Collaborative and Corpus-Driven Approaches
towards Lexicalized Grammar-based Natural Language Processing

by
Naoki YOSHINAGA

A Dissertation

Submitted to
the Graduate School of
the University of Tokyo
on December, 2004
in Partial Fulfillment of the Requirements

for the Degree of Doctor of Information Science and Technology
in Computer Science

Thesis Supervisor: Jun’'ichi TSUJII
Professor of Computer Science

ABSTRACT

This dissertation proposes two approaches for constructing essential components of lexicalized
grammar-based natural language processing (NLP). We first provide a framework for devel oping
static components such as grammar resources and parsing technologies collaboratively across the
grammar formalisms. We second propose two corpus-driven methods of acquiring generic lexical
resources, which are dynamic in nature, for lexicalized grammars.

Thefirst part of this dissertation proposes grammar conversion as a means of abstracting away
surface differences between the individual formalisms, and presents a methodology for collabo-
rative development of the static components of lexicalized grammars. Grammar conversion has
been so far proposed for sharing grammar resources between the formalisms. We show that, by
constructing a strongly equivalent grammar in a particular formalism from one given in another
formalism, one can gain a deeper insight into generic parsing techniques that are used for efficient
implementation of parsers for the formalisms, through comparison between the parsers using the
strongly equivalent grammars. We proposed a grammar conversion from LTAG to HPSG-style
grammar, and then conducted two sets of experiments from viewpoints of resource sharing and
parsing comparison. A large-scale LTAG grammar, the X TAG English grammar, was successfully
converted into an HPSG-style grammar. Empirical comparisons between LTAG and HPSG parsers
with dynamic programming and CFG filtering were then conducted using the strongly equivalent
grammars, respectively. We thereby suggest a definite way of improving these generic parsing
techniques.

The second part of this dissertation concerns two corpus-driven methods of augmenting lexical
resourcesfor lexicalized grammars. We first propose afiltering method of subcategorization frames
acquired from raw corpora, and acquire a reliable set of SCFs to augment lexicons of lexicalized
grammars. We perform clustering of words according to their aternation behaviors, and use the
obtained clusters to guide filtering. We applied this filtering method to hand-coded |exicons of lex-
icalized grammars, and successfully filtered out less plausible SCFs from the noisy SCFs acquired
from raw corpora. We second propose a method of constructing a probabilistic lexicon with accu-
rate estimates of co-occurrence probabilities between words and SCF, by using the PLSA model for
smoothing the co-occurrence probabilities estimated from raw frequency counts. Given accurate
estimates for co-occurrence probabilities between words and SCFs, a reliable set of Iexicons can
be reconstructed by thresholding. We applied this smoothing method to SCFs for HPSG acquired
from annotated corpora, and successfully decreased the test-set perplexity of the co-occurrence
probabilities by the interpolated model based on the PLSA model.

Acknowledgements

| spent so many nightsin the laboratory; the statistics saysit is more than 40% of the nights during
my doctor course. When | fell into a restless sleep in a sofa bed, | sometimes dreamed of ideas
that finally contributed to the individual algorithms described in this dissertation. | might therefore
have to thank the laboratory environment, including the sofa beds and carpets, before individual
persons.

Yet first of al, | would like to thank my supervisor, Prof. Jun’ichi Tsujii, for his encouragement,
helpful suggestions and criticisms throughout these five years. He showed me a range of possible
directions of my research, not only from computational viewpoints but also from linguistic view-
points. These directions help me to characterize this mysterious study as meaningful. | would also
like to express my gratitude to the members of my dissertation committee: Prof. Satoru Miyano
(chair), Prof. Masami Hagiya, Prof. Hiroshi Imai, and Prof. Sadao Kurohashi of the University of
Tokyo and Prof. Yuji Matsumoto of Naralnstitute of Science and Technology, who have been good
enough to give thiswork avery serious review.

| am also indebted to Prof. Kentaro Torisawa of Japan Institute of Science and Technology
and Mr. Yusuke Miyao for their comments on approaches to the theme focused in this dissertation.
Prof. Kentaro Torisawa inculcated the philosophy as a researcher in me, with which | was im-
pressed much during the master course. Mr. Yusuke Miyao led me to this exciting research areain
computational linguistics. Most of the ideas in this dissertation were elaborated through a number
of discussions with him.

| next express my gratitude to Dr. Yuka Tateisi and Mr. Takuya Matsuzaki for discussions
on technical details and proofreading of this dissertation. Dr. Yuka Tateisi provided me several
valuable comments on the first part of this dissertation. Since the research isinitially started as an
alternative to her study, | could make the research aim clearer through the meaningful discussions
with her from linguistic viewpoints. Mr. Takuya Matsuzaki provided useful comments on machine
learning techniques which are employed in the latter part of this dissertation to realize my original

ideas. Also, | could put my thoughtsin order through discussions with him on the research aim and
approachesto lexical acquisition for lexicalized grammars.

| also express my gratitude to Dr. Takashi Ninomiyaand Dr. Minoru Yoshidafor their valuable
comments on my research. Dr. Takashi Ninomiya was a person who always embodies what a
researcher should be, which sometimes enjoys us. Dr. Minoru Yoshida would introduce to us his
‘products, which were sometimes fascinating and relaxed us. | should thank Mr. Yousuke Sakao
for his help in profiling an HPSG parser, and thank Dr. Yoshimasa Tsuruoka and Mr. Kazuhiro
Yoshida for their advice on probabilistic modeling. | deeply appreciate Ms. Hiroko Nakanishi for
her support in using the Enju parser. | would thank Mr. Kenta Oouchida for discussions on parsing
algorithms for LTAG. Special thanks are also due to Dr. Takaki Makino, Mr. Yutaka Mitsuishi,
Dr. Edson T. Miyamoto, Dr. Jin-Dong Kim, and Dr. Jun’ichi Kazama for their encouragement and
corrections for my papers on which this dissertation based. Furthermore, the latter two are my good
bicycle friends, and we shared a good time for cycling along with exploring various ramen shops.

Ms. Akane Yakushiji and Mr. Satoshi Simpuku are very good fellows with whom | studied,
discussed our research, and enjoyed research life. | and Ms. Akane Yakushiji often had a rapid-fire
two-people comedy act; | usualy feed her when she talks to herself. Mr. Satoshi Shimpuku is one
of my best friends in the laboratory with whom | talked various kinds of matters for the two years
during the master course.

Among other laboratory members, | would like to thank Mr. Takashi Tsunakawa, Mr. Yuichiro
Matsubayashi, and Mr. Tadayoshi Hara for chatting about several interesting topics together.
Mr. Takashi Tsunakawa brought me to various restaurants and hot springs, driving his own car.
On Sunday, we enjoyed grade-B gourmet tours, which focused on tasty cuisine at up to 1,000-yen.
Mr. Yuichiro Matsubayashi is areal dedicated person, and inspired me to look for ‘a new hobby’
every-time, which involves magic, cocktail, poem and the like. Mr. Tadayoshi Hara kindly let me
enjoy his belongings. | must remember to return them back to him before the graduation.

| thank secretariesin the laboratory. Especially, | owed many thingsto Ms. Mika Tarukawa and
Ms. Minako Ito during my research stay at University of Sussex. Ms. Mika Tarukawawould kindly
serve me a good green teain the morning.

| wish to thank Prof. Aravind Joshi, Dr. Anoop Sarkar, Dr. Rashmi Prasad, Dr. Carlos Prolo,
and Dr. Tonia Bleam for supporting and discussing on the LTAG framework during my visit to
University of Pennsylvania, September 2000. Especidly, | have Dr. Anoop Sarkar to thank for his
help in applying his parser as part of our experiments. He accepted many requests for the facility
of his parser, and spent his precious time. He was also a good guidance during my research stay at
University of Pennsylvania, and kindly let me make copies of precious papers and dissertations.

During 2003 - 2004, | spent 10 months in Brighton, UK as a visiting researcher of University
of Sussex, Informatics Department, under the guidance of Prof. John Carroll. The most of the latter
part of this dissertation had been worked out during the days | spent in Brighton.

Among others, | would first express my best gratitude to Prof. John Carroll, who invited me
to another approachesto lexicalized grammar-based natural 1anguage processing, which broadened
my research perspectives. | am gratefully to Dr. Diana McCarthy, Dr. Alex Fang, Dr. Rob Koeling,
Mr. Xinglong Wang, and other faculty members for helpful discussions, and especially thank Alex
Fang for his help in using the acquired lexical resources. | wish to thank a Japanese colleague
Prof. Kentaro Inui of Nara Ingtitute of Science and Technology, for variable discussions and |etting
me use his laptop when my laptop crashed just one day before the deadline of ACL. | am grateful
again to the other Japanese colleague Dr. Takaki Makino for enjoying a trip together to London,
Seven Sisters Country Park, and southern west of UK by a car. | am also grateful to Dr. Anna
Korhonen of University of Cambridge for variable discussions related to subcategorization acqui-
sition.

| can never thank enough for Kate, alandlady of my room, and roommates Cheng and Duan for
every-day care, support, and sharing a good living environment. Kate sometimes cooked various
kinds of food for me; they are actually the best English food | experienced in UK. Cheng brought
me to Seven Sisters Country Park, the best place | visited during my research stay. Duan is not
only agood chemist but also a good cook of Vietnamese food, and would kindly serve some of the
results.

| aso acknowledge anonymous reviewers of the journals, conferences and workshops, who
gave me helpful comments to refine ideas and experiments, and would like to thank all members of
the laboratory for their patience that allows me to stay at the |aboratory.

Finaly, | thank my parents and my brother for supporting me in these years, and Ms. Chieko
Akiyamafor encouraging me all the time during the doctor course.

Contents

Contents
Introduction

I Approach to Collaboration among Lexicalized Grammars

1 Background to Lexicalized Grammar Formalisms
1.1 Lexicaized Tree Adjoining Grammar
1.2 Head-Driven Phrase Structure Grammar
1.3 HPSG-style Grammar: HPSG's Computational Architecture . . .
1.4 Grammar Resources and Parsing Techniques for LTAG and HPSG
14.1 Grammar Resources and Parsing Techniques for LTAG . .
14.2 Grammar Resources and Parsing Techniques for HPSG . .

