the LinGO ERG (below)

105

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
ec

al
l

Precision

A
B

C

D

A: frequency cut-off
B: centroid cut-off* 0.05
C: centroid cut-off 0.05

D: confidence cut-off 0.05

XTAG

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
ec

al
l

Precision

A
B

C

D

A: frequency cut-off
B: centroid cut-off* 0.05
C: centroid cut-off 0.05

D: confidence cut-off 0.05

ERG

Figure 6.4: Precision and recall of the resulting SCFs using confidence cut-off and centroid cut-off:

the XTAG English grammar (left) the LinGO ERG (right)

106

We then compare centroid cut-off with confidence cut-off to observe the effect of clustering.

Figure 6.4 shows precision and recall of the resulting SCFs using centroid cut-off 0.05 and the

confidence cut-off 0.05 by varying the threshold for the SCF confidences. In order to show the

effect of the use of the training SCFs, we also performed clustering of SCF confidence vectors in

the acquired SCFs with random initialization (k = 49 (for XTAG) and 53 (for ERG); centroid cut-

off 0.05*). The graph shows that clustering is meaningful only when we employ the reliable SCFs

in the manually-coded lexicon. Also, the centroid cut-off using the lexicon of the grammar boosted

precision compared to the confidence cut-off.

The difference between the effects of our method on XTAG and ERG would be due to the finer-

grained SCF types of ERG. This resulted in lower precision of the acquired SCFs for ERG, which

prevented us from distinguishing infrequent (correct) SCFs from SCFs acquired in error. However,

since unusual SCFs tend to be included in the lexicon, we will be able to assign unknown words

with smaller SCF variations to correct clusters as we have achieved in the experiments with XTAG.

6.5 Related Work

In this section, we mention methods of filtering SCFs using linguistic knowledge such as diathesis

alternation and semantic classes induced by existing lexical resources, respectively. We also de-

scribe a method for clustering verbs’ SCF patterns acquired from annotated corpora to induce verb

semantic classes.

Korhonen (Korhonen 1998) employed diathesis alternation between SCFs to guide filtering of

noisy SCFs acquired by Briscoe and Carroll’s SCF acquisition system (Briscoe and Carroll 1997).

She first constructed alternation rules that take the form of SCF A → SCF B from correlations

between the two SCFs in the ANLT syntactic dictionary. She next assigned a probability for each

alternation rule by dividing the number of ANLT verbs that have both SCF A and SCF B by the

number of of ANLT verbs that have SCF A. She then used the obtained alternation probabilities to

ameliorate observed probabilities.9 Roughly speaking, when a verb has both SCF A and SCF B in

the acquired lexicon, the probability that the verb has SCF A is improved by the alternation prob-

ability SCF A → SCF B; otherwise lowered by the alternation probability. Her method improved

the system’s type precision by 4% and type recall by 5% over the baseline results obtained using

binomial hypothesis testing, which have been reported to be worse than thresholding according to

relative frequencies (Korhonen 2002). Although this approach is applicable to augmenting lexicons

9Precisely speaking, she employed the alternation probabilities to ameliorate probabilities assigned by binomial
hypothesis testing.

107

of lexicalized grammars, potential performance improvement will be less significant.

Exploiting the characteristics of correlations among a verb meaning and its syntax behaviors,

Korhonen (Korhonen 2002) further promoted semantically-motivated subcategorization acquisi-

tion. She first semi-automatically determined verb semantic classes using Levin’s verb classifi-

cation (Levin 1993) and WordNet (Fellbaum 1998), which defines verb semantic hierarchy. She

next employed SCF distributions for representative verbs in the obtained verb classes to calcu-

late accurate back-off estimates for the verbs in the classes. She obtained SCFs by using Briscoe

and Carroll’s SCF acquisition system, and employed the obtained back-off estimates to perform

semantically-driven smoothing to maximum-likelihood estimates of SCFs for (infrequent) verbs.

She finally employed thresholding for the smoothed maximum-likelihood estimate of each SCF,

and obtained more reliable sets of SCFs. This approach drastically improved the system’s type

precision and type recall. However, this method cannot scale to SCF acquisition for lexicons of lex-

icalized grammars, because the method is semi-automatic and depends entirely on the established

semantic classes and the semantic hierarchy. On the other hand, our filtering method proposed in

this chapter is fully automatic and only assumes the target lexicon resources. Our method is there-

fore applicable to any lexicalized grammar with a particular way of SCF encodings that describes

any natural languages.

Oishi (Oishi 1998) demonstrated a method of obtaining deep case frames (analogous to se-

mantic classes) of Japanese verbs by clustering the verbs according to their surface case patterns

(analogous to subcategorization frames) which consist of postpositional particles along with pos-

sible substitutions by other postpositional particles. By virtue of the manually-tailored heuristic

rules, he achieved relatively accurate deep case frames of verbs. His work is a strong indication

that there are certain classes that govern surface case patterns (subcategorization frames) for words

in languages other than English.

6.6 Chapter Summary

In this chapter, we presented a method of improving the quality of SCFs acquired from raw corpora

using existing lexical resources. Our method assumes (discrete) associations between words and

SCFs in the target lexical resources, and applies linguistically-motivated filtering to associations

between words and SCF types in acquired SCF lexicon. We first acquire SCFs from raw corpora

by existing subcategorization frame acquisition. We next maps SCF distributions for a word in the

acquired SCF lexicon to SCF confidence vectors for the word by the Bayesian statistics approach.

We also maps SCF associations for a word in the target lexicon to SCF confidence vectors for

108

the word. By assuming the reliability of associations between SCF types and words in the target

lexicon to be more reliable than those in the acquired SCF lexicon, we can take advantages of

co-occurrence tendencies among SCF types that already exist in the target lexical resource. We

then propose a new clustering algorithm for SCF confidence vectors, which classify the words into

classes whose element words have the same set of SCF types. Finally, we introduced simple cut-off

methods that use SCF confidences and word clusters obtained by clustering.

We applied our cut-off methods to SCFs acquired from raw corpora in order to augment lex-

icons of the XTAG English grammar and the LinGO ERG, respectively. Experimental results

revealed that we can improve the recall of the resulting SCFs when we use Bayesian estimation

instead of maximum-likelihood estimation to calculate a probability that the word have each SCF

type. The results have also shown that we can eliminate implausible acquired SCFs, preserving

correct SCFs, by virtue of obtained word classes that are derived from confidence vectors in both

the acquired SCFs and the existing SCFs in the target lexicon. This is also first ever evaluation of

augmenting the XTAG English grammar with SCFs acquired from corpora.

109

Chapter 7

Smoothing Method for SCF Lexicon
Acquired from Annotated Corpora

In this chapter, we propose a method of constructing a probabilistic lexicon that consists of accurate

SCF distributions for the other type of lexical resource, namely, a lexicon automatically acquired

from annotated corpora. Since acquired associations between words and SCFs accompany their

frequency counts, we conduct smoothing of the SCF distributions for words and thereby attempt to

compensate for the lack of recall by assigning non-zero probabilities to new associations between

known words and known SCF types.

As we have seen in Section 5.3, Levin extensively investigated groupings of verbs according

to their alternation behaviors, and showed that there is a certain set of classes that share the same

set of SCF types. In this chapter, we model this observation by a probabilistic model that handles

co-occurrence events (words and SCFs, in this case), called the latent semantic models.

Section 7.1 introduces preliminaries for latent class models, which capture co-occurrence

events by assuming unobserved latent class, and introduces its variant, the Probabilistic Latent

Semantic Analysis (PLSA) (Hofmann 1999a; Hofmann 1999b), which we adopt to model co-

occurrences between words and SCFs. Section 7.2 describes our modeling of co-occurrences be-

tween words and SCFs that makes use of the PLSA model. By using this PLSA model for SCF

distributions, Section 7.3 describes a smoothing method of SCF distributions, which combines the

PLSA model with models that are directly estimated from raw frequency counts by a method of

linear interpolation. Section 7.5 mentions related work to our modeling of SCF distributions.

111

7.1 Preliminaries

In this section, we first describe the Probabilistic Latent Semantic Analysis, which is a kind of

latent class models for co-occurrence data in natural language. We then introduce the Expectation

Maximization (EM) Algorithm (Dempster et al. 1997), which is an iterative optimization algorithm

used for maximum likelihood estimation of parameters in latent variable models.

7.1.1 Probabilistic Latent Semantic Analysis

The Probabilistic Latent Semantic Analysis (PLSA) (Hofmann 1999a; Hofmann 1999b) is a kind

of latent class models (Brown et al. 1999; Li and Abe 1998; Pereira et al. 1993). In the following,

we first address the latent class model, and then define the PLSA as its instance.

Latent class modeling is a method of obtaining reliable estimates for probabilities of events

that have not occurred in training data. It smoothes raw frequency of observed events and assigns

non-zero probabilities to unseen events by interpolation. This smoothing is done by hypothesizing

existence of latent variables behind observed variables and assuming a conditional independence

structure among the latent variables and the observed variables. In this dissertation, the latent

variables in the models are nominal variables and can be interpreted as classes of observed variables

or hidden causes of events.

A general form of latent class models is:

P (x) =
∑
c∈C

P (x, c), (7.1)

where x denotes a vector of observed variables, c denotes a vector of latent variables, and C denotes

the set of all possible states of c.

Typical examples of a conditional independence structures assumed in P (x, c) are depicted in

the left-hand side and the right-hand side of Figure 7.1. In these examples, x has two components

x1 and x2, and c is a scalar variable. Both examples assume conditional independence of x1 and

x2 given c, but parameterized differently. In the first example, the probability of x = (x1, x2) is

decomposed as:

P (x1, x2) =
∑
c∈C

P (c)P (x1|c)P (x2|c) (7.2)

and the model has three types of parameters: P (x1|c), P (x2|c) and P (c). In the second example,

P (x1, x2) is decomposed as:

P (x1, x2) = P (x1)
∑
c∈C

P (c|x1)P (x2|c) (7.3)

112

c

x1 x2

P(x1 | c) P(x2 | c)

P(c)

Parameters: P(c), P(x1 | c), P(x2 | c)

x1 c x2

P(c | x1) P(x2 | c)P(x1)

Parameters: P(x1), P(c | x1), P(x2 | c)

Figure 7.1: Typical examples of conditional independence structures assumed in P (x|c)

and the model has three types of parameters: P (x1), P (c|x1), P (x2|c).
To see why such decompositions of P (x1, x2) yield smoothing effects, let us count the number

of free parameters in the two models. Letting |X1| and |X2| denote the numbers of possible values

of x1 and x2 respectively, the number of free parameters in the first model, k1, is:

k1 = (|C| − 1) + (|X1| − 1)|C| + (|X2| − 1)|C|, (7.4)

where the first, second, and third terms are the number for P (c), P (x1|c), and P (x2|c). On the

other hand, the number of free parameters in the second model, k2, is:

k2 = (|X1| − 1) + |X1|(|C| − 1) + (|X2| − 1)|C|. (7.5)

When the number of classes in the model, |C|, is set to much smaller value than |X1| and |X2|,
k1 and k2 become smaller than k = |X1||X2| − 1, which is the number of free parameters in the

simple tabulation model, i.e., the case where all P (x1, x2) are directly estimated from observed

raw frequency. By fitting the model with those fewer parameters, probability mass for observed

pair of (x1, x2) is decreased and distributed to unseen co-occurrences.

As can be seen in the above examples, latent class variables can be interpreted as representing

hidden grouping of x (in the left-hand side of Figure 7.1) or x2 (in the right-hand side of Figure 7.1),

from which the observed variables x or x2 are selected with some probability. An estimation

algorithm for those models can be considered as a clustering algorithm that has a probabilistic

interpretation.

The PLSA model is defined as an instance of the latent class models, which is a joint probability

113

model of k variables x1, . . . , xk and takes the form of:

P (x1, . . . , xk) =
∑
c∈C

P (c)
k∏

i=1

P (xi | c). symmetric parameterization (7.6)

In this dissertation, we concern the case where k = 2, that is, the PLSA model for two observed

variables x and y. That PLSA model with two observed variables can be parameterized different

way:

P (x, y) =
∑
c∈C

P (c)P (x | c)P (y | c). symmetric parameterization. (7.7)

P (x, y) = P (x)
∑
c∈C

P (c |x)P (y | c). asymmetric parameterization (7.8)

This model can be seen as a kind of soft clustering of x according to its co-occurrences. That is,

there are |C| latent classes and x is probabilistically assigned to ∀c ∈ C.

When we use the latent class models, there is an issue on how we determine the number of the

latent variables. As we have seen in the paragraph including the equations 7.4 and 7.5, the number

of the latent variables has an important effect on the performance of smoothing. We investigate the

effect of the number of latent classes to our modeling of co-occurrences between words and SCFs

in the experiments.

7.1.2 EM Estimation for the Probabilistic Latent Semantic Analysis

The Expectation Maximization (EM) Algorithm (Dempster et al. 1997) is an iterative optimiza-

tion algorithm used for maximum likelihood estimation of parameters in latent variable models.

The EM algorithm works especially efficiently in estimation of latent class models of word co-

occurrence, where many parameters must be estimated from sparse training data.

In this section, we assume a PLSA model with k = 2 by asymmetric parameterization:

P (x, y) = P (x)
∑
c∈C

P (c |x)P (y | c). asymmetric parameterization (7.9)

where x, y are observed variables in events and c is a latent class variable, which takes a value in

a finite set C. We also assume that P (x, c, y) is parameterized by a vector of parameters θ. Let

Pθt(x, c, y), Pθt(x, y), etc. denote particular values of these probabilities with a particular parame-

ter value θt.

114

Under the maximum likelihood estimation (MLE) criterion, we want the value of θ that maxi-

mizes the marginal (log-)likelihood function:

L(θ) =
∑

(xi,yi)∈S

log Pθ(xi, yi)

=
∑

(xi,yi)∈S

log Pθ(xi)
∑
c∈C

Pθ(c |xi)Pθ(yi | c), (7.10)

where S is the (multi-)set of training data, S = {(x1, y1), (x2, y2), . . .}.

The EM algorithm finds a local optimum of L(θ) by gradually improving the parameter value

of θ. We consider the difference of log-likelihood when we update θ to θ:

L(θ) − L(θ) =
∑

(xi,yi)∈S

log Pθ(xi, yi) −
∑

(xi,yi)∈S

log Pθ(xi, yi)

=
∑

(xi,yi)∈S

log
Pθ(xi, yi)
Pθ(xi, yi)

=
∑

(xi,yi)∈S

∑
c∈C

Pθ(c |xi, yi) log
Pθ(xi, yi)
Pθ(xi, yi)

=
∑

(xi,yi)∈S

∑
c∈C

Pθ(c |xi, yi) log

[
Pθ(xi, yi, c)
Pθ(xi, yi, c)

Pθ(c |xi, yi)
Pθ(c |xi, yi)

]

=
∑

(xi,yi)∈S

∑
c∈C

Pθ(c |xi, yi) log
Pθ(xi, yi, c)
Pθ(xi, yi, c)

+
∑

(xi,yi)∈S

∑
c∈C

Pθ(c |xi, yi) log
Pθ(c |xi, yi)
Pθ(c |xi, yi)

. (7.11)

Because we can derive ∑
c∈C

Pθ(c |xi, yi) log
Pθ(c |xi, yi)
Pθ(c |xi, yi)

≥ 0

from Jensen’s inequality, we can obtain an inequality

L(θ) − L(θ) ≥
∑

(xi,yi)∈S

∑
c∈C

Pθ(c |xi, yi) log
Pθ(xi, yi, c)
Pθ(xi, yi, c)

≥ Q(θ, θ) − Q(θ, θ), (7.12)

115

where

Q(θ, θ) =
∑

(xi,yi)∈S

∑
c∈C

Pθ(c |xi, yi) log Pθ(xi, yi, c)

=
∑

(xi,yi)∈S

∑
c∈C

Pθ(c |xi, yi) log

[
Pθ(xi)

∑
c∈C

Pθ(c |xi)Pθ(yi | c)
]

. (7.13)

By the inequality in 7.12, we can monotonically increase the log-likelihood by updating the param-

eter value of θ to θ that maximizes Q(θ, θ). In short, starting from some initial value θ(1), at t-th

iteration, the EM algorithm applies the following two steps to θ(t) and yields a new value θ(t+1):

E-step : Compute Q(θ, θ(t)) =
∑

(xi,yi)∈C

∑
c∈C Pθ(t)(c |xi, yi) log [Pθ(xi)

∑
c∈C Pθ(c |xi)Pθ(yi | c)] .

M-step : Set θ(t+1) to that θ which maximizes Q(θ, θ(t)).

7.2 Probabilistic Latent Semantic Analysis for Modeling Verb Sub-

categorization

In this section, we apply the probabilistic latent semantic analysis to co-occurrence between

words and SCFs.

7.2.1 Model Definition

We propose the probabilistic latent semantic analysis for modeling co-occurrence between words

and SCFs where the latent variables are semantic classes. In this dissertation, we define semantic

classes as word classes whose members have the same SCF distribution. This semantic class is

analogous to the one defined by Levin, who defines verb semantic classes according to the verbs’

SCF alternation behavior. The PLSA model is suitable for this modeling because they perform a

kind of soft clustering, which can naturally treat highly polysemic nature of verbs.