2 Grammar Conversion from LTAG to HPSG-style Grammar

21 Algorithm
2.1.1 Conversion of Canonical Elementary Trees
2.1.2 TreeDivision: Division of Non-canonical Elementary Trees
213 Tree Substitution: Substitution in Non-anchored Subtrees .
214 Définitionof ID GrammarRules
215 ExtensontoFB-LTAG

2.2 Correspondence between HPSG-style Grammar and HPSG

2.3 Proof of Strong Equivalence for Grammar Conversion.
2.3.1 Informal Sketch on the Proof of the Strong Equivalence .

11
12
15
19
21
21
22

24

232 Définitions
2.3.3 Proof for Tree Division and Tree Substitution
2.3.4 Proof for Conversion from Canonical LTAG to HPSG-style Grammar . . .
Chapter SUmmary

Experiments on Collaboration between LTAG and HPSG

31
3.2

3.3

Experimentson Grammar ResourceSharing
Experimentson Parsing Comparison
3.21 Dynamic Programming Techniques
3.22 CFGFiltering Techniques
3.2.3 Comparison of Dynamic Programming Techniques
3.24 Comparison of CFGfilteringtechniques
Chapter SUmmary

Related Work to Collaboration among Lexicalized Grammar Formalisms

41
4.2

4.3
4.4

Grammar Conversions between LTAG and Other Formalisms
Previous Studieson Parsing of Lexicalized Grammars
421 Related Work on Dynamic Programming
422 RelaedWork on CFGfiltering
Comparison between Parsers for Different Grammar Formalisms
Further Collaboration between LTAG and HPSG using Our Results

Approach to Acquiring Lexical Resources from Corpora

Background to Subcategorization Frame Acquisition

51
52

53

Verb Subcategorization and Its Treatment in Lexicalized Grammars
Automatic SCFAcquisition.
521 SCFAcquisitionfor General SCFTypes.
5.2.2 SCF Acquisitionfor LexicalizedGrammars
Linguistic Knowledgeon SCF behavior

Filtering Method for SCF Lexicon Acquired from Raw Corpora

6.1
6.2
6.3

Estimation of SCF ConfidenceVectors,
Clustering of SCF ConfidenceVectors
Cut-off Methods Exploitingthe Obtained Clusters

Vi

51
51
55
55
58
61
67
70

73
73
77
77
79
80
81

83

85
85
88
89
90
93

6.4

Experiments on Filtering SCF Lexicon Acquired from Raw Corpora

6.5 RelaedWork
6.6 Chapter Summary
7 Smoothing Method for SCF Lexicon Acquired from Annotated Corpora
7.1 Preiminaries
7.1.1 Probabilistic Latent Semantic Analysis
7.1.2 EM Estimation for the Probabilistic Latent Semantic Analysis
7.2 Probabilistic Latent Semantic Analysis for Modeling Verb Subcategorization . .
721 Mode Definition
7.2.2 EM Estimation of the Probabilistic Latent Semantic Model for SCFs. . . .
7.3 Smoothing Method for SCF Distributions
7.4 Experiments on Smoothing SCF Lexicon Acquired from Annotated Corpora. . . .
75 ReaedWork
7.6 Chapter SUMMary e e
Conclusions
Bibliography

A Fine-grained 163 SCF Types

Index

Vii

111
112
112
114

. 116

116
117
118
119
122
123

125

131

151

163

List of Figures

11
12
13
14
15
16
17
18

1.9

1.10

21
22
2.3
24
25
2.6

2.7

2.8

29
2.10

Lexicalized Tree Adjoining Grammaro i
Derived treeand derivationtree.
Elementary trees that represent subcategorizationframes
Elementary trees that represent recursive structures
HPSG sign (left) and its AVM description (right)
HPSG signsthat represent subcategorizationframes
HPSG signsthat represent recursive structures
ID schemata that represent head-subject, head-complement, and head-adjunct rela-

HPSG parse tree for a sentence “we can always run” and the head domain taken by
fcan” L e
Example of bottom-up parsing with an HPSG-stylegrammar

A canonical elementary tree and non-canonical elementary trees
An agorithm for converting acanonical elementarytree
Converting a canonical elementary treefor “think”
Dividing a multi-anchored elementary tree for “look for”
Converting a non-anchored subtree to a set of multi-anchoredtrees
An agorithm for dividing a non-canonical elementary tree M1 into a set of sub-

trees ST, each of which hasat mostoneanchor.
An agorithm for converting a non-anchored subtree NT' into a set of multi-

anchoredtrees MT
Grammar rules: the substitution rule and adjunctionrule
LTAG and HPSG parsing of the phrase “what you think heloves’
Predicative auxiliary tree for “think” and modifier auxiliary trees for “always’ and

“blue” .o

211
212
213
214

31
3.2

33
34
3.5
3.6
3.7
3.8
39
3.10

311

3.12
3.13

4.1
4.2
4.3

51
52
53

6.1
6.2
6.3
6.4

LTAG and HPSG parsing of the phrase “what you think he loves’ (revisited) 38
Sketch for thetree substitution L. 42
Sketch for thetreedivision 42
The origination for the Sym and Leaf featuresin the HPSG lexical entries converted

fromelementarytrees e 45
Non-canonical elementary trees for verbs that take a PP complement 53
A non-canonical elementary tree for a verb that takes PP complement and its syn-

tactic alternation of wh-moved objectofaP 54
A non-canonical elementary tree that expressesit-cleft withoutgap 54
Example of head-corner parsing foran LTAGgrammar 56
Example of CKY-style parsing foran HPSG grammar 57
Extractionof CFGfromLTAG 59
Ok-propagation from an essential edgetoanother 59
Extractionof CFGfromHPSG 60
Parsing performance with the X TAG English grammar for the ATIScorpus 62
Difference between factoring schemesin LTAG and HPSG: ambiguity between NP

and NP-NPconstructions i 63
Difference between factoring schemesin LTAG and HPSG: ambiguity between NP

and NP-PPconstructions 64
Number of edges of avariant of Naive (Naives) and Naive 65
CF approximation of an HPSG-style grammar converted fromLTAG 70
Exponential variationsinthe Argfeature 76
An example of syntactic phrasal ambiguity for a phrase “human decadent” 78
An example of syntactic lexical ambiguity which the HPSG parser cannot factor out 79

LTAG lexical entriesfor “love” “give,” and “think” 86
Metarulefor lexicon organization. 87
Anacquired SCF foraverb“yield” 92
SCF probability distribution for “apply” 96
Clustering algorithm for SCF confidencevectors 100
Precision and recall of SCFsfiltered using frequency cut-off and confidence cut-off 105
Precision and recall of SCFsfiltered using confidence cut-off and centroid cut-off . 106

7.1 Typica examples of conditional independence structures assumed in P(x|c¢) 113
7.2 Probabilistic Latent Semantic Analysis of co-occurrence between words and SCFs 117
7.3 The average number of SCF types assigned to wordsin WSJ Section02 120

Xi

List of Tables

31
3.2
3.3
34
35
3.6
3.7
38

6.1

6.2

7.1

7.2

7.3

Classification of elementary treesinthe XTAG Englishgrammar 52
The classification of multi-anchoredtrees 52
The classification of treeswith non-anchoredsubtrees 53
Parsing performance with the XTAG English grammar for the ATIScorpus 61
Size of extracted LTAGs (elementary trees) and CFGs approximated fromthem . . 67
Parsing performance (sec.) for Section2of WSJ. 68
Number of essential edges generated in parsing of Section02of WSJ 68
Successrate (%) of phase2operations 69

Precision and recall of XTAG SCFs filtered using frequency cut-off, confidence

cut-off, and centroidcut-off 103
Precision and recall of ERG SCFsfiltered using frequency cut-off, confidence cut-
off, and centroid cut-off 104

The specification of SCFs for HPSG acquired from WSJ Sections 2-21 and their

SUDSELS 119
Test-set perplexity of P(f;|w;) against the test SCFs acquired from WSJ Section
24 for the SCF typesare observed inWSJ Section2 121

Test-set perplexity of P(f;|w;) against the test SCFs acquired from WSJ Section 24 122

Xiii

Introduction

Researchersin the field of Natural Language Processing (NLP) have often argued on the questions
concerning whether in-depth syntactic and semantic information is critical to the performance of
NLP applications (Yakushiji et a. 2001; Li and Roth 2001; Sebastiani 2002; Chen and Ram-
bow 2003; Huang et al. 2004; Carreras and Marques 2004). Although robust analysis of shallow
syntax including part-of-speech (POS) tags (Cutting et al. 1992; Brill 1994; Ratnaparkhi 1996;
Brants 2000), dependency structures (Kurohashi and Nagao 1994; Eisner 1996; Collins 1996;
Kudo and Matsumoto 2002; Yamada and Matsumoto 2003), and phrase structures (Jelinek et al.
1994; Magerman 1995; Collins 1997; Charniak 1997; Bod 2001; Collins 2003) has been suc-
cessfully employed in some systems that need to handle natural language texts (e.g., information
retrieval (Baeza-Yates and Ribeiro-Neto 1999) and text categorization (Sebastiani 2002)), intelli-
gent NL P applications such as information extraction, question answering, and machine translation
have been reported to require more information about what sentences involve (Copestake et al.
1995; Palmer et al. 1998; Harabagiu et a. 2001; Surdeanu et al. 2003). The research areathat aims
at acquiring deep syntactic and semantic structures of sentences has thus emerged from behind the
success of shallow syntactic analysis (Gildea and Palmer 2002; Bouillon et al. 2003; Carreras and
Marques 2004; Schulte im Walde and Brew 2002).

Among severa attempts to provide in-depth syntax and semantic analysis, ‘lexicalization’ ap-
proaches to formalization of grammars have been extensively pursued in both syntactic (Kaplan
and Bresnan 1982; Gazdar 1988; Steedman 1986; Schabes et a. 1988; Pollard and Sag 1994) and
semantic theories (Pinker 1989; Jackendoff 1990; Dowty 1991; Levin 1993; Pustejovsky 1995).
In the established lexicalized grammar formalisms, syntactic constraints such as dependency and
constituency are abstracted away from grammar rules; those constraints are radically relocated into
lexical entries, and take the form of a subcategorization frame (SCF), aset of selectional constraints
on the types and the number of arguments of a predicate. Grammar rules therefore include only
a small number of construction-independent general rules, which interact with aricher lexicon to

capture syntactic generalization. Syntactic arguments of a predicate (e.g., verb) have thus a close
tie with semantic arguments of the predicates within their lexical entries. This integrated analysis
of syntactic and semantic structures is expected to meet the demand of the intelligent NL P systems.

Although the lexicalized grammar formalisms have potential to realize sophisticated NLP ap-
plications that require deeper linguistic analysis, such grammars have been rarely adopted in prac-
tical systems, due to the difficulty in developing indispensable components including grammar
resources, parsing technologies, and lexical resources' suitable for the target domain. Because
lexicalized grammars are designed to handle both in-depth syntactic and semantic phenomena, the
design of grammar theories tends to be complicated, which also prevents us from achieving ef-
ficient processing environments. Although several theoretical and statistical parsing technologies
have been studied in individual formalisms, more efforts should be necessary for helping gram-
mar engineering and achieving enough efficiency for practical applications. On the other hand,
lexicalized grammars are inherently dependent on intricate lexicons, and developing the lexical
resources sets another bottleneck. Manual-development of comprehensive subcategorization lex-
icons has been proved to be costly and thus impractical. This is because predicates change their
behavior between sublanguages, domains and over time (Sekine 1998; Roland 2001). Thus we
need to establish both i) static components such as grammar resources and parsing technologies
and ii) dynamic lexical resources.

This dissertation proposes two methodologies for solving the above problems that set bottle-
necksin applying lexicalized grammarsto practical applications. Thefirst methodology accelerates
collaboration among lexicalized grammars in order to build static grammar resources and parsing
technologies. The second methodology tackles the problem to develop intricate lexicon resources
that are dynamic in nature.

Approach to Collaboration among Lexicalized Grammars

The first part of this dissertation describes a novel approach to collaboration among the lexical-
ized formalisms, towards constructing static components such as grammar resources and parsing
technologies that are generic within the lexicalized framework.

To date, individua lexicalized formalisms such as Lexicalized Tree Adjoining Grammar
(LTAG) (Schabes et al. 1988), Head-Driven Phrase Structure Grammar (HPSG) (Pollard and Sag
1994), and Combinatory Categorial Grammar (CCG) (Steedman 2000) have implemented gram-

!In this dissertation, we refer to lexical resources as associations between words and their lexical entry templates,
while we refer to grammar resources as grammar rules and lexical entry templates.

mars and their processing environments in each closed community. Some discussion of the corre-
spondences between the two formalisms has accompanied their development; i.e., their linguistic
relationships and differences have been investigated (Abeillé€ 1993; Kasper 1998), as has conversion
between two grammars in the two formalisms (Kasper et al. 1995; Tateisi et al. 1998; Becker and
Lopez 2000). These ongoing efforts towards collaboration have contributed to the development of
the two formalisms, particularly to the development of individual linguistic theories.

As have the linguistic theories elaborated, a wide range of parsers have been developed for
those grammars. Parsers that have been proposed independently of one another often share the
same parsing techniques that are claimed to be independent of individual grammar formalisms. Ex-
amples of such generic techniques are dynamic programming (Kasami 1965; Younger 1967; Earley
1970; Vijay-Shanker and Joshi 1985; Haas 1987), |eft-to-right parsing (Tomita 1986; Briscoe and
Carroll 1993; Schabes 1994; Nederhof 1998), reductions to Boolean matrix multiplication (Valiant
1975; Satta 1994; Rajasekaran and Yooseph 1998; Lee 2002), and two-phase (or guided) pars-
ing (Maxwell 111 and Kaplan 1993; Torisawa and Tsujii 1995; Yoshida et al. 1999; Barthélemy
et al. 2001; Kay 2000) including CFG filtering (Harbusch 1990; Poller 1994; Torisawa and Tsu-
jii 1996; Poller and Becker 1998; Torisawa et al. 2000; Kiefer and Krieger 2000). However, as
mentioned by Carroll (Carroll 1994) and other researchers, while these techniques are generic in
the sense that they can be used for efficient implementation of parsers for any grammar formal-
ism, their impact often varies from one formalism to another (Schabes and Waters 1995; Yoshida
et al. 1999). It seems that generic techniques actually interact with the characteristics of individual
grammar formalisms.

The proposed work is thus intended to provide a basis for accelerating collaboration between
the communities. It is built around a method of LTAG-to-HPSG grammar conversion, which is
expected to lower the technical barrier between the grammar formalisms. This differs from pre-
vious methods of conversion in that it guarantees strong equivalence between the original and the
obtained grammars;? that is, the results of parsing (derivation trees) by an LTAG grammar can be
derived from those of the obtained HPSG-style grammar and vice versa. Having strongly equival ent
grammars based on two formalismsis valuable for both communities in the following way:

Sharing of grammar resources HPSG-based applications can make use of LTAG grammar re-
sources such as large-scale English (Doran et al. 2000) and French (Abeillé and Candito
2000) grammars that have been extensively developed. Our method of conversion can there-

2Chomsky (Chomsky 1963) first introduced the notion of strong equivalence between grammars, where both gram-
mars generate the same set of structural descriptions (e.g., parse trees). Kornai and Pullum (Kornai and Pullum 1990)
and Miller (Miller 1999) used the notion of isomorphism between sets of structural descriptionsto provide the notion of
strong equivalence across grammar formalisms, which we have adopted in this research.

fore reduce the considerable workload involved in developing large-scale resources from
scratch. In this dissertation, we report on the conversion of alarge-scale LTAG grammar.

Linguistic correspondence We are also able to explore the correspondences between linguistic
accounts given by the two formalisms. In the lexicalized framework, lexicon resources have
similar constraints such as subcategorization frames, which are considered to be indepen-
dent of individual formalisms. However, the grammar theories provide analogous linguistic
accounts on some of the other linguistic phenomena, asin the treatment of long-distance de-
pendenciesin CCG and HPSG. Since the HPSG-style grammar obtained by our method has
both the computational architecture that underlies HPSG and the linguistic specifications that
were given in the original LTAG, the difference between the LTAG and HPSG formalisms
will be made apparent by comparing the obtained grammars with hand-crafted HPSG gram-
mars (Kay et a. 1994; Flickinger 2002). Such comparison will facilitate the development of
grammar theories.

Comparison of parsing technologies Grammar conversion can be used as a means of abstract-
ing away the surface differences between grammar formalisms, which are obstacles to carry
out a meaningful comparison among generic parsing techniques implemented for different
grammar formalisms. That is, by measuring the performance of parsers based on the original
grammar and the ones based on the obtained grammar, one can gain a deeper insight into
the generic parsing techniques and share techniques developed for parsers for different for-
malisms. Strongly equivalent grammars are also very helpful for incorporating techniques
that have been found to be efficient from the parsers based on one formalism to the parsers
based on another, because the grammar conversion defines a clear correspondence between
those grammars.

We theoretically validate our approach by providing a formal proof of strong equivalence for
our grammar conversion from LTAG to HPSG-style grammar, and empirically demonstrate our
methodology by utilizing the grammar conversion for sharing of grammar resources and parsing
comparison. We used the conversion algorithm which we implemented to successfully convert the
XTAG English grammar (XTAG Research Group 2001), whichisalarge-scale LTAG grammar, into
an HPSG-style grammar. In this dissertation, we investigated the types of linguistic phenomena
covered by the XTAG English grammar, and the correspondence to their analysis in the HPSG
formalism.

We focus on two generic parsing techniques in this dissertation, namely dynamic program-
ming (Sarkar 2000; Haas 1987) and CFG filtering (Harbusch 1990; Poller 1994; Torisawa and

Tsujii 1996; Poller and Becker 1998; Torisawa et a. 2000; Kiefer and Krieger 2000). We first see
how these techniques have been employed in parsers for the two particular grammar formalisms,
LTAG and HPSG. Since dynamic programming forms the basis of most contemporary parsing
technigues, a comparison of parsersusing it allows us to roughly grasp the difference between the
performance of LTAG and HPSG parsers. Since the impact of CFG filtering for LTAG is quite
different from that for HPSG, CFG filtering can be a good material for demonstrating our method-
ology that improves generic parsing techniques through parsing comparison. Next, we show that
grammar conversion yielding an HPSG-style grammar from a given LTAG grammar reveals the
true nature of these generic parsing techniques. It follows from the experimental results that we
suggest parsing techniques for LTAG that can be more efficient than those implemented for the
original LTAG grammar, even though they use the same generic techniques.

Approach to Acquiring Lexical Resources from Corpora

The second part of this dissertation concerns novel approachesto acquirereliable ‘dynamic’ lexical
resources for lexicalized grammars from raw and annotated corporain the target domain. Although
our collaborative approach within the lexicalized grammar formalisms facilitates the devel opment
of static grammar resources, lexicon resources cannot be comprehensive enough to handle real-
world sentences. Thisis because predicates change their behavior between sublanguages, domains
and over time (Sekine 1998; Roland 2001), and such changes are difficult to predict in advance.
Thus we need to establish amethod for dynamically acquiring appropriate lexical knowledge from
corpora.

There are two types of lexical resource available for lexicalized grammars. One is alexicon
that includes only associations between words and SCF types, in other words, SCF co-occurrence
for words. A typical example of such lexicon is hand-coded lexicons, which are part of hand-
crafted lexicalized grammars (Doran et a. 2000; Abeillé and Candito 2000; Flickinger 2002). The
other type of lexical resource is alexicon that includes not only associations between words and
SCF types but also co-occurrence frequency counts between words and SCF types in a particular
corpus, in other words, SCF distributions for words. A typical example of such lexicon is one
automatically acquired from annotated corpora (Xia 1999; Miyao et a. 2004). These resources
are precise enough to be employed for practical use, since they are built by human lexicographers
or acquired from annotated corpora by using elaborated heuristic rules. Their recall is, however,
reported not satisfactory for practical purpose (Roland 2001; Briscoe 2001), that is, they lack nec-
essary words (problem on unknown words) or lack necessary subcategorization frames (problem

on unknown associations between known subcategorization frames and known words) (Briscoe
2001).2 In this dissertation, we present two methods of augmenting the above two types of lexical
resources, respectively.

Wefirst focus on atask that enhances the lexiconsthat include only associati ons between words
and SCF types, and propose a method of augmenting such lexicons by SCFs acquired from raw
corpora. A variety of methods have been proposed for automatic acquisition of general-purpose
SCFs from corpora (Brent 1993; Ushioda et al. 1993; Manning 1993; Ersan and Charniak 1996;
Briscoe and Carroll 1997; Carroll and Rooth 1998; Gahl 1998; Lapata 1999; Kuhn et al. 1998;
Sarkar 2000) (surveyed in (Korhonen 2002)). One interesting possibility is to use these techniques
to improve the coverage of existing large-scale lexical resources. However, there has been little
work on evaluating the impact of acquired SCFs with the exception of (Carroll and Fang 2004).
The problem when we integrate acquired SCFs into the target lexicon is the lower quality of the
acquired SCFs, since they are acquired in an unsupervised manner, rather than being manually
coded. If we attempt to compensate for the lack of recall by being less strict in filtering out less
likely SCFs, then we will end up with a larger number of noisy lexical entries, which will cause
erroneous parsing results. We thus need a method of selecting the most reliable set of SCFs from
the system output as demonstrated in (Korhonen 2002).

In this task, we make use of SCF co-occurrences for words in the target lexicon to guide filter-
ing of noisy acquired SCF lexicon. In the linguistic literature, SCF types taken by asingle word is
known to correlate with each other, and their aternation relations called diathesis alternation have
been intensively studied (surveyed in (Levin 1993; McCarthy 2001)). In order to take advantages
of such alternation relations that are implicitly included in the target lexicon, we first obtain SCF
confidence vectors for words whose elements express how strong the evidence is that the word
has each SCF type. In order to capture SCF co-occurrence in the target lexicon, we next perform
clustering of SCF confidence vectors of words in the acquired SCF lexicon and the target lexicon.
Since each centroid value of the obtained clusters indicates whether the words in that cluster have
the SCF type, we eliminate SCFs acquired in error and predict possible SCFs according to the cen-
troids. We applied our clustering method to SCFs acquired from mobile phone corpus (Carroll and
Fang 2004), using the lexicons of the X TAG English grammar (X TAG Research Group 2001) and
the LINGO English Resource Grammar (ERG) (Copestake 2002), respectively. We then compared
the SCFs selected by our filtering method with SCFs obtained by naive frequency filtering in order
to investigate the effect of clustering.