Let a conditional probability that a word wi ∈ W appear as a member of a semantic class c ∈ C

be P (c |wi), and each semantic class c ∈ C takes an SCF fj ∈ F with a conditional probability

P (fj | c). Figure 7.2 shows this SCF modeling. When we assume that a word wi occurs with a

probability P (wi), a probability P (wi, fj), with which the word wi ∈ W occurs with fj ∈ F is:

P (wi, fj) = P (wi)
∑
c∈C

P (fj | c)P (c |wi). (7.14)

116

wi c fj

P(c | wi) P(fj | c)P(wi)

Parameters: P(wi), P(c | wi), P(fj | c)

Figure 7.2: Probabilistic Latent Semantic Analysis of co-occurrence between words and SCFs

7.2.2 EM Estimation of the Probabilistic Latent Semantic Model for SCFs

In this section, we derive the EM estimation of our PLSA model for co-occurrences between

words and SCFs. As described in the previous section, our model is formalized as follows:

P (wi, fj) = Pθ(wi)
∑
c∈C

Pθ(c |wi)Pθ(fj | c), (7.15)

where
∑

c∈C Pθ(c |wi) = 1, and
∑

j∈F Pθ(fj | c) = 1. We estimate P (c |wi) and P (fj | c) from

observed data by applying the EM estimation to Pθ(wi, fj , c) = Pθ(wi)Pθ(c |wi)Pθ(fj | c). By

substituting xi = wi, yi = fj , to Equation 7.13, the Q-function of the EM estimation is defined as

follows:

E-step:

Q(θ, θ) =
∑

(wi,fj)∈W×F

∑
c∈C

n(wi, fj)Pθ(c |wi, fj) log[Pθ(wi)
∑
c∈C

Pθ(fj | c)Pθ(c |wi)], (7.16)

where

Pθ(c|wi, fj) =
Pθ(fj | c) · Pθ(c |wi)∑

c∈C Pθ(fj | c) · Pθ(c |wi)
. (7.17)

n(wi, fj) is the observed frequency of a co-occurrence between wi and fj , while n(wi) is the

observed frequency of a word wi.

117

We then have Pθ(fj | c), Pθ(c |wi), and Pθ(wi), which maximize Q(θ, θ) by the Lagrange

multiplier method, as:

M-step:

Pθ(c |wi) =

∑
fj∈F n(wi, fj)Pθ(c|wi, fj)

n(wi)
(7.18)

Pθ(fj | c) =
∑

wi∈W n(wi, fj)Pθ(c|wi, fj)∑
wi∈W

∑
fj∈F n(wi, fj)Pθ(c|wi, fj)

(7.19)

Pθ(wi) =
n(wi)∑

wi∈W n(wi)
(7.20)

7.3 Smoothing Method for SCF Distributions

Finally, we describe a method of obtaining accurate estimates for co-occurrence probabilities of

words and SCFs by using the PLSA model defined in the previous section. We interpolate three

different models that predict the probability. The first model is the raw observed probability defined

as follows:

Praw(fj |wi) =
n(wi, fj)∑

fj∈F n(wi, fj)
(7.21)

The second model is a smoothed probability based on the PLSA model, which is calculated by the

following equation:

PPLSA(fj |wi) =
∑
c∈C

P (c|wi)P (fj |c), (7.22)

where P (fj |c) and P (c|wi) are ones estimated under the PLSA model MPLSA. The last model is

Praw(fj), which is the maximum likelihood estimation of P (fj), defined as follows:

Praw(fj) =
∑

w∈W n(w, fj)∑
w∈W,fj∈F n(w, fj)

(7.23)

We combine these three models by linear interpolation:

P (fj |wi) = λ1Praw(fj |wi) + λ2PPLSA(fj |wi) + λ3Praw(fj) (7.24)

where λ1, λ2, and λ3 are weights of each probabilistic model, which satisfy the constraint λ1 +
λ2 + λ3 = 1. We can estimate λi by an EM algorithm using held-out data.

118

Table 7.1: The specification of SCFs for HPSG acquired from WSJ Sections 2-21 and their subsets

Corpus 2 2-4 2-6 2-8 2-10 2-21

of SCF types 78 115 139 152 169 253

of words 1,020 1,641 2,072 2,285 2,577 3,586

of SCFs 5,862 16,667 28,220 35,644 47,346 112,974

SCFs types per words 1.46 1.58 1.64 1.68 1.71 1.84

The above interpolated model can provide co-occurrence probabilities for words and SCFs that

are seen in the training data. However, we also concern a probabilistic model for words unseen in

the training data. In this study we simply calculate a co-occurrence probability for words unseen in

the training data by:

p(fj |wi) = Praw(fj) (7.25)

In summary, we calculate a co-occurrence probability of a word wi and an SCF type fj is

described as:

P (fj |wi) =

{
λ1Praw(fj |wi) + λ2PPLSA(fj |wi) + λ3Praw(fj) (wi ∈ the training data)
Praw(fj) otherwise

(7.26)

In the following experiments, we compare the above smoothing method with a more simple

smoothing method, which estimates co-occurrence probabilities from Praw(fj |wi) and Praw(fj)
as follows:

P (fj |wi) =

{
λ1Praw(fj |wi) + λ2Praw(fj) (wi ∈ the training data)
Praw(fj) otherwise

(7.27)

7.4 Experiments on Smoothing SCF Lexicon Acquired from Anno-

tated Corpora

In this section we investigate the effect of our smoothing method on SCFs acquired for lexicalized

grammars from annotated corpora. Our objective for smoothing is to achieve accurate estimates of

co-occurrence probabilities between words and SCFs from as a small amount of annotated corpora

as possible.

119

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5000 10000 15000 20000 25000 30000 35000 40000

of

 S
C

F
 ty

pe
s

pe
r

w
or

ds

sentences

All SCF types
SCF types observed in WSJ Section 02

Figure 7.3: The average number of SCF types assigned to words in WSJ Section 02

We start by extracting 〈SCF,word〉 pairs from Sections 2-21 of the Wall Street Journal

(WSJ) portion of the Penn Treebank and their subset sections by a method introduced in Sec-

tion 5.2.2 (Miyao et al. 2004; Nakanishi et al. 2004). Table 7.1 shows the specification of the

acquired SCFs. When we acquire SCFs from a larger amount of annotated corpora, the SCF types

rapidly increase. However, the average number of SCF types per words increases rather mildly.

However, when we calculate the average number of SCF types for the words observed in WSJ

Section 2, the situation is somewhat different. Figure 7.3 shows the average number of SCF types

assigned to the words in WSJ Section 2. The average number of SCF types for only words in WSJ

Section 2 increases more rapidly than that for all the words. This implies that frequent verbs tend

to take the larger number of SCF types than infrequent verbs. The acquired SCF lexicons indeed

suffer from the problem on unknown associations between known subcategorization frames and

known words.

We then applied our smoothing method to these acquired SCFs. We constructed several PLSA

models for each set of SCFs acquired from corpora, by ranging the number of latent variables from

160 to 1,280. We hereafter refer to the PLSA models for SCFs acquired from WSJ Sections x as

120

Table 7.2: Test-set perplexity of P (fj |wi) against the test SCFs acquired from WSJ Section 24 for

the SCF types are observed in WSJ Section 2

Corpus # classes 2 2-4 2-6 2-8 2-10 2-21

unknown 10.809 10.770 10.768 10.749 10.755 10.739

naive 4.030 3.557 3.351 3.298 3.250 3.116

PLSA 160 3.918 3.433 3.237 3.181 3.128 3.025

320 3.823 3.399 3.199 3.177 3.105 3.023

640 3.848 3.381 3.202 3.155 3.121 3.041

1,280 3.820 3.351 3.206 3.147 3.101 3.009

PPLSAx . We then evaluate the effect of our smoothing method on the acquired SCF distributions.

We combined the above PPLSAx(fj |wi) with Praw(fj |wi) and Praw(fj) by linear interpolation.

The weights are estimated by the EM algorithm using SCFs acquired from WSJ Section 22 as

held-out data. In order to evaluate accuracy of estimated co-occurrence probability, we employ

test-set perplexity, which is defined by:

PP = exp

(
−
∑

(wi,fj)∈St
n(wi, fj) loge P (wi, fj)∑

wi∈St
n(wi)

)
(7.28)

where St is a test data. This measure indicates the complexity of the task that determines an SCF

type for a given verb.

Table 7.2 shows a test-set perplexity against part of SCFs acquired from WSJ Section 24, which

are for (SCF) types observed in WSJ Section 2. In the table, unknown refers to a model that

uses only raw frequency for SCFs, Praw(fj), which is a model used for unknown words in the

other models, as shown in Equations 7.26 and 7.27. This indicates the difficulty of this task. The

model naive refers to the interpolated models that use only raw frequency, which is defined in

Equation 7.27, while PLSA refers to the interpolated models that use the PLSA model, which is

defined in 7.26. We can clearly observe an improvement by models that use the PLSA model. All

PLSA models except a model using WSJ Sections 02-21 as training data achieved a better test-set

perplexity compared to naive when they are estimated using the same size of corpora. Furthermore,

PLSA models achieved better test-set perplexity than that obtained by naive with around twice as

much training data (cf. naive with WSJ Section 2-21 v.s. PLSA with WSJ Section Section 2-

10). It is also noteworthy that we can achieve an improvement by setting the number of latent

121

Table 7.3: Test-set perplexity of P (fj |wi) against the test SCFs acquired from WSJ Section 24

Corpus # classes 2 2-4 2-6 2-8 2-10 2-21

unknown 10.809 10.995 11.182 11.161 11.218 11.354

naive 4.030 3.642 3.476 3.420 3.389 3.275

PLSA 160 3.918 3.507 3.314 3.289 3.245 3.168

320 3.823 3.471 3.306 3.282 3.223 3.166

640 3.848 3.456 3.312 3.259 3.237 3.153
1,280 3.820 3.428 3.315 3.249 3.224 3.153

classes larger. Comparing PLSA models whose number of latent variables is 160 and PLSA models

whose number of latent variables is 320, all the models with the larger number of latent variables

outperformed the models with the smaller number of latent variables. However, when we use the

larger number of latent variables more than 320, some models decreases its test-set perplexity. This

implies that for these training data, there is an appropriate number around 320 of classes to achieve

the test-set perplexity. Since the number of latent variables in the latent class models controls the

degree of generalization of the models, we could use larger number of latent variables to increase

the test-set perplexity if we have a larger amount of annotated data.

Table 7.2 shows a test-set perplexity against part of SCFs acquired from WSJ Section 24, which

are for (SCF) types observed in the training data. Even when we use the all SCF types in the

training data for testing, we achieve more accurate estimates by the interpolated model using the

PLSA model.

7.5 Related Work

Our PLSA model can be regarded as clustering of verbs according to their SCF distributions. In this

section, we introduce methods for clustering verbs’ SCF distributions acquired from raw corpora.

There are two studies that perform clustering of verbs’ SCF distributions (Schulte im Walde

and Brew 2002; Korhonen et al. 2003). Their objective is not to obtain accurate estimates of co-

occurrence probabilities between words and SCFs, but to induce verb semantic classes by clustering

verbs according to their SCF distributions acquired from raw corpora. They first represent a verb

SCF distribution by an n-dimensional vector for each verb. Each element in the SCF distribution

represents a co-occurrence probability between the verb and each SCF type. Schulte im Walde

122

and Brew (Schulte im Walde and Brew 2002) used the k-Means (Forgy 1965) algorithm to cluster

SCF distributions for monosemous German verbs, while Korhonen et al. (Korhonen et al. 2003)

conducted clustering of SCF distributions for English verb using other clustering methods and then

investigated the effect of polysemic verbs on clustering.

Although these studies demonstrated that there is a certain classification of verbs according to

their SCF distributions, they did not focus on the improvement of the quality of the SCF lexicon. On

the other hand, our smoothing method given in this chapter aims at obtaining accurate estimates of

co-occurrence probabilities between words and SCFs, and takes SCF distributions acquired from

annotated corpora as inputs. Although our smoothing method does not aim at obtaining seman-

tic classes, we can employ our smoothing method to induce semantic classes by assuming latent

classes of the PLSA model as semantic classes. For example, when we initialize the latent classes

to some fine-grained verb semantic classes such as ones provided in WordNet, we will be able

to obtain semantic classes purely based on syntactic behaviors by merging latent semantic classes

according to similarity between their SCF distributions.

7.6 Chapter Summary

We presented a method of constructing a probabilistic lexicon that consists of accurate estimates

of co-occurrence probabilities between words and SCFs, for the other type of lexical resource that

include associations between words and SCFs along with their co-occurrence probability. We as-

sumed that there are latent classes that govern the SCF alternation behaviors, and perform smooth-

ing of raw observed frequency of co-occurrences between words and SCFs by modeling the co-

occurrences with the PLSA model. We also proposed the interpolated model that uses the PLSA

model and raw frequency counts.

We applied our smoothing method to SCFs for an HPSG grammar acquired from the Penn

Treebank. By varying the number of latent classes in the PLSA model, the proposed interpolation

model that uses both the PLSA model and the observed raw frequency achieved a comparatively

higher test-set perplexity against the linear interpolation model that only uses the observed raw

frequency. By using accurate estimates obtained for co-occurrence between words and SCFs, we

can construct an appropriate set of lexicons for the grammar from the obtained estimates, because

they defines a co-occurrence probability of possible associations between words and SCFs, which

can be used for thresholding of SCFs.

123

Conclusions

We have proposed two distinctive approaches to accelerating the development of the lexicalized

grammar-based NLP by solving the two bottlenecks in applying lexicalized grammar-based NLP

to practical applications. The first problem is the difficulty in developing static components such

as grammar resources and parsing techniques for the lexicalized grammar formalisms. The second

problem is the difficulty in developing dynamic lexical resources, which are essential when we

apply lexicalized grammars to a new target domain.

Methodology for Collaboration between LTAG and HPSG

The first part of this dissertation concerns a methodology for developing static components such

as grammar resources and parsing techniques for lexicalized grammar formalisms. We described

a novel approach to collaborative development of the static components among the lexicalized

formalisms, in particular Lexicalized Tree Adjoining Grammar (LTAG) and Head-Driven Phrase

Structure Grammar (HPSG), by a method of grammar conversion from LTAG to HPSG-style gram-

mar.

Method for Resource Sharing and Parsing Comparison by Grammar Conversion

We first proposed an algorithm for the conversion of grammars from an arbitrary FB-LTAG gram-

mar into a strongly equivalent HPSG-style grammar. Our algorithm first converts LTAG elementary

trees into a set of tree structures that have only one word and can be decomposed into immediate

constituency. We then convert the tree structures into HPSG feature structures by encoding the

branching structures in stacks. A set of pre-determined rules manipulate the stack to emulate sub-

stitution and adjunction. The definition of strong equivalence and a formal proof on the strong

equivalence between the original and obtained grammars are also provided. The nature of strong

equivalence guaranteed by the grammar conversion enables us to obtain the parsing results of an

125

LTAG grammar from the parsing results of the HPSG-style grammar obtained by the conversion.

The obtained grammar successfully abstracts away surface differences in computation devices that

underlie the two formalisms. Our method thus enables the sharing of LTAG resources with the

HPSG community, the application of HPSG technologies to LTAG grammars, and the clarification

of the differences between linguistic analysis according to the two grammar formalisms.

We next demonstrated applications of our grammar conversion to bridge the LTAG and HPSG

formalisms through experiments on grammar resource sharing and parsing comparison. First, we

showed that we can obtain a large-scale HPSG-style grammar that is compatible with HPSG sys-

tems, by converting from a large-scale LTAG grammar. The XTAG English grammar, a large-scale

LTAG grammar, was successfully converted into an HPSG-style grammar. We investigated the

specification of the obtained HPSG-style grammar, and then discussed different ways of encodings

of grammatical constructions in the both framework by comparing accounts of several linguistic

phenomena by the obtained HPSG-style grammar and HPSG. Some of the accounts given by the

obtained HPSG-style grammar are analogous to the one employed in the HPSG formalism, espe-

cially in the way to specify a syntactic structure taken by a node to be subcategorized, although they

are still different in some important respects including the treatment of some type of unbounded

dependency.

Second, we empirically compared two pairs of LTAG and HPSG parsers based on dynamic pro-

gramming and CFG filtering. Experiments comparing parsers using dynamic programming showed

that the different implementations of the factoring scheme caused a difference in the empirical time

complexity of the parsers. This result suggests that for LTAG parsing we can achieve a drastic

speed-up by merging two states whose elementary trees have the same unprocessed parts. Another

experiment comparing parsers with CFG filtering showed that the CF approximation of HPSG pro-

duced a more effective filter than that of LTAG. This result also suggests that we can obtain an

effective CFG filter for LTAG by approximating the LTAG with a CFG by applying substitution

and adjunction along tree traversal and regarding unprocessed parts of generated tree structures as

nonterminals of the CFG.

Future work for Collaboration between the LTAG and HPSG formalisms

We are going to pursue collaboration among lexicalized formalisms in order to develop generic

NLP components within the lexicalized formalisms. Although we showed comparison of parsers

based on theoretical parsing techniques in this paper, our approach is extendable to other types

of NLP technologies such as disambiguation module or grammar development environment. For

example, although parsers based on current statistical parsing technologies in the lexicalized for-

126

malisms achieved similar precision and recall for the identification task of predicate-argument re-

lations, we have difficulty to work out the reason for the improvement. This is because statistical

parsers involve both the statistical model and the grammar altogether in the model, which both

contribute to the performance. If we could make use of strongly equivalent grammars as we have

done in the comparison of theoretical parsers, comparison of purely statistical model for differ-

ent formalisms would be possible. We are also going to apply our methodology to other pairs of

lexicalized formalisms by proposing grammar conversion between them.