3There is another problem for existing lexical resources, which is called unknown category problem, that is, a word
is expected to have a new SCF type which is not included in lexicons.

We second focus on the other type of lexical resource that includes co-occurrence frequency
counts between words and SCF types in a particular corpus, and propose a method of construct-
ing a probabilistic lexicon with accurate estimates of co-occurrence probabilities between words
and SCF types, by smoothing the co-occurrence probabilities estimated from the raw frequency
counts.* In such probabilistic lexicons, accuracy of estimates of the co-occurrence probabilitiesis
quite important, because those probabilities determine the set of lexical entries that are employed
for parsing of a given sentence. When we acquire SCFs from a small amount of annotate corpora,
the resulting probability distributions are completely sparse. Thisimplies that a parser may not be
able to employ necessary SCFsin parsing. On the other hand, when we acquire a probability from
a large amount of raw corpora, the resulting probability distributions are comprehensive but less
accurate. Such noisy distributions are quite problematic because they can deteriorate not only pars-
ing accuracy but also parsing efficiency (Sarkar et al. 2000). We thus need a method of acquiring
accurate and comprehensive SCF distributions not only to have better parsing accuracy but also to
determine an appropriate set of lexical entries that are employed in parsing.

In this task, we acquire accurate estimates of co-occurrence probabilities between words and
SCFsfrom a small amount of annotated corpora by using the Probabilistic Latent Semantic Analy-
sis(PLSA), whichisavariant of latent class models, to perform smoothing of the observed accurate
but sparse co-occurrence probabilities. The PLSA captures co-occurrence events of observed vari-
ables (words and SCF types in this case) by assuming unobserved latent variables or classes. We
applied our smoothing method to SCFs of an HPSG grammar that is acquired from the Penn Tree-
bank (Marcus et al. 1993), and compared the test-set perplexity of the co-occurrence probabilities
estimated by linear interpolation using our PLSA model and raw observed frequency, with the test-
set perplexity of the co-occurrence probabilities estimated by a more simple model only using raw
observed frequency.

Thesis Structure The rest of this dissertation is structured as follows. Chapters 1 through 4
concern an approach to collaboration among grammar formalisms within the lexicalized grammar
framework, while Chapters 5 through 7 concern an approach to acquiring lexical resources from
corpora.

We first propose a grammar conversion from LTAG to HPSG-style grammar, and establish a
methodology for the collaboration between the LTAG and HPSG formalisms using the nature of
strong equivalence between an LTAG grammar and the HPSG-style grammar converted from the

“We assume that these lexicons assign probabilities to all possible associations between word and SCF types. The
lexicon thus included lexica entries whose probabilities are larger than 0. In this context, smoothing co-occurrence
probabilities between words and SCF types can be interpreted as an addition of plausible SCFsto the lexicons.

LTAG by the method we propose. Chapter 1 introduces the lexicalized grammar paradigm. We
focus on two instance formalisms, LTAG and HPSG, and describe their processing architectures
and existing resources including grammar resources and parsing techniques. Chapter 2 proposes a
grammar conversion from LTAG to HPSG-style grammar. A formal proof of the strong equivalence
between LTAG and HPSG-style grammar is provided in Section 2.3. Chapter 3 demonstrates our
methodology through sharing grammar resources and comparison between generic parsing tech-
nologies for the two formalisms. Chapter 4 mentions work related to collaboration among the
grammar formalisms.

We second describe a corpus-based extension of lexicalized grammar resources, making use of
reliable lexical resources that are manually-tailored or acquired from annotated corpora. Section 5
explains linguistic behavior of subcategorization frames (SCFs), the target of our lexical acquisi-
tion, and then reviews methods for automatically extracting SCFs from corpus data. Chapter 6
proposes a method of filtering out less plausible SCFs from the SCFs acquired from raw corpora,
exploiting co-occurrence tendency among SCF typesin the target lexicon that includes only associ-
ations between words and SCF types. Chapter 7 proposes a method of obtaining accurate estimates
for co-occurrence probabilities between words and SCF types, for the target lexicon that includes
associations between words and SCF types along with their co-occurrence frequency counts.

Part |

Approach to Collaboration among
Lexicalized Grammars

Chapter 1

Background to Lexicalized Grammar
Formalisms

In this chapter we describe the lexicalized grammar paradigm (Schabes et a. 1988) and its two
instance formalisms (Schabes et al. 1988; Pollard and Sag 1994) we concern.

Most of current linguistic theories give lexical accounts of several linguistic phenomena that
used to be considered purely syntactic. The lexicon thus includes more information while grammar
rules are abstracted simply to express general grammatical construction. Following the description
givenin (Schabeset al. 1988), we say that agrammar formalismis‘lexicalized’ when it comprises:

Lexical entries: A finite set of (elementary) structures that are associated with words, which are
usually heads of these structures. These structures involve word-specific |exical/syntactic
constraints.

Grammar rules: A finite set of operations that compose elementary structures and generated
structures. These grammar rules represent general grammatical constructions.

The elementary structures define the domain of locality over which constraints are specified, and
these are local with respect to the lexical heads. The core constraint in the domain of locality for
the lexical head is a subcategorization frame which roughly represents alist of arguments for the
predicates (lexical heads). Arguments are words or phrases to complement the meaning of the
lexical head. We will mention detailed discussions for arguments and subcategorization framesin
Section 5.

In what follows, we describe the LTAG and the HPSG formalisms. An objective of our gram-
mar conversion is to provide a formal link between the two formalisms, and then to bridge these

11

¢ anchor al g adjunction _;p, B1

= foot node
| substitution node NmP V/\VP*

substitution - \ \

7 \% can ¢
o2 ND ‘

| run ¢
N

\
we ¢ al, o2, B1: elementary trees

Figure 1.1: Lexicalized Tree Adjoining Grammar: basic structures (elementary trees) and compo-
sition operations (substitution and adjunction)

formalisms via strongly equivalent grammars obtained by the conversion. We therefore do not ex-
plain specific implementations of grammars in these formalisms, but describe the formal property
of grammars in these formalisms. Because the formal property of HPSG is not clearly defined
in the literature, we define HPSG-style grammar, the processing architecture that HPSG grammar
defines over the typed feature structure (Carpenter 1992). Finally, we introduce grammar resources
and parsing techniques devel oped for these formalisms.

1.1 Lexicalized Tree Adjoining Grammar

Lexicalized Tree Adjoining Grammar (LTAG) (Schabeset al. 1988) isalexicalization approach
to Tree Adjoining Grammar (TAG) (Joshi et a. 1975), and defined by a set of elementary trees that
are composed by two operations called substitution and adjunction, as shown on Figure 1.1. An
elementary tree has at least one leaf node that is labeled with aterminal symbol (i.e., word) called
an anchor (marked with ¢). Elementary trees are classified as either initial trees (a1 and o2) or
auxiliary trees (51). The label of one leaf node of an auxiliary tree is identical to that of its root
node, and thisis specially marked (here, with x) as a foot node. In an elementary tree, leaf nodes
other than anchors and the foot node are called substitution nodes (marked with |).

In substitution, aleaf node (substitution node) isreplaced by aninitial tree, whilein adjunction,
an auxiliary tree with the root node and a foot node labeled x is grafted onto a node with the same
symbol z. The results of analysis are described not only by derived trees (i.e., parse trees) but
aso by derivation trees (Figure 1.2). The derivation trees represent the history of combinations of
trees, and are the deeper-level structural descriptions of LTAG. The left-hand side of Figure 1.2

12

derived tree derivation tree

S ol
P LN\
NP VP o2 B1
T

Figure 1.2: Derived tree and derivation tree

shows a derivation tree for the tree combination in Figure 1.1. In a derivation tree, each node
expresses each elementary tree, and an elementary tree expressed by an internal node is substituted
or adjoined by elementary trees expressed by its child nodes. Each branching thus expresses an
application of substitution and adjunction. In the right-hand side of Figure 1.2, an elementary tree
a1 is substituted by an elementary tree 2, and is adjoined by 2.

FB-LTAG (Vijay-Shanker 1987; Vijay-Shanker and Joshi 1988) is an extension of the LTAG
formalism in which each node in the elementary trees has a feature structure, which contains a
set of grammatical constraints on the node. The constraints are to be satisfied through unification
during adjunction and substitution.

It is worth mentioning that the two key properties of LTAG elementary trees allow all depen-
dencies involving a particular word to be local within the lexical entries of the word; 1) extended
domain of locality (compared to CFG), and 2) factoring recursive structures from the domain of
locality. Kroch and Joshi (Kroch and Joshi 1986; Kroch 1987; Kroch 1989) built linguistic foun-
dation of the TAG formalisms by exploiting of these properties. The extended domain of locality
alows us to express properties related to a word (such as subcategorization, agreement, certain
types of word order variation) within the elementary tree anchored by the word. Figure 1.3 shows
example elementary trees of English LTAG grammar. Elementary trees o3, and a4 in the figure
represent subcategorization frames for the lexical anchors, “love” and “give.” The argument cate-
gory and their linear precedence constraints are explicitly expressed by the substitution nodes of an

Istrictly speaking, a derivation tree includes information on which nodes of an elementary tree take substitution or
adjunction by augmenting each branching with the node address in which those operations take place.

13

[ne 1] love [Ne Mary] [NP 1] give [NP her] [NP a gift] [NP Who] loves [Np her]?

o3 S o4 S o5 S
NP, VP NP, VP NP, S
\Y NP/ V NP/ NP, NP VP
/\
love) giveo eV NP|
I
loves ¢

Figure 1.3: Elementary trees that represent subcategorization frames

| always [ve run] [ne 1] think [s that heis clever] Heis[ne aman] [ne I] love
p2 B3 p4
VP S NP
P P T
Adv VP+ NPy VP NP+ S
| P\ P
always¢ A% S+ NP S
| I
think ¢ e NP}, VP
T
\% NP
| |
loved &€

Figure 1.4: Elementary trees that represent recursive structures

elementary tree and their positions within the tree structure.? The elementary tree o5 expresses a
subject wh-extraction tree for 1. While dependency and constituency among predicates and their
arguments are roughly captured by putting them together within one elementary tree, recursive
structures of natural language such as adjunction and modification are expressed by one auxiliary
tree. Figure 1.4 shows example auxiliary trees. Auxiliary trees 52 and (33 respectively show modi-

2|n theimplemented LTAG grammars such as the X TAG English grammar (X TAG Research Group 2001), arguments
in predicates’ elementary trees are assigned subscripts according to their thematic roles.

14

fication of averb phrase by an adverb “always’ and an embedded clause of averb “think.” Because
such modifiers and embedded clauses can repeatedly appear in a sentence, they are factored out as
single recursive structures, i.e., auxiliary trees. Another example is object-extracted relative clause
(64. The relative clause introduces to a sentence non-local dependency between an antecedent and
apredicate in the clause (the foot node and an anchor verb in the right-hand side of Figure 1.4. By
extending domain of locality to include an antecedent in an elementary tree of an anchor verb, this
non-loca dependency is successfully expressed within the single elementary tree.

In short, the LTAG formalisms classify grammatical constructions into head-argument and
head-adjunct relations according to their recursiveness. Syntactic properties related to a lexical
anchor are explicitly described in the extended domain of locality given within each elementary
tree.

1.2 Head-Driven Phrase Structure Grammar

HPSG is a linguistic theory based on the lexicalized grammar formalism, and is characterized by
a modular specification of linguistic generalizations. It consists of lexical entries and |mmediate
Dominance (ID) grammar rules which are further broken down into 1D schemata and principles.®
All of them are described with typed feature structures (Carpenter 1992).

We should briefly introduce aformal property of the typed feature structures as a data structure.
The typed feature structure is a rooted directed acyclic graph structure whose nodes and edges
have an associated label. The label associated with a node is called type while a label associated
with an edge is called feature. In the following typed feature structures, we express features with
capitalized letters while we describe types with uncapitalized and italicized letters. Because the
value of features can be either atype or atyped feature structure, the typed feature structures can
represent a recursive structure like lists.* Figure 1.5 exemplifies a typed feature structure and its
attribute-value matrix description. In the following, we describe typed feature structures by the
attribute-value matrix description.

In the HPSG formalism, syntactic properties related to a lexical head are expressed in a more
abstract way than in the LTAG formalisms. Figure 1.5 provides the definition of an HPSG sign,

3Strictly speaking, an HPSG grammar consists only of lexical entries and principles. One of the principles called
Immediate Dominance Principle mention that immediate dominance constituency should be licensed by one of the rule
schemata.

“The relations between types are represented by type hierarchy, and the unification is defined over the type hierarchy.
We omit the definition of these notions in this dissertation because feature structures in the FB-LTAG formalism are not
typed and we do not explicitly employ typing in the following feature structures except in the definition of the HPSG
feature structure.

15

list of string MOD
head
\‘
synsem
sign
SYNSEM at SUBCAT PaON list of string
ynsem
local
I|st of synsem cat
CONTEXT, CONTENT HEAD I:head]
LocaL | CAT MOD synsem
NONLOCAL SYNSEM SUBCAT list of synsem
content CONTENT content
CONTEXT context
nonlocal SLASH Honlocal
NONLOCAL |SLASH set of local
L REL set of ref

set of local

set of ref

Figure 1.5: HPSG sign (left) and its AVM description (right)

[nP 1] love [Ne Mary] [NP 1] give [NP her] [NP a gift] [NP Who] loves [nP her]?
1
o2’ o3’ o4
sign sign sign
PHON < love'’> PHON <™ give''> PHON <™ loves'>
synsem | |ocal synsem | |ocal synsem | |ocal
cat cat cat
LOCAL CAT {HEAD verb } LOCAL CAT {HEAD verb } LOCAL CAT [HEAD verb }
SYNSEM SUBCAT <NP NP> SYNSEM SUBCAT <NP NP NP> SYNSEM SUBCAT <NP>
nonlocal nonlocal nonlocal
NONLOCAL |SLASH {} NONLOCAL |SLASH ({} NONLOCAL |SLASH {NP}
REL {} REL {} REL {}

Figure 1.6: HPSG signs that represent subcategorization frames

which represents syntactic and semantic behavior of aword or a phrase. HEAD feature expresses
the characteristics of the head word of the sign, such as syntactic category. SUBCAT feature rep-
resents a subcategorization frame, a list of selectional constraints on the arguments of the head
word, while MOD feature represents a constraint on the modifiee of the head word (modifier).
L ong-distance dependencies are captured by the use of NONLOCAL feature structures that involve
SLASH and REL features. Figure 1.6 exemplifies HPSG lexical entries for syntactic constructions
provided in Figure 1.3. While in LTAG subcategorization frames are represented by |leaf nodes of
elementary trees, in HPSG they are represented by SUBCAT feature when they are local and by
SLASH feature when they are nonlocal, both of which are included in alexical entry for the same
word. Head-adjunct relations, which are represented by relations between a foot node and anchors
in LTAG, are represented by the MOD feature, as shown in the left-hand side of Figure 1.7.

Unlike the LTAG formalism, in HPSG, the constraints on possible syntactic structures taken

16

| always [ve run] [np 1] think [s that heis clever] Heis[np aman] [ne 1] love

B2’ B3’ B4’
Tsign] sign - [sin
PHON <" always'> PHON <™ think'> PHON <™ love">
synsem [local synsem | local . synsem [local .
LOCAL C:;AD[head } LOCAL | ar FEAD verb } LOCAL | r FEAD verb }
SYNSEM CAT MOD VP SYNSEM SUBCAT <NP S> SYNSEM SUBCAT <NP>
SUBCAT <> nonlocal nonlocal
NONLOCAL |SLASH {} NONLOCAL |SLASH {NP}
{nonlocal } [?EL IS } {REL I8} }
NONLOCAL |SLASH {}
REL {}

Figure 1.7: HPSG signs that represent recursive structures

HEAD HEAD HEAD
SUBCAT <> SUBCAT <[2]> SUBCAT[2]
C H H CI\Cn2 H A
HEAD HEAD HEAD I:HEAD| MOD :|
SUBCAT <[2]> SUBCAT <[2], [3],... [n]> SUBCAT
Head-Subject Schema Head-Complement Schema Head-Adjunct Schema

Figure 1.8: ID schemata that represent head-subject, head-complement, and head-adjunct relations

by a head word are not explicitly included in lexical entries but are modularized into a set of
principles. There are three language-independent general principles that explicitly specify these
constraints. Immediate Dominance (I1D) Principle breaks down the grammatical constructionsinto
the configurations of immediate constituency; local trees of depth one must be constructed by one
of Immediate Dominance (ID) Schemata. The ID schemata provide an abstract definition of gram-
matical relations such as head-complement, head-subject, head-adjunct, head-marker, head-filler
and the like. According to this notion of immediate constituency, other principles define the flow
of information in a global structure. The Head-Feature Principle describes the identity of the
HEAD Features between a phrase and its syntactic head. The Subcategorization Principle con-
strains the SUBCAT feature of the mother of alocal tree, which expresses the fact that a head word
subcategorizes their arguments. Other principles describe construction-specific information flow.
Head-adjunct constraints, which LTAG formalized as adjunction operations, are provided not by
principle but by the Head-Adjunct Schema; the schema represents modification of head daughter
by non-head daughter, as show in the right-hand side of Figure 1.8.

Figure 1.8 shows examples of ID grammar rules for English provided in Pollard and

17

HEAD verb
SUBCAT < >

head-subject
schema
HEAD noun [HEAD verb]
SUBCAT <> SUBCAT < NP >
‘ head-complement
we H C schema
HEAD verb [HEAD verb]
SUBCAT < [5] vP [SUBCAT<[5]>] > SUBCAT <NP, NP>
\ head-adjunct
can A H schema
HEAD adj [MODL verb] [HEAD verb]
SUBCAT < > SUBCAT <NP, NP>
always run

Head domain taken by ““can’’: [HEAD verb]

SUBCAT <
C H
HEAD noun HEAD verb
SUBCAT <> SUBCAT < NP >
H C
HEAD verb HEAD verb
SUBCAT < [5] ,vP [SUBCAT<[5] >] > SUBCAT <NP, NP>

can

Figure 1.9: HPSG parse tree for a sentence “we can always run” and the head domain taken by
“can

18

Sag (Pollard and Sag 1994). The information flow between a mother and the daughters of alo-
cal tree is represented by the boxed numericals ‘[(N! called tags that express structure-sharing;
the boxed numericals with the same number express the sharing of common values between
the two (sub-)feature structures. The Head Feature Principle is represented by structure-sharing
‘(1 between the HEAD feature structure, while the Subcategorization Principle is represented by
structure-sharing ‘(Nf in the SUBCAT features. The three schemata represent linear precedence
configuration of daughters of a local tree according to values of the SUBCAT features. The left-
hand side and center of Figure 1.8 represent head-subject and head-complement relations, which
the head takes arguments according to its SUBCAT value. The right-hand side of Figure 1.8 shows
head-adjunct relation.

Using these definitions of principles and ID schemata, we define for each word head domain,
which isanotion analogousto extended domain of locality for aword in LTAG. The head domain of
aword is defined to be a syntactic tree structure that can be derived using values of features which
are related to word's subcategorization frames (e.g, the SUBCAT, SLASH features).® Figure 1.96 is
an example of a head domain of an auxiliary “can” in a sentence “we can run.” Dueto immediate
constituency defined by the ID principle, the head domain is defined through a path from a head
word to its maximal projection, along with the siblings around the path.

1.3 HPSG-style Grammar: HPSG’s Computational Architecture

As seen in Sections 1.1 and 1.2, while LTAG developed the linguistic theory on the mathemati-
cally well-defined computational architecture, HPSG expresses a grammar with the typed feature
structures, more powerful framework which can describe any directed acyclic graph, and the set
of language-independent principles further restrict the form of grammars. We thus capture the
difference between the LTAG and the HPSG grammars in terms of 1) the difference between the
computational architecture that underlies the two formalisms and 2) the difference between the
ways of locating grammatical constraints in lexica entries, grammar rules, and principles (espe-
cialy in HPSG). Because existing studies attempted capturing these two differences at once, they
obscure the formal property of the relation between the original and the obtained grammars. In this
dissertation, werather focus on the difference between the computational architecture that underlies
the LTAG and HPSG formalisms, and then reveal the formal properties of it.

5In the work on conversion from HPSG to LTAG (Kasper et a. 1995), Kasper et al. refer these features as selector
feature.
5The value of category is presented for simplicity, and the irrelevant parts of the sign have been omitted.