We will investigate the equivalence between a particular LTAG grammar and an HPSG gram-

mar (Pollard and Sag 1994) by linguistically-motivated approaches. Miller (Miller 1999) discusses

strong equivalence between grammars in different formalisms. He defines the equivalence of struc-

tural descriptions given by two grammars according to the equivalence of linguistic properties

expressed by the structural descriptions. The structural descriptions are mapped by Interpretation

Functions into several Interpretation Domains, which express linguistically relevant properties of

a formalism and are defined by users of the formalism. Examples of Interpretation Domains are

dependency, constituency and ordering. Following his approach, we can discuss the equivalence

between an LTAG grammar and an HPSG grammar. Another candidate approach to investigate

the equivalence of grammars is to express both LTAG and HPSG grammars in Abstract Categorial

Grammar (ACG) (de Groote 2001), a grammatical framework in which other existing grammatical

models may be encoded, and to discuss the equivalence of the grammars within the ACG frame-

work. However, since the generative capacity of the typed feature structures is beyond context-

sensitive formalisms, it is doubtful whether ACG can represent grammars represented in the typed

feature structures, e.g., HPSG. We will thus take advantages of the HPSG computational architec-

ture defined in this dissertation in order to capture the HPSG formalism in ACG.

Methods for Acquiring Lexical Resources Acquired from Corpora

The second part of this dissertation concerns two methods of acquiring lexical resources from

corpora in order to compensate for the lack of recall in the two types of existing lexical resources

available for lexicalized grammars.

Methods for Filtering Reliable Lexical Resources Acquired from Raw Corpora

We presented a method of improving the quality of SCFs acquired from corpora in order to augment

one type of lexical resource that include only association between words and SCFs. We first obtain

verb clusters whose elements share the same set of SCFs. We then maps observed SCF distributions

127

to SCF confidence vectors by the Bayesian statistics approach, in order to make use of discrete co-

occurrence tendencies among SCFs taken by each word that already exists in the target lexical

resource. A new clustering algorithm for SCF confidence vectors is proposed as well. We have

also proposed a filtering method that eliminates SCFs acquired in error by using simple cut-off

based on the obtained clusters.

We applied our filtering method to SCFs acquired from corpora using lexicons of the XTAG

English grammar and the LinGO ERG, respectively. Experimental results revealed that we can

increase the recall of the resulting SCFs when we use Bayesian estimation instead of maximum-

likelihood estimation to calculate the probability that the word has each SCF type. The results have

also shown that we can eliminate implausible SCFs, preserving more reliable SCFs that exist in the

target lexicon, by virtue of clustering results that are derived from both confidence vectors in the

acquired SCFs and the existing SCFs in the target grammar. This is also first ever evaluation of

augmenting the XTAG English grammar with SCFs acquired from corpora.

Methods for Smoothing Lexical Resources Acquired from Annotated Corpora

We next presented a method of obtaining accurate estimates of co-occurrence probabilities between

words and SCFs, for the other type of lexical resource that include associations between words and

SCFs along with their co-occurrence probability. We assumed that there are latent classes that

govern the SCF alternation behaviors, and perform smoothing of raw observed frequency of co-

occurrences between words and SCFs by modeling the co-occurrences with the PLSA model. We

also proposed the interpolated model that uses the PLSA model and raw frequency counts.

We applied our smoothing method to SCFs for an HPSG grammar acquired from the Penn

Treebank. By varying the number of latent classes in the PLSA model, the proposed interpolation

model that uses both the PLSA model and the observed raw frequency achieved a comparatively

higher test-set perplexity against the linear interpolation model that only uses the observed raw

frequency. By using accurate estimates obtained for co-occurrence between words and SCFs, we

can construct an appropriate set of lexicons for the grammar from the obtained estimates, because

they define a co-occurrence probability of possible associations between words and SCFs, which

can be used for thresholding of SCFs.

Future work for Acquisition of Lexical Resources from Corpora

We are going to employ our filtering method to solve a problem called “missing of known SCF

types for known words.” As mentioned in Section 6.1, we can simply handle this problem by

128

using different SCF confidence vectors for words that are included in both the target lexicon and

the acquired lexicon. We are also going to evaluate the quality of the SCFs selected from those

acquired from raw corpora by manual analysis and by their impact on parsing performance. We will

also investigate other clustering methods such as hierarchical clustering, and use other information

for clustering such as semantic preference of arguments of SCFs to have more accurate clusters.

As we introduced in Section 5.3, a classification of verbs according to their SCF types are closely

related to verb semantic classes. Although our current classification does not focus on the semantic

classification of verbs, we are going to employ a method of obtaining verb semantic classes by

clustering of verb SCF distributions to assign semantic constraints to unknown words. Because our

methods can determine the reliable set of SCFs for unknown words, we will able to obtain more

accurate semantic classes compared to the methods using noisy SCF distributions.

We will investigate the parsing performance using a probabilistic lexicon obtained by our

PLSA-based smoothing, in order to evaluate the quality of the lexicon and the effect of thresh-

olding to select a reliable set of lexicons. We will also investigate whether a lexicon estimated from

parsing results of large amounts of raw corpora provides more accurate estimates of co-occurrence

probabilities between words and SCFs than that obtained from a small amount of annotated corpora.

We will also employ our PLSA modeling of co-occurrences between words and SCFs to acquire a

semantic classification of verbs, because our PLSA modeling is suitable to handle polysemic na-

ture of verbs. We modeled co-occurrence between words and SCFs using semantically-motivated

classes defined in WordNet (Fellbaum 1998) as initial latent classes, generalized the model by a

variant of Li and Abe’s method (Li and Abe 1998), and then achieved the improvement of the qual-

ity of the probabilistic lexicon in terms of the test-set perplexity. Although the improvement was

lower than the results shown in Section 7.4, the obtained latent classes would be more meaningful

to be examined.

129

Bibliography

Abeillé, A. (1993). Les nouvelles syntaxes: grammaires d’unification et analyse du franc̨ais.

Armanda Colin. in French. (cited in page 3)

Abeillé, A. and M.-H. Candito (2000). FTAG: A Lexicalized Tree Adjoining Grammar for French.

In A. Abeillé and O. Rambow (Eds.), Tree Adjoining Grammars: formalisms, linguistic analysis

and processing, pp. 305–329. CSLI publications. (cited in pages 3, 5, 22, 87)

Abeillé, A., Y. Schabes, and A. Joshi (1990). Using Lexicalized TAGs for machine translation. In

Proceedings of the 13th International Conference on Computational Linguistics (COLING 1990),

Helsinki, Finland, pp. 1–6. (cited in page 21)

Baeza-Yates, R. and B. Ribeiro-Neto (1999). Modern Information Retrieval. Addison. (cited in

page 1)

Baldwin, B., C. Dorran, J. Reynar, M. Niv, B. Srinivas, and M. Wasson (1997). EAGLE: An Ex-

tensible Architecture for General Linguistic Engineering. In Proceedings of the fifth RIAO Confer-

ence Computer-Assisted Information Searching on Internet (RIAO), Montreal, Quebec, Canada,

pp. 271–283. (cited in page 21)

Barthélemy, F., P. Boullier, P. Deschamp, and Éric Villemonte de la Clergerie (2001). Guided

parsing of range concatenation languages. In Proceedings of the 39st Annual Meeting of the

Association for Computational Linguistics (ACL 2001), Toulouse, France, pp. 42–49. (cited in

pages 3, 22, 75)

Becker, T. (1994). Patterns in metarules. In Proceedings of the third International Workshop on

Tree Adjoining Grammars and Related Frameworks (TAG+3), Paris, France, pp. 9–11. (cited in

page 87)

131

Becker, T. (2000). Patterns in metarules for TAG. In A. Abeillé and O. Rambow (Eds.), Tree

Adjoining Grammars: formalisms, linguistic analysis and processing, pp. 331–342. CSLI publi-

cations. (cited in page 87)

Becker, T. and P. Lopez (2000). Adapting HPSG-to-TAG compilation to wide-coverage grammars.

In Proceedings of the fifth International Workshop on Tree Adjoining Grammars and Related

Frameworks (TAG+5), Paris, France, pp. 47–54. (cited in pages 3, 74, 75)

Bender, E. M., D. Flickinger, and S. Oepen (2002). The grammar matrix: An open-source starter-

kit for the rapid development of cross-linguistically consistent broad-coverage precision gram-

mars. In J. Carroll, N. Oostdijk, and R. Sutcliffe (Eds.), Proceedings of the Workshop on Grammar

Engineering and Evaluation at the 19th International Conference on Computational Linguistics

(COLING 2002), Taipei, Taiwan, pp. 8–14. (cited in page 22)

Bischof, H., A. Leonardis, and A. Selb (1999). MDL principle for robust vector quantization.

Pattern Analysis and Applications 2(1), 59–72. (cited in page 101)

Bod, R. (2001). What is the minimal set of fragments that achieves maximal parse accuracy? In

Proceedings of the 39th Annual Meeting of the Association for Computational Linguistics (ACL

2001), Toulouse, France, pp. 66–73. (cited in page 1)

Boguraev, B. and E. J. Briscoe (1987, June). Large lexicons for natural language processing:

utilising the grammar coding system of LDOCE. Computational Linguistics 13(2), 203–218.

(cited in pages 88, 90, 92, 151)

Bouillon, P., V. Claveau, C. Fabre, and P. Sébillot (2003, May). Learning semantic lexicons from

a part-of-speech and semantically tagged corpus using inductive logic programming. Journal of

Machine Learning Research 4(4), 493–525. (cited in page 1)

Boullier, P. (1998). A generalization of mildly context-sensitive formalisms. In Proceedings of the

fourth International Workshop on Tree Adjoining Grammars and Related Frameworks (TAG+4),

Philadelphia, PA, USA, pp. 17–20. (cited in page 75)

Boullier, P. (1999). On TAG parsing Multicomponent TAG parsing. Technical Report Research

Report N 3668, INRIA-Rocquencourt. (cited in page 75)

Bouma, G., G. van Noord, and R. Malouf (2000). Alpino: Wide coverage computational analysis

of Dutch. In Proceedings of the 11th Meeting of Computational Linguistics in the Netherlands

(CLIN 2000), Tilburg, Netherlands, pp. 45–59. (cited in page 23)

132

Brants, T. (2000). TnT – a statistical part-of-speech tagger. In Proceedings of the sixth Conference

on Applied Natural Language Processing (ANLP 2000), Seattle, WA, USA, pp. 224–231. (cited

in page 1)

Brent, M. R. (1993, June). From grammar to lexicon. Computational Linguistics 19(2), 243–262.

(cited in pages 6, 89, 101)

Brill, E. (1994). Some advances in transformation-based part of speech tagging. In Proceedings

of the 12th National Conference on Artificial Intelligence, Seattle, WA, USA, pp. 722–727. (cited

in page 1)

Briscoe, E. J. (2001). From dictionary to corpus to self-organizing dictionary: learning valency

associations in the face of variation and change. In Proceedings of the Corpus Linguistics, Lan-

caster, UK, pp. 79–89. (cited in pages 5, 6, 88)

Briscoe, E. J. and J. Carroll (1993, March). Generalized probabilistic LR parsing of natural

language (corpora) with unification-based grammars. Computational Linguistics 19(1), 25–60.

(cited in page 3)

Briscoe, E. J. and J. Carroll (1997). Automatic extraction of subcategorization from corpora.

In Proceedings of the fifth Conference on Applied Natural Language Processing (ANLP 1997),

Washington, DC, USA, pp. 356–363. (cited in pages 6, 88, 89, 90, 91, 92, 101, 102, 107, 151)

Briscoe, E. J. and A. Copestake (1999). Lexical rules in constraint-based grammar. Computational

Linguistics 25(4), 487–526. (cited in page 87)

Brown, P. F., V. J. D. Pietra, P. V. deSouza, J. C. Lai, and R. L. Mercer (1999, December). Class-

based n-gram models of natural language. Computational Linguistics 18(4), 467–479. (cited in

page 112)

Callmeier, U. (2000). PET — a platform for experimentation with efficient hpsg processing

techniques. Natural Language Engineering 6(1), 99–108. (cited in page 80)

Candito, M.-H. (1996). A principle-based hierarchical representation of LTAGs. In Proceedings of

the 16th International Conference on Computational Linguistics (COLING 1996), Copenhagen,

Denmark, pp. 194–199. (cited in page 87)

Carpenter, B. (1992). The Logic of Typed Feature Structures. Cambridge University Press. (cited

in pages 12, 15, 20)

133

Carreras, X. and L. Màrques (2004). Introduction to the conll-2004 shared task: Semantic role

labeling. In H. T. Ng and E. Riloff (Eds.), Proceedings of the eighth Workshop on Computational

Language Learning (CoNLL 2004), pp. 89–97. Boston, MA, USA. (cited in page 1)

Carroll, G. and M. Rooth (1998). Valence induction with a head-lexicalized PCFG. In Proceedings

of the third Conference on Empirical Methods in Natural Language Processing (EMNLP 1998),

Granada. Spain, pp. 36–45. (cited in pages 6, 89, 90)

Carroll, J. (1994). Relating complexity to practical performance in parsing with wide-coverage

unification grammars. In Proceedings of the 32nd Annual Meeting of the Association for Compu-

tational Linguistics (ACL 1994), Las Cruces, NM, USA, pp. 287–294. (cited in pages 3, 66)

Carroll, J., A. Copestake, D. Flickinger, and V. Poznanski (1999). An efficient chart generator

for (semi-)lexicalist grammars. In Proceedings of the seventh European Workshop on Natural

Language Generation (EWNLG 1999), Toulouse, France, pp. 86–95. (cited in page 22)

Carroll, J. and A. C. Fang (2004). The automatic acquisition of verb subcategorizations and their

impact on the performance of an HPSG parser. In Proceedings of the first International Joint

Conference on Natural Language Processing(ijc-NLP 2004), Hainan Island, China, pp. 107–114.

(cited in pages 6, 90, 92, 93, 102)

Carroll, J., G. Minnen, and E. J. Briscoe (1998). Can subcategorization probabilities help a statisti-

cal parser? In Proceedings of the sixth ACL/SIGDAT Workshop on Very Large Corpora, Montreal,

Quebec, Canada, pp. 1–9. (cited in page 89)

Chandrasekar, R. and B. Srinivas (1997). Gleaning information from the web: Using syntax to

filter out irrelevant information. In Proceedings of AAAI 1997 Spring Symposium on Natural Lan-

guage Processing on the World Wide Web, Washington, DC, USA, pp. 27–34. (cited in page 21)

Charniak, E. (1997). Statistical parsing with a context-free grammar and word statistics. In

Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI 1997), Menlo

Park, CA, USA, pp. 598–603. AAAI Press/MIT Press. (cited in page 1)

Chen, J. and O. Rambow (2003). Use of deep linguistic features for the recognition and labeling

of semantic arguments. In Proceedings of the eighth Conference on Empirical Methods in Natural

Language Processing (EMNLP 2003), Sapporo, Japan, pp. 41–48. (cited in page 1)

134

Chen, J. and K. Vijay-Shanker (1997). Towards a reduced-commitment D-theory style TAG

parser. In Proceedings of the fifth International Workshop on Parsing Technologies (IWPT 1997),

Boston, MA, USA, pp. 18–29. (cited in page 78)

Chen, J. and K. Vijay-Shanker (2000). Automated extraction of TAGs from the Penn Treebank. In

Proceedings of the Sixth International Workshop on Parsing Technologies (IWPT 2000), Trento,

Italy, pp. 65–76. (cited in page 91)

Chiang, D. (2000). Statistical parsing with an automatically-extracted Tree Adjoining Grammar.

In Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics (ACL

2000), pp. 456–463. (cited in page 91)

Chomsky, N. (1963). Formal properties of grammar. In R. D. Luce, R. R. Bush, and E. Galanter

(Eds.), Handbook of Mathematical Psychology, Volume II, pp. 323–418. John Wiley and Sons,

Inc. (cited in page 3)

Collins, M. (1996). A new statistical parser based on bigram lexical dependencies. In Proceedings

of the 34th Annual Meeting of the Association for Computational Linguistics (ACL 1996), Santa

Cruz, CA, USA, pp. 184–191. (cited in page 1)

Collins, M. (1997). Three generative, lexicalised models for statistical parsing. In Proceedings

of the 35th Annual Meeting of the Association for Computational Linguistics and the eighth Con-

ference of the European Chapter of the Association for Computational Linguistics (ACL–EACL

1997), Madrid, Spain, pp. 16–23. (cited in page 1)

Collins, M. (2003, December). Head-driven statistical models for natural language parsing. Com-

putational Linguistics 29(4), 589–637. (cited in pages 1, 89)

Copestake, A. (2002). Implementing typed feature structure grammars. CSLI publications. (cited

in pages 6, 92, 102)

Copestake, A., D. Flickinger, R. Malouf, S. Riehemann, and I. Sag (1995). Translation using

Minimal Recursion Semantics. In Proceedings of the Sixth International Conference on Theoreti-

cal and Methodological Issues in Machine Translation (TMI 1995), Leuven, Belgium, pp. 15–32.