19

We now define an HPSG-style grammar, the computational architecture of HPSG (Pollard and
Sag 1994), which are defined by the three general HPSG principles over the typed feature struc-
tures (Carpenter 1992). It consists of lexical entries and Immediate Dominance (ID) grammar
rules, each of which is described with typed feature structures. The greater generative power of
the underlying representation framework of HPSG allows usto obtain atrivial encoding of LTAG
in the typed feature structure, as described by Keller (Keller 1994, pp. 144-151).” However, such
a conversion cannot meet our needs because the resulting grammar is far from the one defined
in (Pollard and Sag 1994), in that the resulting grammar does not satisfy the restriction on the pro-
cessing architecture imposed by the principles in HPSG, such as immediate constituency. Hence,
we restrict the form of an HPSG-style grammar to one that follows the HPSG formalism in the
following ways. A lexical entry for a particular word must express the characteristics of the word,
such as its subcategorization frame and grammatical category. ID grammar rules must represent
the constraints on the configuration of immediate constituency and not be a construction-specific
rule defined by lexical characteristics. These restrictions enable us not only to define aformal link
between computational architectures that underlies LTAG and HPSG, but also to clarify the rela-
tionships between linguistic accounts given using LTAG and HPSG by comparing the HPSG-style
grammar converted from LTAG with HPSG.

We should note that the HPSG-style grammar we have sketched above satisfies the requirement
on the processing architecture that is assumed in implemented HPSG parsers. This means that
we can apply any HPSG parsers to the obtained HPSG-style grammar. We should note that this
property of HPSG-style grammar is also indispensable for parsing comparison between LTAG and
HPSG parsers, because in parsing comparison we run LTAG and HPSG parsers using an LTAG
grammar and the HPSG-style grammar obtained by the grammar conversion, respectively.

Note that Pollard and Sag (Pollard and Sag 1994) provide detailed linguistic specifications for
the form of feature structures and adopt (language-specific) principles, as shown in Section 1.2.
In our definition, we assume that principles are implicitly encoded in lexical entries and when we
convert an LTAG grammar to an HPSG-style grammar we do not attempt to modularize linguistic
specifications in the LTAG into the corresponding HPSG principles. In this manner, our study
aso investigates the utility of the HPSG processing architecture, which is defined by the HPSG
principles over the typed feature structure, as a means of expressing different linguistic theories
and intuitions.

Figure 1.10 illustrates an example of bottom-up parsing with an HPSG-style grammar. In the

"In their study, they simply represent a tree structure by nested lists like S-expressions in the programming language
LISP.

20

Grammar rule [sym:
Arg :
Grammar rule [Sym: } Sym: {Sym: VP}
Arg : [sym:[2]] [Arg (2|)} Arg: ()
/\ Iunify
Fymz } {Sym: J Sym: VP Sym: VP
Arg ([2])] |Arg: ‘ unify { ym: } ‘ [ym: }
]uni fy Iunify Arg : {NP) Arg : (NP)
“sym: NP} {Sym: VPJ {Sym: VP} {Sym: NP} {Sym: VP} {Sym: VP} [Sym: NP} [Sym: VPJ [Sym: VP}
Arg: ()] |Arg:{VP)] |Arg:(NP) Arg: ()] |Arg:{VP)| |Arg:{(NP) Arg: ()] |Arg:(VP)| |Arg:(NP)
we can run we can run we can run

Figure 1.10: Example of bottom-up parsing with an HPSG-style grammar

HPSG framework, a parse tree is generated by incrementally applying ID grammar rulesto lexical
entries and constructing each of the branching structures one by one, while in LTAG it is done by
composing elementary trees with the two operations. Thus, the key points in the conversion are
1) how to encode the tree structure of an elementary tree as an HPSG lexical entry, and 2) how to
emulate substitution and adjunction by 1D grammar rules. Note that there is no one-to-one corre-
spondence between elementary trees and HPSG lexical entries. This is because the head domain
defined by an HPSG lexical entry must take the form of the tree structure that can be decomposed
into immediate constituency (Figure 1.9), while the extended domain of locality defined by an
LTAG elementary tree can take arbitrary tree structure.

1.4 Grammar Resources and Parsing Techniques for LTAG and
HPSG

1.4.1 Grammar Resources and Parsing Techniques for LTAG

The LTAG and its variant formalisms have been applied to various NLP/CL applications such as
machine translation (Abeillé et a. 1990; Palmer et al. 1998), information retrieval (Chandrasekar
and Srinivas 1997), generation (Joshi 1987; McCoy et a. 1992; Stone and Doran 1997), sum-
marization (Baldwin et a. 1997), and psycholinguistic modeling (Joshi 1990; Kim et al. 1990;
Kinyon 1999). In the following paragraphs, we introduce existing grammar resources and parsing
technol ogies devel oped for the LTAG formalisms.

There are several grammars developed in the FB-LTAG formalism, including the XTAG En-
glish grammar, a large-scale English grammar (XTAG Research Group 2001) developed by the

21

XTAG Research group at the University of Pennsylvania. The XTAG Research Group has aso
developed Korean, Chinese, and Hindi grammars. Development of a large-scale French gram-
mar (Abeillé and Candito 2000) has also started at the University of Pennsylvania, and is expanded
at University of Paris 7. The XTAG group also provided a grammar development environment
called the XTAG system, which is the most complete TAG workbench currently available (Doran
et a. 2000). It includes a graphical interface (Paroubek et al. 1992), a parser (Schabes 1994), and
alexicon compiler.

Thanks to the mathematical foundation that underlies the LTAG framework, there are several
theoretical studieson parsing algorithmsfor LTAG. Some parsing algorithmsthat are originally de-
veloped for CFG are re-interpreted in the LTAG context. Examplesinclude a CKY-style bottom-up
parser (Vijay-Shanker 1987), and Earley-style top-down parsers (Schabes and Joshi 1988; Schabes
1994; Nederhof 1999), and head-driven parsers (Lavelli and Satta 1991; van Noord 1994; Sarkar
2000), and parsers based on Boolean matrix multiplication (Satta 1994; Rajasekaran and Yooseph
1998). These parsers have at most the worst-case time complexity O (n®) for input length » with the
exception of (Satta 1994; Rajasekaran and Yooseph 1998), which requires O(M (n?)) where M (k)
is the time needed to multiply two k& x k& Boolean matrices. One of other parsing algorithms that
are claimed to be empirically efficient is two-phased (or guided) parsing (Harbusch 1990; Poller
1994; Poller and Becker 1998; Yoshida et al. 1999; Barthélemy et a. 2001), which uses a CFG
extracted from the original grammar to prune invalid parse trees before using the whole constraints
of the original grammar.

1.4.2 Grammar Resources and Parsing Techniques for HPSG

The HPSG formalism has been applied to various NLP/CL applications such as dialogue trans-
lation (Kay et a. 1994), machine trandation (Copestake et a. 1995), information extrac-
tion (Yakushiji et al. 2001; Tsujii 2001), appointment scheduling (Uszkoreit et al. 1994), and
generation (Carroll et a. 1999). In the following paragraphs, we introduce existing grammar re-
sources and parsing technol ogies devel oped for the HPSG formalism.

Stanford University has been developing the English Resource Grammar (ERG), an HPSG
grammar for English, as part of the Linguistic Grammars Online (LinGO) project (Flickinger 2002).
In practical context, German (BABEL) and Japanese (JACY) HPSG-based grammars are devel oped
and used in the Verbmobil project (Kay et al. 1994). From the implemented English (ERG) and
Japanese (JACY) HPSG grammars, these groups a so attempted to extract the components that are
common across these grammars and therefore may be useful in the development of new gram-
mars, and then provided them as the Grammar Matrix (Bender et al. 2002), which is open-source

22

starter-kit for the development of new HPSG grammars. The Grammar Matrix is demonstrated for
developing Greek, Italian, Norwegian HPSG grammars. The University of Groningen has inde-
pendently developed a wide-coverage HPSG-like grammar (Alpino) (Bouma et al. 2000). Uni-
versity of Tokyo has translated the X TAG English grammar into alarge-scale HPSG-like grammar
(XHPSG) (Tateisi et a. 1998), and in paralel developed a wide-coverage underspecified HPSG-
like grammar for Japanese (SLUNG) (Mitsuishi et a. 1998), which is used in a high-accuracy
Japanese dependency analyzer (Kanayama et a. 2000). They have established a methodology for
developing large-scale grammars, the corpus-oriented grammar development (Miyao et al. 2004),
and have applied the methodology to the acquisition of robust English (Miyao et al. 2004) and
Japanese (Yoshida 2005) HPSG-like grammars. Stanford University has developed grammar de-
velopment environment called LKB (Linguistic Knowledge Builder), while University of Tokyo
uses grammar development environment called will (Imai et al. 1998) and its extension called
willex (Yakushiji et al. 2003) and Moriv.®

There are a variety of works on efficient parsing with HPSG, which allow the use of HPSG-
based processing in practical application contexts (Flickinger et al. 2000; Oepen et al. 2002). Asin
the LTAG formalism, some parsing algorithms originally designed for CFG are imported in to the
HPSG framework. Examples include a CKY-style bottom-up parser (Haas 1987) and a left-corner
parser (Tomuro and Lytinen 2001). However, due to complex encoding of linguistic features in
the typed feature structures, cost of unification is the magjor obstacle to achieving an empirically
efficient HPSG parser. In order to solve inefficiency of unification, several agorithms have been
proposed (e.g., two-phased parsing (Torisawa and Tsujii 1996; Torisawa et al. 2000; Kiefer and
Krieger 2000) and a quick check (Malouf et al. 2003) method that immediately checks unifiability
of feature structures).

8http://www-tsujii.is.s.u-tokyo.ac.jp/moriv/

23

http://www-tsujii.is.s.u-tokyo.ac.jp/moriv/

Chapter 2

Grammar Conversion from LTAG to
HPSG-style Grammar

This chapter describes in detail an agorithm for converting from LTAG to strongly equivalent
HPSG-style grammar, and discusses the correspondence between HPSG-style grammar and HPSG.
The formal proof of strong equivalence between an LTAG and the HPSG-style grammar converted
from the LTAG by the following grammar conversion is provided in Session 2.3.

2.1 Algorithm

As noted in Section 1.3, the grammatical constraints expressed in LTAG elementary trees should
be encoded in HPSG lexica entries, and substitution and adjunction should be emulated by ID
grammar rules. Thus, we propose a conversion algorithm which consists of 1) the conversion of
elementary trees into HPSG lexical entries and 2) the emulation of substitution and adjunction by
pre-determined ID grammar rules.

In the following description, we start by defining canonical elementary trees, which have a
one-to-one correspondence with HPSG lexical entries.

Definition 2.1.1 (Canonical elementary tree) Canonical elementary trees are elementary trees
that satisfy the conditions below:

YIn this dissertation, we assume that elementary trees consist of binary branching structures. A unary branching
can be regarded as a binary branching in which one daughter is the empty category, and n-ary (n > 3) branchings
can similarly be converted into binary branchings. This conversion guarantees strong equivalence by virtue of being a
one-to-one mapping.