(cited in pages 1, 22)

Copestake, A., F. Lambeau, A. Villavicencio, F. Bond, T. Baldwin, I. A. Sag, and D. Flickinger

(2002). Multiword expressions: Linguistic precision and reusability. In Proceedings of the third

135

International Conference on Language Resources and Evaluation (LREC 2002), Las Palmas, Ca-

nary Islands, Spain, pp. 1941–1947. (cited in pages 36, 52)

Cutting, D., J. Kupiec, J. Pedersen, and P. Sibun (1992). A practical part-of-speech tagger. In Pro-

ceedings of the third Conference on Applied Natural Language Processing (ANLP 1992), Trento,

Italy, pp. 133–140. (cited in page 1)

Dang, H. T., K. Kipper, M. Palmer, and J. Posenzweig (1998). Investigating regular sense exten-

sions based on intersective Levin classes. In Proceedings of the 17th International Conference

on Computational Linguistics and the 36th Annual Meeting of the Association for Computational

Linguistics (COLING–ACL 1998), Montreal, Quebec, Canada, pp. 293–299. (cited in page 94)

de Groote, P. (2001). Towards abstract categorial grammars. In Proceedings of the 39th Annual

Meeting of the Association for Computational Linguistics (ACL 2001), Toulouse France, pp. 148–

155. (cited in page 127)

Dempster, A. P., N. M. Laird, and D. B. Rubin (1997). Maximum likelihood from incomplete data

via the EM algorithm. Journal of the Royal Statistical Society 39(1), 1–38. (cited in pages 112,

114)

Doran, C., B. A. Hockey, A. Sarkar, B. Srinivas, and F. Xia (2000). Evolution of the XTAG

system. In A. Abeillé and O. Rambow (Eds.), Tree Adjoining Grammars: formalisms, linguistic

analysis and processing, pp. 371–403. CSLI publications. (cited in pages 3, 5, 22)

Doran, C. and B. Srinivas (2000). Developing a wide-coverage CCG system. In A. Abeillé and

O. Rambow (Eds.), Tree Adjoining Grammars: formalisms, linguistic analysis and processing.

CSLI publications. (cited in page 74)

Dorr, B. (1997). Large-scale dictionary construction for foreign language tutoring and interlingual

machine translation. Machine Translation 12(4), 271–325. (cited in page 94)

Dowty, D. (1991). Thematic proto-roles and argument selection. Languages 67(3), 547–619.

(cited in page 1)

Dunning, T. (1993, March). Accurate methods for the statistics of surprise and coincidence.

Computational Linguistics 19(1), 61–74. (cited in page 101)

Earley, J. (1970). An efficient context-free parsing algorithm. Communications of the Association

for Computing Machinery (ACM) 6(8), 451–455. (cited in pages 3, 67)

136

Eisner, J. (1996). Three new probabilistic models for dependency parsing: An exploration. In

Proceedings of the 16th International Conference on Computational Linguistics (COLING 1996),

Copenhagen, Denmark, pp. 340–345. (cited in page 1)

Ersan, M. and E. Charniak (1996). A statistical syntactic disambiguation program and what it

learns. In S. Wermter, E. Riloff, and G. Scheler (Eds.), Connectionist, Statistical and Symbolic

Approaches to Learning for Natural Language Processing, pp. 146–159. Springer-Verlag. (cited

in pages 6, 89, 101)

Evans, R. and D. J. Weir (1998). A structure-sharing parser for lexicalized grammars. In Pro-

ceedings of the 17th International Conference on Computational Linguistics and the 36th Annual

Meeting of the Association for Computational Linguistics (COLING–ACL 1998), Montreal, Que-

bec, Canada, pp. 372–378. (cited in page 77)

Fellbaum, C. (Ed.) (1998). WordNet: An Electronic Lexical Database. The MIT Press. (cited in

pages 108, 129)

Flickinger, D. (2002). On building a more efficient grammar by exploiting types. In S. Oepen,

D. Flickinger, J. Tsujii, and H. Uszkoreit (Eds.), Collaborative Language Engineering, pp. 1–17.

CSLI Publications. (cited in pages 4, 5, 22, 80)

Flickinger, D., S. Oepen, J. Tsujii, and H. Uszkoreit (Eds.) (2000). Natural Language Engineering

– Special Issue on Efficient Processing with HPSG: Methods, Systems, Evaluation. Cambridge

University Press. (cited in page 23)

Forgy, E. W. (1965). Cluster analysis of multivariate data: Efficiency vs. interpretability of clas-

sifications. Biometrics 21, 768–780. (cited in page 123)

Gahl, S. (1998). Automatic extraction of subcorpora based on subcategorization frames from a

part-of-speech tagged corpus. In Proceedings of the 17th International Conference on Computa-

tional Linguistics and the 36th Annual Meeting of the Association for Computational Linguistics

(COLING–ACL 1998), Montreal, Quebec, Canada, pp. 428–432. (cited in pages 6, 89)

Garside, R., G. Leech, and G. Sampson (1987). The Computational Analysis of English: A

Corpus-Based Approach. Longman, London. (cited in page 151)

Gazdar, G. (1988). Applicability of indexed grammars to natural languages. In U. Reyle and

C. Rohrer (Eds.), Natural Language Parsing and Linguistic Theories, pp. 69–94. D. Reidel, Dor-

drecht. (cited in pages 1, 73)

137

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (Eds.) (1995). Bayesian Data Analysis.

Chapman and Hall. (cited in page 97)

Gildea, D. and M. Palmer (2002). The necessity of parsing for predicate argument recognition. In

Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL

2002), Philadelphia, PA, USA, pp. 239–246. (cited in page 1)

Gorn, S. (1962). Processors for infinite codes of shannon-fano type. In Proceedings of the Sym-

posium on Mathematical Theory of Automata, pp. 223–240. (cited in page 39)

Gorrell, G. (2002). Acquiring subcategorisation from textual corpora. MPhil dissertation, Uni-

versity of Cambridge, UK. (cited in page 101)

Greibach, S. A. (1965). A new normal-form theorem for context-free phrase structure grammars.

Journal of the Association for Computing Machinery (JACM) 12(1), 42–52. (cited in page 81)

Griffith, J. (1995). Optimizing feature structure unification with dependent disjunctions. In Pro-

ceedings of the Workshop on Grammar Formalism for NLP at the sixth European Summer School

in Logic, Language and Information (ESSLLI 1994), pp. 37–60. (cited in page 78)

Griffith, J. (1996). Modularizing contexted constraints. In Proceedings of the 16th International

Conference on Computational Linguistics (COLING 1996), pp. 448–453. (cited in page 78)

Grishman, R., C. Macleod, and A. Meyers (1994). Comlex syntax: Building a computational

lexicon. In Proceedings 15th International Conference on Computational Linguistics (COLING

1994), Kyoto, Japan, pp. 268–272. (cited in pages 86, 88, 90, 92, 151)

Haas, A. R. (1987). Parallel parsing for unification grammars. In Proceedings of the 14th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI 1987), Milan, Italy, pp. 615–618. (cited

in pages 3, 4, 23, 55, 57, 61)

Hamerly, G. (2003). Learning structure and concepts in data through data clustering. Ph. D.

thesis, University of California, San Diego, CA, USA. (cited in page 101)

Harabagiu, S., D. Moldovan, M. Pasca, R. Mihalcea, M. Surdeanu, R. Bunescu, R. Girju, V. Rus,

and P. Morarescu (2001). The role of lexico-semantic feedback in open-domain textual question-

answering. In Proceedings of the 39th Annual Meeting of the Association for Computational

Linguistics (ACL 2001), Toulouse France, pp. 274–281. (cited in page 1)

138

Harbusch, K. (1990). An efficient parsing algorithm for Tree Adjoining Grammars. In Proceed-

ings of the 28th Annual Meeting of the Association for Computational Linguistics (ACL 1990),

Milan, Italy, pp. 284–291. (cited in pages 3, 5, 22, 55, 58, 67, 69)

Hockenmaier, J. and M. Steedman (2002). Acquiring compact lexicalized grammars from a

cleaner treebank. In Proceedings of the third International Conference on Language Resources

and Evaluation (LREC 2002), Las Palmas, Spain. (cited in page 91)

Hofmann, T. (1999a). Probabilistic latent semantic analysis. In Proceedings of the 15th Con-

ference on Uncertainty in Artificial Intelligence (UAI 1999), Stockholm, Sweden, pp. 289–269.

(cited in pages 111, 112)

Hofmann, T. (1999b). Probabilistic latent semantic indexing. In Proceedings of the 22th Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval

(SIGIR 1999), Berkeley, CA, USA, pp. 50–57. (cited in pages 111, 112)

Huang, M., Z. Xiaoyan, Y. Hao, D. G. Payan, K. Qu, and M. Li (2004). Discovering patterns to

extract protein-protein interactions from full texts. Bioinformatics 20(18), 3604–3612. (cited in

page 1)

Imai, H., Y. Miyao, and J. Tsujii (1998, September). GUI for HPSG parsers. IPSJ SIG

Notes NL(127), 173–178. (in Japanese). (cited in page 23)

Jackendoff, R. (1990). Semantic Structures. MIT Press. (cited in page 1)

Jelinek, F., J. Lafferty, D. Magerman, R. Mercer, A. Ratnaparkhi, and S. Roukos (1994). Decision

tree parsing using a hidden derivation model. In Proceedings of the ARPA Workshop on Human

Language Technology (HLT 1994), San Francisco, CA, USA, pp. 272–277. (cited in page 1)

Joshi, A., K. Vijay-Shanker, and D. J. Weir (1991). The convergence of mildly context-sensitive

grammar formalisms. In T. Wasow and P. Sells (Eds.), Processing of Linguistic Structure, pp.

31–81. MIT Press. (cited in page 73)

Joshi, A. K. (1987). Word-order variation in natural language generation. In Proceedings of the

Sixth National Conference on Artificial Intelligence (AAAI), pp. 550–555. (cited in page 21)

Joshi, A. K. (1990). Processing crossed and nested dependencies: an automaton perspective on

the psycholinguistic results. Language and Cognitive Processes 5(1), 1–27. (cited in page 21)

139

Joshi, A. K., L. S. Levy, and M. Takahashi (1975). Tree Adjunct Grammars. Computer and

System Science 10(1), 136–163. (cited in pages 12, 73)

Kanayama, H., K. Torisawa, Y. Mitsuishi, and J. Tsujii (2000). Hybrid Japanese parser with hand-

crafted grammar and statistics. In Proceedings of the 18th International Conference on Computa-

tional Linguistics (COLING 2000), Saarbrücken, Germany, pp. 411–417. (cited in page 23)

Kaplan, R. M. and J. Bresnan (1982). Lexical Functional Grammar: A formal system for gram-

matical representation. In J. Bresnan (Ed.), The Mental Representation of Grammatical Relation,

pp. 173–181. MIT Press. (cited in pages 1, 79)

Kasami, T. (1965). An efficient recognition and syntax algorithm for context-free languages.

Technical Report AFCRL-65-758, Air Force Cambridge Research Lab., Bedford, Mass. (cited in

page 3)

Kasper, R. (1998). TAG and HPSG. Talk given in the tutorial session at the fourth International

Workshop on Tree Adjoining Grammars and Related Frameworks (TAG+4). (cited in page 3)

Kasper, R., B. Kiefer, K. Netter, and K. Vijay-Shanker (1995). Compilation of HPSG to TAG. In

Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics (ACL

1995), Cambridge, MA, USA, pp. 92–99. (cited in pages 3, 19, 26, 31, 74)

Kay, M. (2000, February). Guides and oracles for linear-time parsing. In Proceedings of the Sixth

International Workshop on Parsing Technologies (IWPT 2000), Trento, Italy, pp. 6–9. (cited in

page 3)

Kay, M., J. M. Gawron, and P. Norvig (1994). Verbmobil: A Translation System for Face-to-Face

Dialog. CSLI Publications. (cited in pages 4, 22)

Keller, B. (1994). Feature Logics, Infinitary Descriptions and Grammars. CSLI publications.

(cited in page 20)

Kiefer, B. and H.-U. Krieger (2000). A context-free approximation of Head-Driven Phrase Struc-

ture Grammar. In Proceedings of the sixth International Workshop on Parsing Technologies (IWPT

2000), Trento, Italy, pp. 135–146. (cited in pages 3, 5, 23, 55, 60, 67)

Kim, A., B. Srinivas, and J. Trueswell (1990). The convergence of lexicalist perspectives in

psycholinguistics and computational linguistics. In P. Merlo and S. Stevenson (Eds.), Sentence

Processing and the Lexicon: Formal, Computational and Experimental Perspectives, pp. 109–

135. John Venjamins Publisher. (cited in page 21)

140

Kinyon, A. (1999). Some remarks on the psycholinguistic relevance of LTAGs. In Proceed-

ings of the 10th Meeting of Computational Linguistics in the Netherlands (CLIN 1999), Utrecht,

Netherlands, pp. 99–108. (cited in page 21)

Korhonen, A. (1998). Automatic extraction of subcategorization frames from corpora - improving

filtering with diathesis alternations. In Proceedings of the Workshop on Automated Acquisition

of Syntax and Parsing at the 10th European Summer School in Logic, Language and Information

(ESSLLI 1998), Saarbrücken, Germany, pp. 49–56. (cited in page 107)

Korhonen, A. (2002). Subcategorization Acquisition. Ph. D. thesis, University of Cambridge,

Cambridge, UK. (cited in pages 6, 89, 92, 101, 107, 108)

Korhonen, A. and E. J. Briscoe (2004). Extended lexical-semantic classification of English verbs.

In D. Moldovan and R. Girju (Eds.), Proceedings of the Computational Lexical Semantics Work-

shop at Human Language Technology Conference and the fifth Annual Meeting of the North Amer-

ican Chapter of the Association for Computational Linguistics (HLT-NAACL 2004), Boston, MA,

USA, pp. 38–45. (cited in page 94)

Korhonen, A., Y. Krymolowski, and Z. Marx (2003). Clustering polysemic subcategorization

frame distributions semantically. In Proceedings of the 41st Annual Meeting of the Association

for Computational Linguistics (ACL 2003), Sapporo, Japan, pp. 64–71. (cited in pages 122, 123)

Kornai, A. and G. K. Pullum (1990). The X-bar theory of phrase structure. Language 66, 24–50.

(cited in page 3)

Kroch, A. (1987). Subjacency in a Tree Adjoining Grammar. Mathematics of Language, 143–172.

(cited in page 13)

Kroch, A. (1989). Asymmetries in long-distance extraction in a Tree-Adjoining Grammar. In

M. Baltin and A. Kroch (Eds.), Alternative Conceptions of Phrase Structure, pp. 66–98. University

of Chicago Press. (cited in pages 13, 36)

Kroch, A. and A. K. Joshi (1986). Analyzing extraposition in a Tree Adjoining Grammar. In

G. Huck and A. Ojeda (Eds.), Syntax & Semantics: Discontinuous Constituents, pp. 107–149.

(cited in page 13)

Kudo, T. and Y. Matsumoto (2002). Japanese dependency analysis using cascaded chunking. In

Proceedings of the sixth Workshop on Computational Language Learning (CoNLL 2002), Taipei,

Taiwan, pp. 63–69. (cited in page 1)

141

Kuhn, J., J. Eckle-Kohler, and C. Rohrer (1998). Lexicon acquisition with and for symbolic NLP-

systems — a bootstrapping approach. In Proceedings of the first International Conference on

Language Resources and Evaluation (LREC 1998), Granada, Spain, pp. 89–95. (cited in pages 6,

89, 90)

Kurohashi, S. and M. Nagao (1994, December). A syntactic analysis method of long japanese

sentences based on the detection of conjunctive structures. Computational Linguistics 20(4),

507–534. (cited in page 1)

Lapata, M. (1999). Acquiring lexical generalization from corpora: A case study for diathesis

alternations. In Proceedings of the 37th Annual Meeting of the Association for Computational

Linguistics (ACL 1999), College Park, MD, USA, pp. 397–404. (cited in pages 6, 89, 101)

Lavelli, A. and G. Satta (1991). Bidirectional parsing of Lexicalized Tree Adjoining Grammars. In

Proceedings of the fifth Conference of the European Chapter of the Association for Computational

Linguistics (EACL 1991), Berlin, Germany, pp. 27–32. (cited in page 22)

Lee, L. (2002). Fast context-free grammar parsing requires fast Boolean matrix multiplication.

Journal of the ACM 49(1), 1–15. (cited in page 3)

Leermakers, R. (1992). A recursive ascent Earley parser. Information Processing Letters 41(2),

87–91. (cited in page 66)

Levin, B. (1993). English Verb Classes and Alternations: A Preliminary Investigation. University

of Chicago Press. (cited in pages 1, 6, 93, 94, 108)

Li, H. and N. Abe (1998). Word clustering and disambiguation based on co-occurrence data. In

Proceedings of the 17th International Conference on Computational Linguistics and the 36th An-

nual Meeting of the Association for Computational Linguistics (COLING–ACL 1998), Montreal,

Quebec, Canada, pp. 749–755. (cited in pages 112, 129)

Li, X. and D. Roth (2001). Exploring evidence for shallow parsing. In W. Daelemans and R. Zajac

(Eds.), Proceedings of the fifth Workshop on Computational Language Learning (CoNLL 2001),

pp. 38–44. Toulouse, France. (cited in page 1)

Magerman, D. (1995). Statistical decision-tree models for parsing. In Proceedings of the 33rd

Annual Meeting of the Association for Computational Linguistics (ACL 1995), Cambridge, MA,

USA, pp. 276–283. (cited in page 1)

142

Makino, T., M. Yoshida, K. Torisawa, and J. Tsujii (1998). LiLFeS — towards a practical HPSG

parsers. In Proceedings of the 17th International Conference on Computational Linguistics and

the 36th Annual Meeting of the Association for Computational Linguistics (COLING–ACL 1998),

Montreal, Quebec, Canada, pp. 807–811. (cited in page 80)

Malouf, R., J. Carroll, and A. Copestake (2003). Efficient feature structure operations without

compilation. In S. Oepen, D. Flickinger, J. Tsujii, and H. Uszkoreit (Eds.), Collaborative Lan-

guage Engineering, pp. 103–124. CSLI Publications. (cited in pages 23, 80)

Manning, C. D. (1993). Automatic acquisition of a large subcategorization dictionary from cor-

pora. In Proceedings of the 31st Annual Meeting of the Association for Computational Linguistics

(ACL 1993), Columbus, OH, USA, pp. 235–242. (cited in pages 6, 89, 101)

Marcus, M., B. Santorini, and M. A. Marcinkiewicz (1993, June). Building a large annotated

corpus of English: the Penn Treebank. Computational Linguistics 19(2), 313–330. (cited in

pages 7, 61, 67, 91)

Maxwell III, J. T. and R. M. Kaplan (1993, December). The interface between phrasal and func-

tional constraints. Computational Linguistics 19(4), 571–590. (cited in pages 3, 79)

McCarthy, D. F. (2001). Lexical Acquisition at the Syntax-Semantics Interface: Diathesis Al-

ternations, Subcategorization Frames and Selectional Preferences. Ph. D. thesis, University of

Sussex, Brighton, UK. (cited in pages 6, 93)

McCoy, K. F., K. Vijay-Shanker, and G. Yang (1992). A functional approach to generation with

TAG. In Proceedings of the 30th Annual Meeting of the Association for Computational Linguistics

(ACL 1992), Newark, DE, USA, pp. 48–55. (cited in page 21)

Meyers, A., C. Macleod, and R. Grishman (1994). Standardization of the complement/adjunct

distinction. Technical report, New York University. (cited in page 86)

Miller, P. H. (1999). Strong Generative Capacity. CSLI publications. (cited in pages 3, 41, 127)

Mitsuishi, Y., K. Torisawa, and J. Tsujii (1998). HPSG-style underspecified Japanese grammar

with wide coverage. In Proceedings of the 17th International Conference on Computational Lin-

guistics and the 36th Annual Meeting of the Association for Computational Linguistics (COLING–

ACL 1998), Montreal, Quebec, Canada, pp. 876–880. (cited in page 23)

143

Miyao, Y. (1999). Packing of feature structures for efficient unification of disjunctive feature

structures. In Proceedings of the 37th Annual Meeting of the Association for Computational

Linguistics (ACL 1999), Maryland, NB, Canada, pp. 579–584. (cited in page 79)

Miyao, Y., T. Ninomiya, and J. Tsujii (2003). Lexicalized grammar acquisition. In the Companion

Volume to the Proceedings of the 10th Conference of the European Chapter of the Association for

Computational Linguistics (EACL 2003), Budapest, Hungary, pp. 127–130. (cited in pages 67,

91)

Miyao, Y., T. Ninomiya, and J. Tsujii (2004). Corpus-oriented grammar development for acquir-

ing a Head-driven Phrase Structure Grammar from the Penn Treebank. In Proceedings of the first

International Joint Conference on Natural Language Processing(ijc-NLP 2004), Hainan Island,

China. (cited in pages 5, 23, 89, 90, 91, 120)

Nakanishi, H., Y. Miyao, and J. Tsujii (2004). Using inverse lexical rules to acquire a wide-

coverage lexicalized grammar. In Proceedings of the Workshop on Beyond Shallow Analyses at

the first International Joint Conference on Natural Language Processing (ijc-NLP 2004), Hainan

Island, China. (cited in pages 87, 89, 91, 120)

Nederhof, M.-J. (1998). An alternative LR algorithm for TAGs. In Proceedings of the 17th

International Conference on Computational Linguistics and the 36th Annual Meeting of the As-

sociation for Computational Linguistics (COLING–ACL 1998), Montreal, Quebec, Canada, pp.

946–952. (cited in page 3)

Nederhof, M.-J. (1999). Models of tabulation for TAG parsing. In Proceedings of the sixth Meet-

ing on Mathematics of Language (MOL 6), Orlando, FL, USA, pp. 143–158. (cited in page 22)

Nishida, K., K. Torisawa, and J. Tsujii (1999). An efficient HPSG parsing algorithm with array

unification. In Proceedings of the fifth Natural Language Processing Pacific Rim Symposium

(NLPRS 1999), Beijing, China, pp. 144–149. (cited in page 80)

Oepen, S., D. Flickinger, J. Tsujii, and H. Uszkoreit (Eds.) (2002). Collaborative Language

Engineering. CSLI Publications. (cited in page 23)

Oishi, A. (1998). Semantic Structures of Japanese Verb Phrases — Acquisition, Representation

and Use. Ph. D. thesis, Nara Institute of Science and Technology, Nara, Japan. (cited in page 108)

Oouchida, K., N. Yoshinaga, and J. Tsujii (2004). Context-free approximation of ltag towards cfg

filtering. In Proceedings of TAG+7, Vancouver, BC, Canada, pp. 171–177. (cited in page 81)

144

Palmer, M., O. Rambow, and A. Nasr (1998). Rapid prototyping of domain-specific machine

translation. In Proceedings of the third conference of the Association for Machine Translation in

the Americas (AMTA 1998), Langhorne, PA, USA, pp. 95–102. (cited in pages 1, 21)

Paroubek, P., Y. Schabes, and A. K. Joshi (1992). XTAG - a graphical workbench for developing

Tree-Adjoining Grammars. In Proceedings of the third Conference on Applied Natural Language

Processing (ANLP 1992), Trento, Italy, pp. 223–230. (cited in page 22)

Pelleg, D. and A. Moore (2000). X-means: Extending K-means with efficient estimation of the

number of clusters. In Proceedings of the 17th International Conference on Machine Learning

(ICML 2000), San Francisco, CA, USA, pp. 727–734. (cited in page 101)

Pereira, F. C., N. Tishby, and L. Lee (1993). Distributional clustering of english words. In

Proceedings of the 30th Annual Meeting of the Association for Computational Linguistics(ACL

1993), Columbus, OH, USA, pp. 183–190. (cited in page 112)

Pinker, S. (1989). Learnability and Cognition: The Acquisition of Argument Structures. MIT

Press. (cited in page 1)

Pollard, C. (1984). Generalized Phrase Structure Grammars, Head Grammars and Natural Lan-

guage. Ph. D. thesis, Stanford University, Palo Alto, CA, USA. (cited in page 73)

Pollard, C. and I. A. Sag (1994). Head-Driven Phrase Structure Grammar. University of Chicago

Press and CSLI Publications. (cited in pages 1, 2, 11, 19, 20, 35, 54, 87, 127)

Poller, P. (1994, November). Incremental parsing with LD/TLP-TAGs. Computational Intelli-

gence 10(4), 549–562. (cited in pages 3, 5, 22, 55, 58, 59)

Poller, P. and T. Becker (1998). Two-step TAG parsing revisited. In Proceedings of the fourth In-

ternational Workshop on Tree Adjoining Grammars and Related Frameworks (TAG+4), Philadel-

phia, PA, USA, pp. 143–146. (cited in pages 3, 5, 22, 55, 58, 67)

Prolo, C. A. (2002). Generating the XTAG english grammar using metarules. In Proceedings of

the 19th International Conference on Computational Linguistics (COLING 2002), Taipei, Taiwan,

pp. 814–820. (cited in page 87)

Pustejovsky, J. (1995). The Generative Lexicon. MIT Press. (cited in page 1)

Rajasekaran, S. and S. Yooseph (1998, February). TAL recognition in O(M(n2)) time. Journal

of Computer and System Science 56(1), 83–89. (cited in pages 3, 22)

145

Ratnaparkhi, A. (1996). A maximum entropy part-of-speech tagger. In Proceedings of the first

Conference on Empirical Methods in Natural Language Processing (EMNLP 1996), Philadelphia,

PA, USA, pp. 491–497. (cited in page 1)

Riehemann, S. (2001). A Constructional Approach to Idioms and Word Formation. Ph. D. thesis,

Stanford University, Palo Alto, CA, USA. (cited in pages 37, 52)

Roland, D. (2001). Verb sense and verb subcategorization probabilities. Ph. D. thesis, University

of Colorado, Boulder, CO, USA. (cited in pages 2, 5, 91)

Rosenkrantz, D. J. (1967). Matrix equations and normal forms for context-free grammars. Journal

of the Association for Computing Machinery 14(3), 501–507. (cited in page 81)

Sarkar, A. (2000). Practical experiments in parsing using Tree Adjoining Grammars. In Proceed-

ings of the fifth International Workshop on Tree Adjoining Grammars and Related Frameworks

(TAG+5), Paris, France, pp. 193–198. (cited in pages 4, 6, 22, 55, 61, 89, 101)

Sarkar, A., F. Xia, and A. K. Joshi (2000). Some experiments on indicators of parsing complexity

for lexicalized grammars. In Proceedings of the Workshop on Efficiency in Large-Scale Pars-

ing Systems at the 17th International Conference on Computational Linguistics (COLING 2000),

Saarbrücken, Germany, pp. 37–42. (cited in pages 7, 66, 76)

Sarkar, A. and D. Zeman (2000). Automatic extraction of subcategorization frames for Czech. In

Proceedings of the 18th International Conference on Computational Linguistics (COLING 2000),

Saarbrücken, Germany, pp. 691–697. (cited in pages 90, 91, 101)

Satta, G. (1994, June). Tree Adjoining Grammar parsing and boolean matrix multiplication.

Computational Linguistics 20(2), 173–191. (cited in pages 3, 22)

Schabes, Y. (1994). Left-to-right parsing in Lexicalized Tree Adjoining Grammar. Computational

Intelligence 10(4), 506–524. (cited in pages 3, 22)

Schabes, Y., A. Abeillé, and A. K. Joshi (1988). Parsing strategies with ‘lexicalized’ grammars:

application to Tree Adjoining Grammars. In Proceedings 12th International Conference on Com-

putational Linguistics (COLING 1988), Budapest, Hungary, pp. 578–583. (cited in pages 1, 2, 11,

12)

Schabes, Y. and A. Joshi (1988). An earley-type parsing algorithm for Tree Adjoining Grammars.

In Proceedings of the 26th Annual Meeting of the Association for Computational Linguistics (ACL

1988), Buffal, NY, USA, pp. 258–269. (cited in page 22)

146

Schabes, Y. and S. M. Shieber (1994). An alternative conception of Tree-Adjoining derivation.

Computational Linguistics 20(1), 91–124. (cited in page 36)

Schabes, Y. and R. C. Waters (1995, December). Tree Insertion Grammar: A cubic-time parsable

formalism that lexicalizes context-free grammar without changing the tree produced. Computa-

tional Linguistics 21(4), 479–513. (cited in pages 3, 41, 81)

Schulte im Walde, S. and C. Brew (2002). Inducing German semantic verb classes from purely

syntactic subcategorisation information. In Proceedings of the 41st Annual Meeting of the Associ-

ation for Computational Linguistics (ACL 2003), Sapporo, Japan, pp. 223–230. (cited in pages 1,

122, 123)

Sebastiani, F. (2002, March). Machine learning in automated text categorization. ACM Computing

Surveys 34(1), 1–47. (cited in page 1)

Sekine, S. (1998). Corpus-based Parsing and Sublanguage Studies. Ph. D. thesis, New York

University, New York, NY, USA. (cited in pages 2, 5)

Shaumyan, O., J. Carroll, and D. J. Weir (2002). Evaluation of ltag parsing with supertag com-

paction. In Proceedings of the sixth International Workshop on Tree Adjoining Grammars and

Related Frameworks (TAG+6), Venice, Italy, pp. 201–205. (cited in page 78)

Shieber, S. M. (1985). Using restriction to extend parsing algorithms for complex-feature-based

formalisms. In Proceedings of the 23rd Annual Meeting of the Association for Computational

Linguistics (ACL 1985), Chicago, IL., USA, pp. 145–152. (cited in pages 60, 79)

Somers, H. L. (1984). On the validity of the complement-adjunct distinction in valency grammar.

Linguistics 22, 507–530. (cited in page 86)

Steedman, M. (1985). Dependency and coordination in the grammar of Dutch and English. Lan-

guage 61, 523–568. (cited in page 73)

Steedman, M. (1986). Combinators and grammars. In R. Oehrle, E. Bach, and D. Wheeler (Eds.),

Categorial Grammars and Natural Language Structures, pp. 417–442. Foris, Dordrecht. (cited in

pages 1, 73)

Steedman, M. (2000). The Syntactic Process. The MIT Press. (cited in page 2)

147

Stone, M. and C. Doran (1997). Sentence planning as description using Tree Adjoining Grammar.

In Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and

the eighth Conference of the European Chapter of the Association for Computational Linguistics

(ACL–EACL 1997), Madrid, Spain, pp. 198–205. (cited in page 21)

Surdeanu, M., S. Harabagiu, J. Williams, and P. Aarseth (2003). Using predicate-argument struc-

tures for information extraction. In Proceedings of the 41st Annual Meeting of the Association for

Computational Linguistics (ACL 2003), Sapporo, Japan, pp. 8–15. (cited in page 1)

Tateisi, Y., K. Torisawa, Y. Miyao, and J. Tsujii (1998). Translating the XTAG English grammar

to HPSG. In Proceedings of the fourth International Workshop on Tree Adjoining Grammars and

Related Frameworks (TAG+4), Philadelphia, PA, USA, pp. 172–175. (cited in pages 3, 23, 35,

36, 74, 80)

The XTAG Research Group (1995). A Lexicalized Tree Adjoining Grammar for English.

http://www.cis.upenn.edu/˜xtag/. (cited in page 74)

Tomita, M. (1986). Efficient Parsing for Natural Language: A Fast Algorithm for Practical Sys-

tems. Kluwer Academic Publisher. (cited in page 3)

Tomuro, N. and S. L. Lytinen (2001). Abstract left-corner parsing for unification grammars. In

Proceedings of the sixth Natural Language Processing Pacific Rim Symposium (NLPRS 2001),

Tokyo, Japan, pp. 367–374. (cited in page 23)

Torisawa, K., K. Nishida, Y. Miyao, and J. Tsujii (2000). An HPSG parser with CFG filtering.

Natural Language Engineering 6(1), 63–80. (cited in pages 3, 5, 23, 55, 60, 67, 80)

Torisawa, K. and J. Tsujii (1995). Compiling HPSG-style grammar to object-oriented language.

In Proceedings of the third Natural Language Processing Pacific Rim Symposium (NLPRS 1995),

Seoul, Korea, pp. 320–325. (cited in page 3)

Torisawa, K. and J. Tsujii (1996). Computing phrasal-signs in HPSG prior to parsing. In Pro-

ceedings of the 16th International Conference on Computational Linguistics (COLING 1996),

Copenhagen, Denmark, pp. 949–955. (cited in pages 3, 5, 23, 55, 60, 80)

Tsujii, J. (2001). LiLFeS/GENIA project – NLP tools and a biology domain corpus –. In Pro-

ceedings of the sixth Natural Language Processing Pacific Rim Symposium (NLPRS 2001), Tokyo,

Japan, pp. 765–766. (cited in page 22)

148

Tsuruoka, Y. and T. Chikayama (2001). Estimating reliability of contextual evidences in decision-

list classifiers under Bayesian learning. In Proceedings of the sixth Natural Language Processing

Pacific Rim Symposium (NLPRS 2001), Tokyo, Japan, pp. 701–707. (cited in page 98)

Ushioda, A., D. A. Evans, T. Gibson, and A. Waibel (1993). The automatic acquisition of fre-

quencies of verb subcategorization frames from tagged corpora. In B. Boguraev and J. Pustejovsky

(Eds.), SIGLEX ACL Workshop on the Acquisition of Lexical Knowledge from Text, pp. 95–106.

(cited in pages 6, 89)

Uszkoreit, H., R. Backofen, S. Busemann, A. K. Diagne, E. A. Hinkelman, W. Kasper, B. Kiefer,

H.-U. Krieger, K. Netter, G. Neumann, S. Oepen, and S. P. Spackman (1994). DISCO – an

HPSG-based NLP system and its application for appointment scheduling. In Proceedings of the

15th International Conference on Computational Linguistics (COLING 1994), Kyoto, Japan, pp.

436–440. (cited in page 22)

Valiant, L. G. (1975, April). General context-free recognition in less than cubic time. Journal of

Computer and System Science 10(2), 308–315. (cited in page 3)

van Noord, G. (1994). Head corner parsing for TAG. Computational Intelligence 10(4), 525–534.