25

Canonical elementary tree Non-canonical elementary trees
a) Violation of Condition 1 b) Violation of Condition 2

S Multi-anchored tree Tree with non-anchored subtrees

/\ S S
NPy VP N N

PN NP, VP NP| VP

A% S * N

| \ PP \Y

think | S |
look| P NP| give)
[
for¢ Non-anchored subtree

Figure 2.1: A canonical elementary tree and non-canonical elementary trees

Condition 1: A tree has only one anchor,
Condition 2: Every branching structure in a tree contains trunk nodes,

where trunk nodes (nodes with bold face in Figure 2.1) are nodes on a trunk which is a path from
an anchor to the root node (the thick linesin Figure 2.1) other than the anchor (Kasper et al. 1995).
Conditions 1 and 2 respectively guarantee that a canonical elementary tree has only one trunk and
that each branching consists of a trunk node, a leaf node, and their mother which is aso a trunk
node, as seen in the example on the left-hand side of Figure 2.1. The center and the right-hand
side of Figure 2.1 show non-canonical trees. We call a subtree of depth n(> 1) that includes no
anchor a non-anchored subtree (the right-hand side of Figure 2.1). Non-canonical elementary trees
are converted to canonical trees before converting into HPSG lexical entries by the algorithm in the
next section.

It should be noted that trunk nodes in canonical elementary trees are analogous to heads in the
HPSG formalism in each immediate constituency wherethey select a category next to be combined.
Thus acanonical elementary tree expresses the head domain defined by the lexical head. However,
we avoid using the term head instead of the term trunk because the trunk nodes do not always
have one-to-one correspondence to the notion of head in the HPSG formalism. We will discuss the
notion of head in HPSG-style grammar in Section 2.2.

26

INPUT: a canonical elementary tree T
OUTPUT: a HPSG lexical entry L

procedure convert_tree_into_lexical_entry(7)

begin
W 2= Ndepth(T)
arg := []

for ¢ := 1 to depth(7)—1
nj_1 := trunk(7T, i—1)
l; := leaf (T, 1)
d; := direct (T, 1)
t; = type(T, @)
bi = (ni_1,l;,di, t;)
arg := [b;] ® arg

end for

L := (arg, ndepth(r)-1)

return (w, L)

end

depth: returnstheinteger of depth of the anchor.
trunk: returnsthe non-terminal symbol of the trunk node.
leaf: returns the non-terminal symbol of the leaf hode
at depth i
direct: returnsthe side of the trunk node (left or right)
for the leaf node at depth 4
type: returns + when the leaf node of at depth 4
isafoot node or — when a substitution node

Figure 2.2: An algorithm for converting a canonical elementary tree T' to an HPSG lexical entry L

2.1.1 Conversion of Canonical Elementary Trees

As discussed in the previous section, when we assume the trunk nodes in a canonical elemen-
tary tree to be heads that select a category to be subcategorized next, a canonical elementary tree
expresses the head domain of the lexical word. A canonical elementary tree can be therefore de-
composed into alist of immediate constituency.

The procedure convert_tree_into_lexical_entry in Figure 2.2 presents an algorithm for
converting a canonical elementary tree 7" into an HPSG lexical entry L. Inthe agorithm, arg isa
stack of branchings b; as described by a quadruplet (n;_1,;, d;, t;) along the trunk. The parameter
n;_1 represents the mother node of the trunk node n;. The parameters i;, d; and ¢; represent the

27

NP| VP
S*
Sym: V _ Sym: symbol of atrunk node
_— Sym VP 34Sym S Leaf: symbol of aleaf node
think:| Arg:| | Leaf : S eaf— NP Dir: the direction of aleaf node relative to the trunk
Dir :right| |Dir :left Foot?: the type of aleaf node

Foot?: + Foot?: -

Figure 2.3: Converting a canonical elementary tree for “think” to an HPSG lexical entry

leaf node at a depth ; respectively, they represent the nonterminal symbol, the direction (the side
of the trunk node n; on which the leaf node is), and the type (whether the node is a foot node or
a substitution node). We call elements in this stack arguments of the word. Finally, the converted
lexical entry L isthe pair (arg, naepsn(r)—1) described by the arguments arg and the mother of the
anchor, namely, ngepen(7)—1 Where depth(T') is the depth of the tree T'.

Figure 2.3 depicts an example of conversion of a canonica elementary tree for “think,” and
shows the design of afeature structure that express an HPSG lexical entry. A canonical elementary
treeisconverted into an HPSG lexical entry by regarding leaf nodes as arguments of the anchor and
storing them in astack. The resulting feature structuresinclude the Sym feature and the Arg feature
that store the symbol 74¢.,1,(7)—1 @nd the argumentsin arg, as astack of feature structures with the
four features Sym, Leaf, Dir and Foot?, which correspond to n; 1, I;, d; and ¢;, respectively. In
parsing with the obtained HPSG-style grammar, the parser pops an element from the Arg feature to
select a node that is unifiable with that element. It follows that the node with an empty stack asits
Arg feature corresponds to the root node of theinitial tree.

2.1.2 Tree Division: Division of Non-canonical Elementary Trees

Non-canonical elementary trees are initially divided into multiple subtrees, each of which has at
most one anchor, by a procedure called tree division, as shown in Figures 2.4 and 2.5. Nodes that
mark the separation of one tree into two are called cut-off nodes. A cut-off node is marked by
an identifier to preserve the co-occurrence relation among the multiple anchors. The tree division
converts multi-anchored trees, which only violate Condition 1, into canonical trees (Figure 2.4),
while it converts trees with non-anchored subtrees into canonical trees and non-anchored subtrees

28

Multi-anchored tree

Canonical trees

‘ S
NP} VP cut off NPy VP e
- S vV PPiook_for i PPiook_for
I < treedivison ! 2N
look ¢ II’ NP lo0ko | N
cut-off nodes |
s for ¢

Figure 2.4: Dividing a multi-anchored elementary tree for “look for” into a set of subtrees, each of
which has at most one anchor.

canonical trees

S
Tree with non-anchored N
subtrees NP l VP
S
\4 PPyive)
give
NP | VP cut off I
P tree division gived
v Pp non-anchored all candidate canonical Trees without non-anchored
_| PN subtrees trees for substitution tree subtrees
giveo P| NP} PPgive P P substitution PPgive PPjve
| /\
P| NPJ

ono Ad Prextio” P, NP/ P NP,
nexto ono Ad Prextto

o break points l
substltutlo\n———\(—/ next ¢

Figure 2.5: Converting a non-anchored subtree to a set of multi-anchored trees

(Figure 2.5).

The procedure divide_tree_into_subtrees in Figure 2.6 represents an agorithm for divid-
ing anon-canonical elementary tree MT into aset of subtrees S7 . It starts by selecting one anchor
A,? and the single-anchored tree C'T' of that anchor A, which consists of the trunk nodes and their
sibling nodes, is then picked up ((1) in Figure 2.6). We traverse the path from the root node to the

2\We describe how the function select in the algorithms in this section and the next section select an anchor/a leaf
node respectively in Section 2.2.

29

INPUT: a non-canonical elementary tree MT
OUTPUT: a set of trees with at most one anchor S§7

procedure divide_tree_into_subtrees(MT')
begin
if number(MT) = 0
return {MT}

else
A := select(MT)
(CT,T) := divtree(MT, A) NED)

foreach T in 7
SS7 := divide_tree_into_subtrees(7T")
ST := SSTUST

end foreach

ST = STU{CT}

return S7

end if
end

INPUT: a non-canonical elementary tree MT
one anchor of MT A

OUTPUT: a pair of a canonical elementary tree CT
and tree fragments 7

procedure divtree(MT, A)
begin
T = ¢
for ¢ := 1 to depth(MT, A)-1
if nonleaf (arg(trunk(:)))
(MT',T) := cut(MT, arg(trunk(i))) e (2)
Address := address(trunk(i))
mark (Address, MT', T) - (3)
T =TUT
MT := MT’
end if
end for
CT = MT
return (CT,7)

end

number: returnsthe number of anchors.

select: returnsone of anchors (default: the left-most one).

depth: returnstheinteger of depth of the anchor.

trunk: returnsthe trunk node at depth ¢

arg: returns the sibling node of the trunk node.

cut: cuts off the tree at the sibling node of the trunk node and
returns a subtree whose root node is the sibling node.

nonleaf :returnstrueif not aleaf node.

address: returns address in the elementary tree.

mark: marks an address for each cut-off node.

Figure 2.6: An algorithm for dividing a non-canonical elementary tree MT' into a set of subtrees
ST, each of which has at most one anchor.

30

anchor A, cut off the sibling node® arg (trunk (4)) if it isnot aleaf node, and store the address of
the elementary tree in the cut-off node as an identifier ((2) and (3) in Figure 2.6).

2.1.3 Tree Substitution: Substitution in Non-anchored Subtrees

The non-canonical elementary trees which violate Condition 2 have non-anchored subtrees. These
non-anchored subtrees are first extracted by the algorithm in the previous section, and are then
converted into multi-anchored trees by substituting a substitution node on the branching whose
daughters do not consist of an anchor by every candidate tree for substitution, by a procedure called
tree substitution, as shown in Figures 2.5. The candidate trees for the application of this process
are selected from among all the canonical elementary trees and the ones obtained by the algorithm
in the previous section. Substituted nodes are marked as breaking points to record the origination
of these nodes. Note that non-anchored subtrees are not selected as candidates for substitution,
because their root nodes originate from internal nodes of the elementary trees. This guarantees
that the multi-anchored trees obtained by this process will satisfy Condition 2. These trees can be
converted into single-anchored trees, to which we can apply the algorithm in Section 2.1.1, by the
algorithm in the previous section.

The procedure expand_tree_into_anchored_tree in Figure 2.7 represents an agorithm
for converting a non-anchored subtree N'T' into multi-anchored trees M7 . For each branching
structure that consists of substitution nodes or foot nodes, one substitution node S is selected ((1)
in Figure 2.7). The function substitute applies a substitution to the node it of every candidate
tree which is substitutable for S((2) in Figure 2.7).

Because the candidate trees for substitution include neither non-anchored subtrees nor auxiliary
trees, the trees obtained by this process will satisfy Condition 2. When they take substitution at one
substitution node, they also satisfy Condition 1 and are canonical trees; otherwise, they are multi-
anchored trees and will be converted into canonical trees by the tree division. The resulting trees
consist only of canonical trees because the tree substitution creates multi-anchored trees without
non-anchored subtrees, which are divided into canonical trees.

2.1.4 Definition of ID Grammar Rules

In this section, we provide the definition of the grammar rules which emulate substitution and
adjunction respectively and are thus called substitution rule and adjunction rule (in Figure 2.8). In

3]t should be noted that the path from the foot node to the root node (spine: (Kasper et al. 1995)) in an auxiliary tree
must not be cut because the spine represents the chain of head signs between the root node and the foot node, which are
unified with the same internal node in the other trees.