(cited in pages 22, 55, 61, 70)

Vijay-Shanker, K. (1987). A study of Tree Adjoining Grammars. Ph. D. thesis, University of

Pennsylvania, Philadelphia, PA, USA. (cited in pages 13, 22, 39)

Vijay-Shanker, K. and A. K. Joshi (1985). Some computational properties of Tree Adjoining

Grammars. In Proceedings of the 23rd Annual Meeting of the Association for Computational

Linguistics (ACL 1985), Chicago, IL., USA, pp. 82–93. (cited in page 3)

Vijay-Shanker, K. and A. K. Joshi (1988). Feature structures based Tree Adjoining Grammars. In

Proceedings of the 12th International Conference on Computational Linguistics (COLING 1988),

Budapest, Hungary, pp. 714–719. (cited in page 13)

Vijay-Shanker, K. and D. J. Weir (1994, December). Parsing some constrained grammar for-

malisms. Computational Linguistics 19(4), 591–636. (cited in page 73)

Weir, D. J. (1988). Characterizing Mildly Context-Sensitive Grammar Formalisms. Ph. D. thesis,

University of Pennsylvania, Philadelphia, PA, USA. (cited in page 73)

149

Xia, F. (1999). Extracting Tree Adjoining Grammars from bracketed corpora. In Proceedings of

the fifth Natural Language Processing Pacific Rim Symposium (NLPRS 1999), Beijing, China, pp.

398–403. (cited in pages 5, 78, 91)

XTAG Research Group (2001). A Lexicalized Tree Adjoining Grammar for English. Technical

Report IRCS-01-03, IRCS, University of Pennsylvania. (cited in pages 4, 6, 14, 21, 51, 52, 53,

54, 88, 102)

Yakushiji, A., Y. Tateisi, Y. Miyao, and J. Tsujii (2001). Event extraction from biomedical papers

using a full parser. In Proceedings of the sixth Pacific Symposium on Biocomputing (PSB 2001),

Big Island, HI, USA, pp. 408–419. (cited in pages 1, 22, 81)

Yakushiji, A., Y. Tateisi, Y. Miyao, N. Yoshinaga, and J. Tsujii (2003). A debug tool for practical

grammar development. In the Companion Volume to the Proceedings of the 41st Annual Meeting

of the Association for Computational Linguistics (ACL 2003), Sapporo, Japan, pp. 173–176. (cited

in page 23)

Yamada, H. and Y. Matsumoto (2003). Statistical dependency analysis with Support Vector Ma-

chines. In Proceedings of the eighth International Workshop on Parsing Technologies (IWPT

2003), Nancy, France, pp. 195–206. (cited in page 1)

Yoon, S. (2004). Using a Meta-Grammar for LTAG Korean grammar. In Proceedings of the

seventh International Workshop on Tree Adjoining Grammars and Related Frameworks (TAG+7),

Vancouver, BC, Canada, pp. 211–218. (cited in page 87)

Yoshida, K. (2005). Corpus-oriented method for developing a practical Japanese HPSG parser.

University of Tokyo, Tokyo, Japan. (cited in page 23)

Yoshida, M., T. Ninomiya, K. Torisawa, T. Makino, and J. Tsujii (1999). Efficient FB-LTAG

parser and its parallelization. In Proceedings of Pacific Association for Computational Linguistics

(PACLING 1999), Waterloo, Ontario, Canada, pp. 90–103. (cited in pages 3, 22, 80)

Younger, D. H. (1967, February). Recognition and parsing of context-free languages in time n3.

Information and Control 2(10), 189–208. (cited in pages 3, 67)

Zeman, D. (2002). Can subcategorization help a statistical dependency parser? In Proceedings of

the 19th International Conference on Computational Linguistics (COLING 2002), Taipei, Taiwan,

pp. 1156–1162. (cited in page 89)

150

Appendix A

Fine-grained 163 SCF Types

This appendix lists 163 fine-grained general-purpose SCF types employed in Briscoe and Car-

roll’s SCF acquisition (Briscoe and Carroll 1997). Each entry expresses one type of SCF. The first

line shows the SCF codings provided in the two manually-tailored large-scale syntax dictionaries,

namely ANLT (Boguraev and Briscoe 1987) and COMLEX (Grishman et al. 1994). The second

line gives a mapping of each SCF type to an SCF type in the XTAG and the ERG coding scheme.

‘gap’ means that the type is missing in the lexicons. The third line shows an example sentence

tagged by claws-2 tagset (Garside et al. 1987).

�� ()*+ � ,-./%(' -%0(+1 -./'2+# #$.34

⇒ 5'(6�'���7�� � #"6��0�	�
0�8	�0���0��
0��

��� ���0(' ���	����
�0&&� ����077) �
�0**

9� ()*+�+"#)�"- � ,-./%(' -%0(+1 -./'2+# "(3-4

⇒ 5'(6�'���(�� � #"6��0���0���0���0��

��� ��0&+� �������077: ��� �0** � ����������077&

;� ()7+ � ,-./%(' ()7+4

⇒ 5'(6���� � #"6��0���0��

��� ��0&+� �����077) ����0"+

�� ()7+�+"#)�"- � ,-./%(' ()7+1 -./'2+# "(3-4

⇒ 5'(6���� � #"6��0���0���0���0��

��� <�0&+� �����077: ����0"+

=� (-�&+ � ,-./%(' -%0&+1 -./'2+# #$.31 +"#+ ��4

⇒ 5'(6���� � #"6����

��� 30&+� �
����077: ��0%-(��0('� ����������0&&� �

�0&&�

>� #5'"(+�&+�- � ,-./%(' &+0-!3&1 -./'2+# #5'"(+1 (6" &9?&!@"A 3'B4

⇒ 5'(6���� � #"6��0����0��0�	�
0��0��0��

��� ��0++<� ���
��077: ����0++<@9 ����0%-' ���0++<-� ����077)

C� -�-./*�&+�@/* � ,-./%(' &+0-!3&1 -./'2+# #5'"(+1 (6" -?!3& DB4

⇒ 5'(6�'��7��� � #"6��0��0�����0��

��� ����0%-' ���0++<-� ����077) ���
��077: ����0++<@9

151

E� '@�3&!�-./*�&+�@/* � ,-./%(' @%03&!1 -./'2+# #$.0#5'"(+1 (6" 7+?!3& �B4

⇒ 5'(6���� � #"6��0��0�����0��

��� �
0'@ ����077� �������077: ����0++<@9

F� #5'"(+�'@�3&! � ,-./%(' 7+3&!1 -./'2+# #5'"(+1 (6" &9?&!@"A 3'B4

⇒ 5'(6���� � #"6����

��� ��0++<� �������077: �
0'@ ����077� �0('� �	��0&&�

��� #5'"(+�!@"�'@�3&! � ,-./%(' -3&!1 -./'2+# #5'"(+1 (6" &9?&!@"A 3'B4

⇒ 5'(6���� � #"6����

��� ��0++<� �������077: �
�03! 	�0++<@9 �
0'@ ����077� �0('� �	��0&&�

��� #5'"(+�&+�'@�3&! � ,-./%(' @%03&!1 -./'2+# #$.0#5'"(+1 (6" &9?&!@"A 3'B4

⇒ 5'(6���� � #"6��0����0��0�	�
0��0��0��

��� ��0++<� �������077: ����0++<@9 �
0'@ ����077� �0('� �	��0&&�

�9� #5'"(+�'@�&+�- � ,-./%(' ++0-!3&1 -./'2+# #5'"(+1 +!@"A �
1 (6" &9?&!@"A 3'B4

⇒ 5'(6���� � #"6��0����0��0�	�
0��0��0��

��� ��0++<� �������077: �
033 ����0++<@9 ����0%-' ���0++<-� ����077)

�;� #5'"(+�'@�&+�'@�3&! � ,-./%(' ++07+3&!1 -./'2+# #5'"(+1 +!@"A �
4

⇒ 5'(6���� � #"6����

��� ��0++<�
��	����077) �
033 ����0++<@9 �
0'@ �����077�

��� -�-./*�'@�&+�@/* � ,-./%(' ++0-!3&1 -./'2+# #5'"(+1 (6" -?!3& DB4

⇒ 5'(6���� � #"6��0����0�������0��

��� ����0%-' ���0++<-� ����077) �������077: �
033 ����0++<@9

�=� !@"�'@�3&! � ,-./%(' -3&!4

⇒ 5'(6���� � #"6��0��0���0��

��� 30++<-� ������077� �
�03! ���0++<@� �
0'@ �
077� ��0++<�

�>� <@G�- � ,-./%(' G<-4

⇒ 5'(6���� � #"6��0��08	��0���0���0�
�0�����0��

��� ��0++<-� �����077) �
�0"6$ ���0++<-� ���07)) ��0++<�

�C� <@G�'@�3&! � ,-./%(' G<7+4

⇒ 5'(6���� � #"6��0��0���0���0�
�0�����0��

��� ��0++<-� ���������077) �
�0"6$ �
0'@ �
077� ��0++<�

�E� 3&!�(% � ���

⇒ 5'(6���� � #"6��0�	�
0�8	�0���0��

��� ��0++<-� ������077) ����077� ���0(' ����0&&�

�F� 3&6�&+�@A3' � ,-./%(' -%03&61 -./'2+# #$.34

⇒ 5'(6���� � #"6��0�	�
0�8	�0���0��

��� ���0(' ����0&&� �����077: �
�����0776

9�� 3&6�-% � ,-./%(' -%03&61 -./'2+# "(3-4

⇒ 5'(6���� � #"6��0�	�
0�8	�0���0��

��� ���0++<-� ��
����077) ��
����0776

9�� 3&6�(% � ���

⇒ 5'(6���� � #"6��0��0�����0��

��� ���0++<-� ����	����077) �������0776 �
����0&&9

99� 3&'"(&- � ,-./%(' &.HH4

⇒ 5'(6���� � #"6��0	����0��

��� ��0++<-� ����077)

9;� 3&'"(&-�"#%3+,-./*�+H � ,-./%(' &.HH4

⇒ 5'(6���� � #"6��0	����0��

152

��� '���0++<-9 ���077)

9�� &+ � ,-./%(' &+4

⇒ 5'(6�'���7��� � #"6��0��0�����0��

��� ��0++<-� �
���077) ���0++<@�

9=� &+�()*+ � ,-./%(' @%0(+1 -./'2+# #$.34

⇒ 5'(6���� � #"6��0
�
0�8	�0���0��

��� ��0++<-� �������077) ���0(' ���0&&� �����0**

9>� &+�()*+�+"#) � ,-./%(' @%0(+1 -./'2+# "(3-4

⇒ 5'(6�'���7�� � #"6��0
�
0�8	�0���0��

��� ���0++<-� �
��������077) ���0++<@� �

����0**

9C� &+�()7+ � ,-./%(' &+0()7+4

⇒ 5'(6���� � #"6��0��0����0�����0�
��0��

��� ��0++<-� �	�077) ��0++<� �����0"H

9E� &+�()7+�+"#) � ,-./%(' &+0H@%4

⇒ 5'(6�'���7�� � #"6��0
�
0�8	�0���0��

��� ����0++<-9 ����������0"(��
	���077) ���0++<@� ����0"H

9F� &+�(-�&+ � ,-./%(' -%0&+0&+1 -./'2+# "(3-1 +"#+ ��4

⇒ 5'(6���� � #"6��0��0�
��0��

��� 30++<-� ����077) ���0++<@� ��0%-(�0('� ���������0&&�

;�� &+�(-�&+�-% � ,-./%(' -%0&+0&+1 -./'2+# "(3-1 +"#+ ��4

⇒ 5'(6���� � #"6����

��� ���0++<-� ������077) ���0(' ����0&&� ��0%-(�0('� ����������0&&�

;�� &+�!@"�&+ � ,-./%(' &+0++1 -./'2+#)A@7'1 +!@"A �
�4

⇒ 5'(6���� � #"6��0�����0����0�����0��

��� ���0++<-� �
	���077) �0('� �

�0&&� �
�03! ���0++<@�

;9� &+�3&! � ,-./%(' @%0/-#1 -./'2+# "(3-4

⇒ 5'(6�'���7�� � #"6��0�
��0��

��� ��0++<-� ����077) ���0++<@� ����077�

;;� &+�3&!�@% � ,-./%(' @%0/-#1 -./'2+# #$.34

⇒ 5'(6���� � #"6��0
�
0�8	�0���0��

��� ��0++<-� ������077) ���0++I ����077� ���0(' ����0&&�

;�� &+�3&6 � ,-./%(' @%03&61 -./'2+# "(3-4

⇒ 5'(6�'���7�� � #"6��0
�
0�8	�0���0��

��� 30++<-� ����077) ����0++<@9 ��	�����0776

;=� &+�3&6�@% � ,-./%(' @%03&61 -./'2+# #$.34

⇒ 5'(6���� � #"6��0
�
0�8	�0���0��

��� 30++<-� ��	���077) ���0++<@� ��������0776

;>� &+�3&6�-% � ���

⇒ 5'(6���� � #"6��0��0�����0��

��� ��0++<-� �
����077) ���0(' �

��0&&9 �

����0776 �
�03! ���0++<@�

;C� &+�&+ � ,-./%(' &+0&+4

⇒ 5'(6�'���7�����9 � #"6��0�������0��

��� ���0++<-� �����077) ���0++<@� ���0(' ����0&&�

;E� &+�&+�+"#) � ,-./%(' @%0&+1 -./'2+# #$.34

⇒ 5'(6�'���7�� � #"6����

��� ����0++<-9 ���
�����077) ���0++<@� ��
����
�0&&�

;F� &+�+�3&6 � ,-./%(' @%0++03&61 +!@"A ��
�1 -./'2+# +7#"/0@"1 @")#" +@-'&+4

⇒ 5'(6���� � #"6����

153

��� 30++<-� ���������077) ���0++<@� ��
�033 �������0776

��� &+�+�3&6�@% � ,-./%(' @%0++03&61 +!@"A1 -./'2+# +7#"/0@#1 @")#" +@-'&+4

⇒ 5'(6���� � #"6��0�����0����0�����0��

��� 30++<-� ���	���077) ���0++<@�
�03@ �	�������0776 ���0(' �	�����0&&�

��� &+�+�3&6�-% � ���

⇒ 5'(6���� � #"6��0�����0����0�����0��

��� ��0++<-� ������077) ����0&&'�
�033 �	�����0776 ����03G ���0(' ����0&&�

�9� &+�+�3&6�(% � ���

⇒ 5'(6���� � #"6��0�����0����0�����0��

��� ��0++<-� �
��077) ���0++<@� ��
	�033 ��������0776 ���0(' �
	�����0&&�

�;� &+�+�&+�3&6 � ���

⇒ 5'(6���� � #"6��0�����0����0�����0��

��� ��0++<-� ������	���077) ���0(' ����	��0&&� �
033 �

��0&+� �	����0776

���0(' �

��0&&9

��� &+�+�+@--3&6 � ���

⇒ 5'(6���� � #"6��0�����0����0�����0��

��� '���0++<-9 �����077) ���0++<@� ��
	�033 ���0++<@� �������������0776 ��033

�=� &+�+�G<�- � ,-./%(' &+0G<-1 +"#+4

⇒ 5'(6���� � #"6��0�����0����0�����0��

��� ����0++<-9 ����077) �0('� �����0** �	��0&&� ��
	�033 �������0%-G ����0++<-9

��
	��07A �����������077�

�>� &+�+�G<('�- � ,-./%(' &+0G<-1 +"#+4

⇒ 5'(6���� � #"6��0�����0����0�����0��

��� ����0++<-9 ����077) �0('� �����0** �	��0&&� ��
	�033 ����0))$ ����0++<-9

��
	��07A �
077�

�C� &+�+�G<('�'@�3&! � ,-./%(' &+0G<7+1 +"#+4

⇒ 5'(6���� � #"6��0�����0����0�����0��

��� ����0++<-9 ����077) �0('� �����0** �	��0&&� ��
	�033 ����0))$ �
0'@ �
077�

�E� &+�+�G<�'@�3&! � ,-./%(' &+0G<-1 +"#+4

⇒ 5'(6���� � #"6��0�����0����0�����0��

��� ����0++<-9 ����077) �0('� �����0** �	��0&&� ��
	�033 �������0%-G �
0'@

�
077�

�F� &+�++ � ,-./%(' &+0++1 +!@"A1 -./'2+# &@&#�+7#"/J4

⇒ 5'(6�'���7������9 � #"6��0�����0����0�����0��

��� ���0++<-� �����077) ���0(' ��
����0&&9 �
033 ���0(' �
	8	��0&&�

=�� &+�++�+"#) � ,-./%(' &+0++1 +!@"A
�1 -./'2+# &@ +") D4

⇒ 5'(6���� � #"6��0
�
0�8	�0���0��

��� 30++<-� �
��������077) ����0(' ��
����0&&�
�03@ ������0** �
�����0&&�

=�� &+�+"#)�"- � ,-./%(' -%0&+1 -./'2+# "(3-4

⇒ 5'(6���� � #"6����

��� ��0++<-� ������077) �0('� �

�0&&

=9� &+�- � ,-./%(' &+0-!3&1 -./'2+# &@

⇒ 5'(6�'���7����9 � #"6��0��0�����0��0��

��� ��0++<-� �
��077) ���0(' �	������0&&� ����0%-' ��0++<-� ���07/: �������0776

=;� &+�'@�3&!�@% � ,-./%(' @%03&!1 -./'2+# #$.34

⇒ 5'(6���� � #"6��0
�
0�8	�0��

��� 30++<-� �������077) A���0&+� �
0'@ �
077�

=�� &+�'@�3&!�-% � ,-./%(' -%0&+03&!1 -./'2+# #$.34

154

⇒ 5'(6���� � #"6��0��
�0�8	�0��

��� *
��0&+� ��
�����077) A���0&+� �
0'@ ������077�

==� &+�'@�3&!�7% � ���

⇒ 5'(6���� � #"6��0
�
0�8	�0��

��� ����0++<-9 ��������077) ���0++<@� �
0'@ �
077�

=>� &+�'@�&+ � ,-./%(' &+0++1 +!@"A �
1 -./'2+#)A@7'4

⇒ 5'(6�'���7���+��9 � #"6��0�����0�
0�����0��

��� ��0++<-� ����077) �0('� ���0** ����0&&� �
033 ���0(' �
����0&&�

=C� &+�'@/# � ,-./%(' @%03&!1 -./'2+# "(3-4

⇒ 5'(6���� � #"6��0
�
0�8	�0��

��� 30++<-� �
	��077) ���0++<@� �
0'@ ��07/� �0('� �

�0** �
��
�0&&�

=E� &+�7#&�&+�@A3' � ,-./%(' @%0+(--1 -./'2+# #$.3�"(3-3&64

⇒ 5'(6���� � #"6��0
�
0�8	�0���0��

��� ��0++<-� ������077) ���0(' ��������0&&9 �
	��077&

=F� &+�G<�- � ,-./%(' &+0G<-4

⇒ 5'(6���� � #"6��0��0�����0��08	��0��

��� ����0++<-9 �����077) ���0++<@� �������0%-G ��0++<-� ���07/: �
���0776

>�� &+�G<('�- � ,-./%(' &+0G<-4

⇒ 5'(6���� � #"6��0��0�����0��08	��0��

��� ����0++<-9 �����077) ���0++<@� ����0))$ ��0++<-� ���07/: �
���0776

>�� &+�G<�'@�3&! � ,-./%(' &+0G<7+4

⇒ 5'(6���� � #"6��0��0�����0��08	��0��

��� ��0++<-� �����077) ���0++<@� �������0%-G �
0'@ �����077� ���0(' �
	��0&&�

>9� &+�G<('�'@�3&! � ,-./%(' &+0G<7+4

⇒ 5'(6���� � #"6��0��0�����0��08	��0��

��� ��0++<-� �����077) ���0++<@� ����0))$ �
0'@ �
077�

>;� +�3&6�-% � ,-./%(' -%03&61 -./'2+# #$.31 +"#+4

⇒ 5'(6���� � #"6��0�����0����0�������0��

��� ����0++<-9 ������077) ��033 ����������0776 ���0(' �����0&&�

>�� +�3&6�(% � ���

⇒ 5'(6���� � #"6��0�����0����0�������0��

��� ����0++<-9 �������
���077)
�03@ ����������0776 ���0(' �����0&&�

>=� +�&+�3&6 � ,-./%(' @%0++03&61 +!@"A K�1 -./'2+# +7#"/0@"�@#1 @")#" +"#&+4

⇒ 5'(6���� � #"6��0�����0����0�������0��

��� ����0++<-9 �
�����077) ��
	�033 ���0++<@� ��������0776

>>� +�&+�'@�3&!,�-%4 � ,-./%(' -%0++03&!1 +!@"A K�1 -./'2+# #$.34

⇒ 5'(6���� � #"6��0
�80��0���0��

��� ��0++<-� �
�������077) ����03G ����0++<@9 �
0'@ �
077� ��0++<�

>C� +�&+�'@�3&!�@% � ,-./%(' @%0++03&!1 +!@"A K�1 -./'2+# +7#"/0@#�@"�#$.34

⇒ 5'(6���� � #"6��0
�80��0���0��

��� ��0++<-� ����
���077) �
033 ���0++<@� �
0'@ �
��077�

>E� +�&+�'@�3&!�7% � ���

⇒ 5'(6���� � #"6��0
�80��0���0��

��� ���0++<-� ��������077) �
033 ���0++<@� �
0'@ �
077�

>F� +�+@--3&6 � ,-./%(' @%0++03&61 +!@"A K�1 -./'2+# +7#"/0@"1 @")#" +"#&+4

⇒ 5'(6���� � #"6��0�����0����0�������0��

��� ����0++<-9 ���	��077) ��
	�033 ���0++I �
����0776

C�� +�G<�- � ,-./%(' G<-1 +"'�+"#+ K�4

155

⇒ 5'(6���� � #"6��0�����0����0�������0��

��� ��0++<-� ��
	���077) ��
	�033 �������0%-G ��0++<-� ������077) �
0'@ �
077�

C�� +�G<('�- � ,-./%(' G<-1 +"'�+"#+ K�4

⇒ 5'(6���� � #"6��0�����0����0�������0��

��� ��0++<-� ��
	���077) ��
	�033 ����0))$ ��0++<-� ������077)

C9� +�G<�'@�3&! � ,-./%(' G<7+1 +"#+ K�4

⇒ 5'(6���� � #"6����

��� ��0++<-� ��
	���077) ��
	�033 �������0%-G �
0'@ �
077�

C;� +�G<('�'@�3&! � ,-./%(' G<7+1 +"#+ K�4

⇒ 5'(6���� � #"6��0�����0����0�������0��

��� ��0++<-� ��
	���077) ��
	�033 ����0))$ �
0'@ �
077�

C�� +("' � ,-./%(' &.HH1 +"'4

⇒ 5'(6�'���7�� � #"6��0��������0��

��� ���0++<-� ����077) 	�0"H

C=� +("'�3&6�-% � ,-./%(' -%03&61 -./'2+# #$.31 +"'�+"#+4

⇒ 5'(6���� � #"6��0��������0��0��

��� ��0++<-� �	���077)
	�033 ������0776 ���0(' �����0&&9

C>� +("'�&+ � ,-./%(' &+1 +"'4 ,@")#" !"##4

⇒ 5'(6�'���7����� � #"6��0��������0��0��

��� 30++<-� �

���077) 	�0"H ���0(' �����0&&�

CC� +("'�&+�++ � ,-./%(' &+0++1 +!@"A1 +"'1 -./'2+# &@&#�+7#"/J4 ,@")#" !"##4

⇒ 5'(6���� � #"6��0��������0��0��0��
�0��

��� 30++<-� ���������077)
	�033 ���0(' �����0** �
��0&&9 ��
�033 ���0('

��
��0&&�

CE� +("'�++ � ,-./%(' ++1 +!@"A1 +"'1 -./'2+# +7#"/4

⇒ 5'(6���� � #"6��0��������0��0��

��� ���0++<-� �

���077) ��033
�033 ���0(' ������0&&�

CF� +("'�G<�- � ,-./%(' G<-1 +"'1 -./'2+# &@

⇒ 5'(6���� � #"6��0��������0��0��

��� ����0++<-9 ���	���077)
	�033 �������0%-G ���0++<-� ���07<) �L�055 �
��077)

���0('

�0&&�

E�� +("'�G<('�- � ,-./%(' G<-1 +"'1 -./'2+# &@

⇒ 5'(6���� � #"6��0��������0��0��

��� ����0++<-9 ���	���077)
	�033 ����0))$ ���0++<-� ���07<) �L�055 �
��077)

E�� +("'�G<�'@�3&! � ,-./%(' G<7+1 +"'1 -./'2+# &@

⇒ 5'(6���� � #"6��0��������0��0��

��� ����0++<-9 ���	���077)
	�033 �������0%-G �
0'@ �
077�

E9� +("'�G<('�'@�3&! � ,-./%(' G<7+1 +"'1 -./'2+# &@

⇒ 5'(6���� � #"6��0��������0��0��

��� ����0++<-9 ���	���077)
	�033 ����0))$ �
0'@ �
077�

E;� +("'�'<('�- � ,-./%(' -!3&1 +"'1 -./'2+# &@

⇒ 5'(6���� � #"6��0��������0��0��

��� ����0++<-9 ���	���077)
	�033 ����0%-' ���0++<-� ���07<) �L�055 �
��077)

���0('

�0&&�

E�� +@--3&6 � ,-./%(' @%03&61 -./'2+# "(3-4

⇒ 5'(6���� � #"6��0��0�����0��

��� ��0++<-� ���������077) �����0++I �������0776 �
����0&&9

E=� +@--3&6�++ � ���

156

⇒ 5'(6���� � #"6��0�����0�
0�����0��

��� ���0++<-� ������	���077) ���0++I ��������0776 �

0"(�	��0"(�
033 ���0('

�������0&&�

E>� 3&6�++ � ���

⇒ 5'(6���� � #"6��0�����0�
0�����0��

��� ����0++<-9 �������077) ��
����0776 �0(' ����0&&� �
033 ���0(' �
	���0&&�

EC� ++ � ,-./%(' ++�H@%1 +!@"A1 -./'2+# &@&#�+7#"/4

⇒ 5'(6�'���7���� � #"6��0�����0����0�������0��

��� ����0++<-9 ��
�
�� ��077) �
033 ���0++<@�

EE� ++�!@"�'@�3&! � ,-./%(' ++0-3&!1 +!@"A4

⇒ 5'(6���� � #"6��0�
	���0��0��

��� ����0++<-9 �
��������077) ����03G ���0++<@� �
�03! ���0(' ���0&&� �
0'@

�
077�

EF� ++�<@G�- � ,-./%(' ++0G<-1 +!@"A4

⇒ 5'(6���� � #"6��0��0��0��

��� ��0++<-� ���������077) �
033 ���0++<@� �
�0"6$ ���0++<-� ���07)) ��0++<�

F�� ++�<@G�'@�3&! � ,-./%(' ++0G<7+1 +!@"A4

⇒ 5'(6���� � #"6��0��0��0��

��� ��0++<-� ���������077) �
033 ����0++<@9 �
�0"6$ �
0'@ �
077� ��0++<�

F�� ++�+�G<�- � ���

⇒ 5'(6���� � #"6����

��� 30++<-� ������077) ����03G ���0++<@� ��
	�033 �������0%-G ��0++<-�

��
	��07A

F9� ++�+�G<('�- � ���

⇒ 5'(6���� � #"6��0�
	���0��0��

��� 30++<-� ������077) ����03G ���0++<@� ��
	�033 ����0))$ ��0++<-� ��
	��07A

�
077�

F;� ++�+�G<('�'@�3&! � ���

⇒ 5'(6���� � #"6��0�
	���0��0��

��� 30++<-� ������077) ����03G ���0++<@� ��
	�033 ����0))$ �
0'@ �
077�

F�� ++�+�G<�'@�3&! � ���

⇒ 5'(6���� � #"6��0�
	���0��0��

��� 30++<-� ������077) ����03G ���0++<@� ��
	�033 �������0%-G �
0'@ �
077�

F=� ++�++ � ,-./%(' ++0++4

⇒ 5'(6���� � #"6��0�
	���0��0��

��� ����0++<-9 ����077) ��
�033 H
��
�0&+� �
033 "
��0&+�

F>� ++�+"#)�"- � ,-./%(' ++1 -./'2+# "(3-4

⇒ 5'(6���� � #"6��0����0��0���0�0
�0�0��

��� ���0(' ������0&&� �����077: ��033 ����	��0&&�

FC� ++�'<('�- � ,-./%(' ++0-!3&1 -./'2+# &@ +!@"A4

⇒ 5'(6���� � #"6��0��0��0���0��

��� ����0++<-9 ��������077) �
033 ���0(' �	��
������0&&9 ����0%-' ����0++<-9

���07<) �������077) ���������0"(

FE� ++�'<('�-�-./*.&%' � ,-./%(' ++0-/-#1 +!@"A1 -?/-#1 ����B4

⇒ 5'(6���� � #"6��0��0��0��

��� ����0++<-9 �	�������077) �
033 ���0++<@� ����0%-' ��0++<-� �
077�

FF� ++�'@�3&!�"- � ,-./%(' -%0++03&!1 -./'2+# "(3-1 +!@"A1 7+?�
B4

⇒ 5'(6���� � #"6��0��0���0���0��

157

��� ��0++<-� ��������077) �
033 ���0++<@� �
0'@ ��07/� ���0**

���� ++�G<�- � ,-./%(' ++0G<-1 +!@"A4

⇒ 5'(6���� � #"6����

��� ����0++<-9 �����077) ��
	�033 ������
��0&+� �������0%-G ����0++<-9 ���07<)

���
����077&

���� ++�G<('�- � ,-./%(' ++0G<-1 +!@"A4

⇒ 5'(6���� � #"6����

��� ����0++<-9 �����077) ��
	�033 ������
��0&+� ����0))$ ����0++<-9 ���07<)

�
��077&

��9� ++�G<�'@03&! � ,-./%(' ++0G<7+4

⇒ 5'(6���� � #"6��0��0��0��

��� ����0++<-9 ���	���077) ��
�033 ���0&+� �������0%-G �
0'@ �
077�

��;� ++�G<('�'@�3&! � ,-./%(' ++0G<7+4

⇒ 5'(6���� � #"6��0��0��0��

��� ����0++<-9 ���	���077) ��
�033 ���0&+� ����0))$ �
0'@ �
077�

���� - � ,-./%(' -!3&1 -./'2+# &@

⇒ 5'(6�'���7�� � #"6��0��0��
�0�
�0�����0��

��� ����0++<-9 ��
	���077) ����0%-' ��0++<-� ���07/: ������0"(����0**

��=� -�-./*�-�@/* � ,-./%(' -!3&1 -./'2+# #5'"(+1 (6" -?!3& �B4

⇒ 5'(6���� � #"6��0��0��
�0�
�0�����0��

��� �
�03! ���0++<@� �
0'@ ���
��077� ���0(' �����0&&� ���������077) ����0%-'

��0++<-� ���07/: �L�055 �	����0**

��>� -�-./*.&%' � ,-./%(' -/-#4

⇒ 5'(6���� � #"6��0��0�	�
0��

��� -��0++<-� ��������077) ����0%-' ��0++<-� �����077� �����������0"(

��C� -##A�- � ,-./%(' -!3&1 -./'2+# #5'"(+1 (6" &9?&!@"A 3'B4

⇒ 5'(6���� � #"6��0����0��0�	�
0��0��0��

��� ��0++<� �����077: ����0%-' ����0++<-9 ����077)

��E� -##A�'@�&+�- � ,-./%(' ++0-!3&1 -./'2+# #5'"(+1 +!@"A1 (6" &9?&!@"A 3'B4

⇒ 5'(6���� � #"6��0����0��0�	�
0��0��0��

��� ��0++<� �����077: �
033 ���0++<@� ����0%-' ����0++<-9 ����07/)" ��
��0**

��F� '<('�- � ,-./%(' -!3&1 -./'2+# &@

⇒ 5'(6�'���7�� � #"6��0����0��0�	�
0��0��0��

��� ��0++<-� �
��������077) ����0%-' ����0++<-9 ����07/)" �
����0776

���� '@�3&!�(% � ���

⇒ 5'(6���� � #"6��0�	�
0�8	�0��

��� <�0++<-� ������077) �
0'@ ����077� ���0(' �����0&&�

���� '@�3&!�"- � ,-./%(' -%03&!1 -./'2+# "(3-4

⇒ 5'(6���� � #"6��0���0��

��� ��0++<-� ������077) �
0'@ �
��077�

��9� '@�3&!�-% � ,-./%(' -%03&!1 -./'2+# #$.34

⇒ 5'(6���� � #"6��0�	�
0�8	�0��

��� 30++<-� ������077) �
0'@ �
��077�

��;� G<�- � ,-./%(' G<-4

⇒ 5'(6�'���7�� � #"6��0��08	��0���0���0�
�0�����0��

��� ��0++<-� �����077) �������0%-G ��0++<-� ��
	��07A �
��077�

���� G<('�- � ,-./%(' G<-4

⇒ 5'(6�'���7�� � #"6��0��08	��0���0���0�
�0�����0��

158

��� ��0++<-� �����077) ����0))$ ��0++<-� ��
	��07A �
077�

��=� G<�'@�3&! � ,-./%(' G<7+4

⇒ 5'(6�'���7�� � #"6��0��08	��0���0���0�
�0�����0��

��� ��0++<-� �����077) �������0%-G �
0'@ �����077� ���0(' �
	��0&&�

��>� G<('�'@�3&! � ,-./%(' G<7+4

⇒ 5'(6�'���7�� � #"6��0��08	��0���0���0�
�0�����0��

��� ��0++<-� �����077) ����0))$ �
0'@ �
077�

��C� 5'(6�'���7�������9 � ,-./%(' &+0&+1 +"'4

⇒ 5'(6�'���7�������9 � #"6����

��� 30++<-�
�����077) ���0++<@� 	�0"+ �0(' ���0** ����0&&� ���
	��0&&�

��E� 5'(6�H���������� ,����
	� �������4 � ���

⇒ 5'(6�H���������� � #"6��0��0����0�����0��

��� ��0++<-� ����077) �
������0&&9
�033 ���0(' �����0&&�

��F� ��� � ,-./%(' ++�H@%1 +!@"A1 +"'1 -./'2+# &@

⇒ 5'(6���� � #"6��0��������0��0��

��� ��0++<-� ������077: ����0"+ ��
�033 ���0(' �����0&&�

�9�� ��� � ,-./%(' &+0++1 +!@"A1 +"'1 -./'2+#)A@7'4

⇒ 5'(6���� � #"6��0��0��������0��0�
�0��

��� ��0++<-� ��
	���077) �0(' �

�0&&� ����0"+ �
�03! ��0++<@�

�9�� ��� � ,-./%(' ++0++1 +!@"A1 +"'4

⇒ 5'(6���� � #"6����

��� ��0++<-� ����077) �
��0"+
�033 ���0++<@� �
�03! ���0(' ���0**

������
	�0&&�

�99� ��� � ,-./%(' &+0++0++1 +!@"A4

⇒ 5'(6���� � #"6��0��0�����0�
	���0��M0��

��� ��0++<-� �	����077) ��0++<@� ��
�033 �0(' ��������0&&� ���
033 �0('

����
��0&&�

�9;� ��� � ,-./%(' A+4

⇒ 5'(6���� � #"6��0��0�
�0�����0��

��� ��0++<-� �
��077) ���0A% �
	���0&&.9

�9�� ��� � ,-./%(' &+0A+4

⇒ 5'(6���� � #"6��0�������0
���0��

��� ��0++<-� �
��077) ���0++<@� ���0A% �
	���0&&.9

�9=� ��� � ,-./%(' &+0A+1 +"'4

⇒ 5'(6���� � #"6����

��� ��0++<-� ���077) ���0++<@� ����0"+ ���0A% �
	���0&&.9

�9>� ��� � ,-./%(' ()H1 +"'4

⇒ 5'(6���� � #"6����

��� ��0++<-� ����077)
��0"+ �����0"+

�9C� ��� � ,-./%(' ()70++1 +!@"A4

⇒ 5'(6���� � #"6����

��� ������0&&9 �	�	�077� ����0"+ �
�03! ���0++<@�

�9E� ��� � ,-./%(' -!3&1 (6" &9?&!@"A 3'B1 +"'4

⇒ 5'(6���� � #"6��0����0��0�	�
0�����0��0��

��� ��0++<-� �	���077:
	�0"+ ����0%-' ��0++<-� ���077) ��0++<@�

�9F� ��� � ,-./%(' -!3&1 (6" -?!3& DB1 -./'2+# #5'"(+4

⇒ 5'(6���� � #"6��0	����0��

159

��� ����0%-' ��0++<-� ����077) �������077:

�;�� ��� � ,-./%(' &+0-!3&1 -./'2+# &@ +"'4

⇒ 5'(6���� � #"6����

��� ��0++<-� ���077) ���0++<@�
�0"+ ����0%-' ��0++<@� ��������077)

�;�� ��� � ,-./%(' ++0-!3&1 -./'2+# &@ +"'4

⇒ 5'(6���� � #"6����

��� ���0++<-� ����077: ���
	��0"+ �
033 ���0++<@� ����0%-' ��0++<-� ����077)

�;9� ��� � ,-./%(' &+0&+0-!3&4

⇒ 5'(6���� � #"6��0��0��0��0��

��� ��0++<-� ���077) ���0++<@� ���0A% �
	���0&&.9 ����0%-' ��0++<-� ����077)

�;;� ��� � ,-./%(' &+0-/-#4

⇒ 5'(6���� � #"6����

��� ��0++<-� ������
���077) ����0++<@9 ����0%-' ��0++<-� ��07/� �����077&

�;�� ��� � ,-./%(' 3'0G<-1 -./'2+# 3!1 (6" &9?&!@"A 3'B4

⇒ 5'(6���� � #"6��0����0
�
0��0��

��� 30++<-� �
	��07A ����������077� ��0++<@� ��0%! ��0++<-� ����077)

�;=� ��� � ,-./%(' ++0G<-1 +!@"A1 (6" &9?&!@"A 3'B4

⇒ 5'(6���� � #"6��0����0��0�	�
0��0��0��

��� ��0++<-� ������077)
�033 ���0++<@� ����0))$ ��0++<-� ��
	��07A �
077�

�;>� ��� � ,-./%(' -%0&+1 +"'1 -./'2+# "(3-�#$.31 +") D4

⇒ 5'(6���� � #"6����

��� ��0++<-� �	����077)
	�0"+ �0(' �

�0&&�

�;C� ��� � ,-./%(' -%0(+1 +"'1 -./'2+# #$.3�"(3-4

⇒ 5'(6���� � #"6��0��������0���0��

��� ��0++<-� �������077)
	�0"+ �

�0**

�;E� ��� � ,-./%(' -%03&!1 +"'1 -./'2+# "(3-4

⇒ 5'(6���� � #"6��0��������0���0��

��� ��0++<-� �	����077)
	�0"+ �
0'@ ��07/� �0(' ��

�0&&�

�;F� ��� � ,-./%(' -%03&!1 +"'1 -./'2+# #$.34

⇒ 5'(6���� � #"6��0��������0���0��

��� ��0++<-� ���077)
	�0"+ �
0'@ ���077�

���� ��� � ,-./%(' -%03&61 +"#+1 +"'1 -./'2+# #$.34

⇒ 5'(6���� � #"6��0��������0���0��

��� ��0++<-� �
�077) ��
	��0"+ �
033 �������0776

���� ��� � ,-./%(' -%0+(--1 -./'2+# "(3-4

⇒ 5'(6���� � #"6��0�	�
0�8	�0���0��

��� ��0++<-� �
�077) �����077& �0(' �

�0&&�

��9� ��� � ,-./%(' -%0/-#1 -./'2+# #$.34

⇒ 5'(6���� � #"6����

��� ��0++<-� �����077) �����077�

��;� ��� � ,-./%(' -%0&+0(+1 -./'2+# "(3-1 +"#+ ��4

⇒ 5'(6���� � #"6��0��0
�
0�
��0��

��� ��0++<-� �������077: ��0++<@� ��0%-(�

����0**

���� ��� � ,-./%(' @%0&+1 -./'2+# "(3-4

⇒ 5'(6���� � #"6��0�������0
���0��

��� ��0++<-� �
�������077: !��
0&+� �0(' �

�0&&�

��=� ��� � ,-./%(' @%0(+1 -./'2+# "(3-1 +"'4

⇒ 5'(6���� � #"6����

160

��� ��0++<-� �����077) ���0++<@�
	�0"+ ��� �0**

��>� ��� � ,-./%(' @%0(+1 -./'2+# #$.31 +"'4

⇒ 5'(6���� � #"6����

��� ��0++<-� �����077: ��0++<@� �
��0"+ ��

��0**

��C� ��� � ,-./%(' @%0(+1 -./'2+# #$.31 +"#+ ��4

⇒ 5'(6���� � #"6��0��0
�
0�
��0��

��� ��0++<-� �
�������077) ���0++<@� ��0%-(��	���0**

��E� ��� � ,-./%(' @%0(+1 -./'2+# #$.31 +"#+ ��1 +"'4

⇒ 5'(6���� � #"6����

��� ��0++<-� �	�077) ���0++<@� �
��0"+ ��0%-(��	���0**

��F� ��� � ,-./%(' @%03&!1 -./'2+# "(3-1 +"'4

⇒ 5'(6���� � #"6����

��� ��0++<-� ����077) ���0++<@�
	�0"+ �
0'@ ��077� ��� �0**

�=�� ��� � ,-./%(' @%03&!1 -./'2+# #$.31 +"'4

⇒ 5'(6���� � #"6����

��� ��0++<-� ��	����077) ���0++<@�
�0"+ �
0'@ ���077�

�=�� ��� � ,-./%(' @%0++03&!1 -./'2+# +7#"/0@#1 +!@"A1 +"'4

⇒ 5'(6���� � #"6����

��� ��0++<-� ����077)
�0"+ ��033 ���0++<@� �
0'@

��077�

�=9� ��� � ,-./%(' @%0++03&61 -./'2+# +7#"/0@#1 +!@"A1 +"'4

⇒ 5'(6���� � #"6����

��� ��0++<-� ������077) ���0++<@� ��
	��0"+ ���
033 �������0776

�=;� ��� � ,-./%(' @%0++0/-#1 +!@"A1 -./'2+# +7#"/0@#4

⇒ 5'(6���� � #"6����

��� ��0++<-� �

���077) ��033 ���0++<@� �����077�

�=�� ��� � ,-./%(' 7+3&!1 -./'2+# #5'"(+1 (6" 7+?!3&�B4

⇒ 5'(6���� � #"6��0	����0��

��� �
0'@ ���077� ����0++<@9 �	���077:

�==� ��� � ,-./%(' &+0()H4

⇒ 5'(6���� � #"6����

��� ��0++<-� ��

�077) ��0++<@� ��
��0"H

�=>� M&+�<@G�- � ���

⇒ 5'(6���� � #"6��0��0�����0��08	��0��

��� ��0++<-� �����077) ���0++<@� �
�0"6$ ��0++<-� ����077)

�=C� M&+�!@"�'@�3&! � ���

⇒ 5'(6���� � #"6����

��� ��0++<-� ����077) �
���0&&9 �
�03! ���0++<@� �
0'@ �
077�

�=E� M3'�+(--�-!3& � ���

⇒ 5'(6���� � #"6����

��� ��0++<-� ��07/: ��������077& ����0%-' ��0++<-� ����077)

�=F� M(-�3!�-!3& � ���

⇒ 5'(6���� � #"6����

��� ��0++<-� �����077: ��0%- ��0%- ��0++<-� ��07/: ������0**

�>�� ��� � ,-./%(' ()H4

⇒ 5'(6���� � #"6��0���0��

��� ��0++<-� ������077: ������0"+

�>�� ��� � ,-./%(' -%0&+ -./'2+# #$.34

⇒ 5'(6���� � #"6����

161

��� ��0++<-� ����077) �0(' �

�0&&�

�>9� M(-�7++"' � ���

⇒ 5'(6���� � #"6��0��0�
��0��

��� ��0++<-� ��������077) ���0++<@� ��033�%-(���
������077&

�>;� M(-�7+3&6 � ���

⇒ 5'(6���� � #"6��0��0�
��0��

��� ��0++<-� ��������077) ���0++<@� ��033�%-(�����07/6 �
����0**

162

Index

A

a posteriori distribution 97

a priori distribution . 97

Abstract Categorial Grammar 127

address . 31, 40

adjunct . 85

adjunction . 12

— rule . 31

agenda . 56

anchor . 12

approximate. .58

Arg feature . 28

argument .11, 28, 85

asymmetric parameterization 114

automaton-based parsing 78

auxiliary tree . 12

B

base entry . 87

beta distribution . 98

breaking point . 31

C

canonical elementary tree25

centroid . 99

centroid cut-off . 101

confidence cut-off . 101

context-free approximation 58

corpus-oriented grammar development 91

cut-off

centroid — . 101

confidence — . 101

frequency — . 101

cut-off node . 28

D

derivation . 40

— tree . 12, 40

derived tree . 12

diathesis alternation . 6, 93

Dir feature . 28

domain of locality . 11

E

edge . 57

elementary tree . 12

canonical — . 25

— template . 51

EM algorithm . 114–116

empirical time complexity 61

ERG . 22

essential edge . 58

Expectation Maximization Algorithm.112

163

F

factoring . 55

FB-LTAG . 13

feature . 15

Arg —. .28

Dir — . 28

Foot? — . 28

HEAD — . 16

Leaf — . 28

MOD — . 16

REL — . 16

SLASH — . 16

SUBCAT — . 16

Sym —. 28

Foot? feature . 28

foot node . 12

frequency cut-off . 101

G

grammar rule . 11

ID — . 15

Immediate Dominance — 20

Greibach Normal Form. 81

H

head . 35

— domain . 19

head-corner . 56

— traversal . 56

HEAD feature . 16

Head Feature Principle17, 35

HPSG . 15–19

— -style grammar 20, 44

— parse . 44, 47

I

ID grammar rule . 15, 20

ID Schema . 17, 35

identifier . 28

Immediate Dominance Principle 17, 35

initial tree . 12

Interpretation Domain 127

Interpretation Function 127

L

latent class model . 112

Leaf feature . 28

lem . 61

lexeme . 91

lexical entry . 11, 15, 20

lexicalization . 1

LKB . 23

LTAG. .12–15, 39

M

meta-grammar. .87

meta-rule . 87

mildly context-sensitive formalism 73

MOD feature . 16

moment estimation . 98

Moriv . 23

multi-anchored tree . 28

N

Naive. 61

node number . 59

non-anchored subtree . 26

Nonlocal Feature Principle 35

O

observed frame . 90

164

ok-flag . 59

ok-propagation . 59

origination . 44

P

parameterization

asymmetric — . 114

symmetric — . 114

PLSA . 112–114

Principle . 15, 35

Head Feature — . 35

Immediate Dominance — 17, 35

Nonlocal Feature — 35

Subcategorization — 17, 35

R

range concatenation grammar 75

REL feature . 16

rule-application . 61

rule history . 44

S

SCF co-occurrence . 99

SCF confidence . 95

selector feature .19, 75

sign . 15, 35

SLASH feature . 16

spine . 31

state . 56

strong equivalence . 3, 41

strongly equivalent grammar 3

structure-sharing . 19

SUBCAT feature. .16

subcategorization frame 1, 11, 85–88

Subcategorization Principle 17, 35

substitution . 12

— node . 12

— rule . 31

Sym feature . 28

symmetric parameterization 114

T

tag . 19

tree division . 28, 41

tree substitution . 31, 41

triangular table . 57

trunk . 26

— node . 26

type . 15

typed feature structure . 15

W

will . 23

willex . 23, 81

X

XTAG English grammar 21, 51

XTAG system . 22

165

	Contents
	Introduction
	I Approach to Collaboration among Lexicalized Grammars
	1 Background to Lexicalized Grammar Formalisms
	1.1 Lexicalized Tree Adjoining Grammar
	1.2 Head-Driven Phrase Structure Grammar
	1.3 HPSG-style Grammar: HPSG's Computational Architecture
	1.4 Grammar Resources and Parsing Techniques for LTAG and HPSG
	1.4.1 Grammar Resources and Parsing Techniques for LTAG
	1.4.2 Grammar Resources and Parsing Techniques for HPSG

	2 Grammar Conversion from LTAG to HPSG-style Grammar
	2.1 Algorithm
	2.1.1 Conversion of Canonical Elementary Trees
	2.1.2 Tree Division: Division of Non-canonical Elementary Trees
	2.1.3 Tree Substitution: Substitution in Non-anchored Subtrees
	2.1.4 Definition of ID Grammar Rules
	2.1.5 Extension to FB-LTAG

	2.2 Correspondence between HPSG-style Grammar and HPSG
	2.3 Proof of Strong Equivalence for Grammar Conversion
	2.3.1 Informal Sketch on the Proof of the Strong Equivalence
	2.3.2 Definitions
	2.3.3 Proof for Tree Division and Tree Substitution
	2.3.4 Proof for Conversion from Canonical LTAG to HPSG-style Grammar

	2.4 Chapter Summary

	3 Experiments on Collaboration between LTAG and HPSG
	3.1 Experiments on Grammar Resource Sharing
	3.2 Experiments on Parsing Comparison
	3.2.1 Dynamic Programming Techniques
	3.2.2 CFG Filtering Techniques
	3.2.3 Comparison of Dynamic Programming Techniques
	3.2.4 Comparison of CFG filtering techniques

	3.3 Chapter Summary

	4 Related Work to Collaboration among Lexicalized Grammar Formalisms
	4.1 Grammar Conversions between LTAG and Other Formalisms
	4.2 Previous Studies on Parsing of Lexicalized Grammars
	4.2.1 Related Work on Dynamic Programming
	4.2.2 Related Work on CFG filtering

	4.3 Comparison between Parsers for Different Grammar Formalisms
	4.4 Further Collaboration between LTAG and HPSG using Our Results

	II Approach to Acquiring Lexical Resources from Corpora
	5 Background to Subcategorization Frame Acquisition
	5.1 Verb Subcategorization and Its Treatment in Lexicalized Grammars
	5.2 Automatic SCF Acquisition
	5.2.1 SCF Acquisition for General SCF Types
	5.2.2 SCF Acquisition for Lexicalized Grammars

	5.3 Linguistic Knowledge on SCF behavior

	6 Filtering Method for SCF Lexicon Acquired from Raw Corpora
	6.1 Estimation of SCF Confidence Vectors
	6.2 Clustering of SCF Confidence Vectors
	6.3 Cut-off Methods Exploiting the Obtained Clusters
	6.4 Experiments on Filtering SCF Lexicon Acquired from Raw Corpora
	6.5 Related Work
	6.6 Chapter Summary

	7 Smoothing Method for SCF Lexicon Acquired from Annotated Corpora
	7.1 Preliminaries
	7.1.1 Probabilistic Latent Semantic Analysis
	7.1.2 EM Estimation for the Probabilistic Latent Semantic Analysis

	7.2 Probabilistic Latent Semantic Analysis for Modeling Verb Subcategorization
	7.2.1 Model Definition
	7.2.2 EM Estimation of the Probabilistic Latent Semantic Model for SCFs

	7.3 Smoothing Method for SCF Distributions
	7.4 Experiments on Smoothing SCF Lexicon Acquired from Annotated Corpora
	7.5 Related Work
	7.6 Chapter Summary

	Conclusions
	Bibliography
	A Fine-grained 163 SCF Types
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