31

INPUT: a non-anchored tree NT
QUTPUT: a set of multi-anchored trees M7

procedure expand_tree_into_anchored_tree(NT)

begin
BR := na_br(NT)
MT := {NT}
foreach BR in BR
S := select(BR) - (D
I7T := initial(S)
MMT = ¢

foreach MT in MT
TMT := substitute(MT, S, I7)--- (2)
mark (S)
MMT = TMT UMMT
end foreach
MT := MMT
end foreach
return M7T

end

na_br: returns the deepest branchings whose daughters
do not consist of an anchor.
initial: returns al candidate trees whose root node isthe
same as the leaf node.
select: returns one of leaf nodes (default: the left-most one).
substitute: causes substitution to the leaf node and
returns a set of resulting multi-anchored trees.
mark: marks the substituted node

Figure 2.7. An agorithm for converting a non-anchored subtree N7 into a set of multi-anchored
trees MT

the figure, we give rules for the case where | eft-hand daughters correspond to the trunk nodes. Of
course, there are symmetric rules for the right-hand case. These rules are independent of the input
LTAG because they do not depend on any given characteristics for the LTAG.

32

[Sym ; } [Sym : }
Arg :[2]®[4]

Arg :
Sym : [Sym: } Sym : [Sym: @}
Arg :[| Leaf l ‘ Arg : () Arg | | Leaf ‘ Arg : [4]
Dir :left substitution node Dir ~ :left foot node
Foot? :~ Foot? :+
trunk node trunk node
Right substitution rule Right adjunction rule

Figure 2.8: Grammar rules. the substitution rule and adjunction rule

Substitution rule: The Sym feature of the node to which substitution is applied must be identical
to the Leaf feature (‘[3! 4 in the left-hand side of Figure 2.8) of the trunk node. The substitution rule
percolates the tail elements (‘(2F in the left-hand side of Figure 2.8) of the Arg feature of the trunk
node to the mother in order to continue constructing the tree. The value of the Arg feature of the
node for substitution must be an empty stack (), because this node must be unified only with the
node that corresponds to the root node of theinitial tree. Thevalue®—" or “+” of the Foot? feature
explicitly determines whether the next rule to be applied is the substitution rule or the adjunction
rule.

Adjunction rule: The Sym feature of a foot hode must be identical to the Leaf feature of the
trunk node (‘3! in the right-hand side of Figure 2.8). The value of the Arg feature of the mother
node is a concatenated stack of the Arg features of both of its daughters (‘{2 and ‘(4] in the right-
hand side of Figure 2.8). This alows the parser to construct the tree which corresponds to the
adjoining tree and then to continue constructing the tree which corresponds to the adjoined tree.
Figure 2.9 shows examples of rule application. The solid lines indicate the adjoined tree (1)
and the dotted lines indicate the adjoining tree (51). The adjunction rule is applied in order to
construct the branching marked with %, where “think” takes as its argument the node having the
Sym feature’s value of S. By applying the adjunction rule, the Arg feature of the mother node B
becomes a concatenated stack of the Arg features of both 51, (8!, and a1, ‘[5]’ Note that when the
construction of 31 has been completed, the Arg feature of the trunk node C will return to its former

“Recall that the numbersin tags express only the sharing of common val ues between the (sub-)feature structures, and
hence the numbering does not convey any side effects.

33

NP| S
substitution /\
o2 adjunction NP| \Y%
NP - |
| substitution loves)
o3
N NP
e B |
v
|
NP| S he¢
substitution N
A\ S*
o4 |
NP .
| think ¢
N
|
you ¢
LTAG derivation
LSym: SJ
Arg () ol
left substitution rule
.......... B1
[Sym: @NI’} Ssym: B S
Arg () Sym :[@MSsS c
o2 i i Arg : {E?raf ;NP .
Foot? : -
what T e . .
............................ left substitution rule
[Sym: .‘@‘NP} Sym: [7] VP]
Arg : () Sym : 3]s Sym : [0S
4 (o B lofal S B8
you ootz : - JI Foot? :— |
.............. * e, right adjunction rule
Sym: V ‘ Sym: Sﬁ
Sym : [VP sym : [3]S Sym:S
. B S N . Leaf : NP
{Arg ’ < E?raf :rht L Ils?raf :Ie@ft N[} A D{iera : left A
Foot? :+ Foot? : - LFoot? : -
Nt substitution rule
think
[Sym : ENP} Sym: Vv
Arg : () <Sym:S Sym : [0S
o3 Arg : llsl_eaf]eE NI’} Leaf l NP
A Ftl)rot?-: fﬁ E(I)rol?.: ff
you ‘
love
HPSG rule applications

Figure 2.9: LTAG and HPSG parsing of the phrase “what you think he loves’
34

state (A). We can continue constructing «1 in the same way as for the case where no adjunction
rules have been applied.

2.1.5 Extension to FB-LTAG

The agorithms in Section 2.1 produce the conversion of an LTAG, and are easily extensible to
handle an FB-LTAG grammar by merely storing afeature structure for each node, together with the
symbol, in the Sym feature and Leaf feature. The grammar rules are also extended to execute the
feature structure unification done in FB-LTAG.

2.2 Correspondence between HPSG-style Grammar and HPSG

The above agorithms provide a formal link between LTAG and HPSG-style grammar, which we
defined as the computational architecture assumed in HPSG. In this section, we discuss the linguis-
tic correspondence between an HPSG-style grammar and HPSG (Pollard and Sag 1994) according
to the syntactic head, which is a central notion in HPSG. We will discuss the difference between
an HPSG-style grammar converted from an implemented LTAG grammar and HPSG in Section 3.1

Elaboration on HPSG signs In order to derive HPSG from an HPSG-style grammar that we have
obtained, we must elaborate on the sign of the HPSG-style grammar. Aswe have seenin 1.2, HPSG
provides a modular specification of linguistic generalization by using principles and 1D schemata
in the context of the lexicalist framework.®> On the other hand, our HPSG-style grammar implicitly
captures some of the principles and ID schemata of the definition in Section 1.2 in the following
way. The Immediate Dominance Principle is satisfied by the use of the ID grammar rules. In
the ID grammar rules, the Subcategorization Principle is expressed by the structure-sharing of the
Sym and Leaf features which correspond to the HEAD feature in HPSG. We should note that a
non-empty value for the Arg feature of the foot node in the adjunction rules roughly corresponds
to the SLASH feature in HPSG, which supports the Nonlocal Feature Principle. The Arg feature
thus corresponds to concatenation of the SUBCAT and SLASH features of HPSG. Other principles,
such as the Head Feature Principle, are implicitly encoded in atrunk of the tree structure of the
LTAG elementary trees. We will extract such principles in the LTAG context and subdivide the
ID grammar rules into HPSG rule schemata by analyzing feature percolation (Tateis et al. 1998).
There are the following two issues in order to further elaborate an HPSG-style grammar.

SHPSG-specific linguistic theories such as binding theory must be implemented in the obtained HPSG-style grammar
by defining additional features or special mechanisms.

35

predicative auxiliary tree modifier auxiliary tree

[NP 1] think [s that heis clever] | always [vp runj blue [Np sky]
S VP NP
P\ PN P
NP, VP Ad VP~ Adj NP+
PN oA d b A d
\Y4 S+ always) modify blue ¢ odiy

[——'§ubcategorize

Figure 2.10: Predicative auxiliary tree for “think” and modifier auxiliary trees for “always’ and
“blue”

The distinction between predicative and modifier auxiliary trees Auxiliary treesin LTAG are
of a predicative or a modifier type (Kroch 1989; Schabes and Shieber 1994), which introduces
head-complement (or head-filler) relation and head-adjunct relation, respectively. More precisely,
the former introduces a predicate that subcategorizes for a phrase of the category of its foot node,
while the latter introduces a modifying, dislocated phrase, or a complement. Thisdistinction is, in
rough terms, made by determining which daughter is the head, afoot node or atrunk node. Tateisi
et a. (Tateis et a. 1998) distinguished these trees by manually analyzing feature percolation
in auxiliary trees and by assigning HPSG rule schemata separately to each auxiliary tree® In this
dissertation, we consider that all trunk nodes are heads, that is, treat all auxiliary trees as predicative
trees, but we can manually or semi-automatically determine the above categories by providing some
linguistic cues or by analyzing feature percolation.

Head selection How we should implement the function select in Figure 2.6 that selects the
anchor A is not entirely clear. Since most multi-anchored trees represent compound expressions
or idioms, such as “look up” and “kick the bucket,” this problem can be replaced with the prob-
lem of which word of a phrase is the syntactic/semantic head. In the HPSG framework, some
of such compound expressions are handled as simplex entries as words with spaces (e.g., “look
up”) (Copestake et al. 2002). However, in some idioms, their meanings are sometimes metaphori-

The author wishes to thank Yuka Tateisi for her comments on distinction for predicative and modifier treesin her
trandation of the XTAG English grammar into an HPSG grammar

36

cal and thus non-decomposabl e into the parts of the expressions (e.g., “kick the bucket,” compared
with “take advantage of ”). Riehemann (Riehemann 2001) proposed an approach to such idiosyn-
cratic constructions, which licenses such constructions by having phrasal entries used when the
phrase are constructed by a parser. We must also consider asimilar issue to do with how we should
implement the function select in Figure 2.7 that selects the leaf node S' to be substituted. Since
elementary trees with non-anchored subtrees represent constructions that require a specification
beyond immediate dominance, such as it-clefts and equative be, this problem may be rephrased
as one of finding which leaf node takes the dominant syntactic role and should be substituted in
carrying out HPSG analysis. We currently simply select an anchor or a substitution node from the
left-most node, though we can solve these problems by using linguistic ideas such as projection.

2.3 Proof of Strong Equivalence for Grammar Conversion from
LTAG to HPSG-style Grammar

This section provides a formal proof for a strong equivalence between LTAG and an HPSG-style
grammar converted from LTAG by our grammar conversion. In what follows, we first mention an
informal sketch on how the strong equivalence is guaranteed for LTAG and the obtained HPSG-
style grammar. We then proceed the formal proof, which comprises two parts. Part one proves that
strong equivalence is guaranteed for the conversion from LTAG G to canonical LTAG G’ by the
tree division and the tree substitution. Part two proves that strong equivalence is guaranteed for the
conversion from canonical LTAG G’ to an HPSG-style grammar G”.

2.3.1 Informal Sketch on the Proof of the Strong Equivalence

In this section, we discuss how our algorithm guarantees strong equivalence between the gram-
mar it obtains and the original grammar. In the obtained grammar, the grammar rules are applied
only to those feature structures which correspond to nodes which are substitutable for/adjoinable
with the canonical elementary trees of the original LTAG because the branchings encoded in the
respective values of Arg specify the nodes to be subcategorized next. Strong equivalence also holds
for the conversion of non-canonical elementary trees. For trees that violate Condition 1, we can
distinguish the cut-off nodes from substitution nodes thanks to the identifiers, which allow recov-
ery of the co-occurrence relation between the divided trees. For trees that violate Condition 2, we
can identify those nodes to which substitution is to be applied in a combined tree because they are
marked as breaking points, and thus consider the combined tree astwo treesin the LTAG derivation.

37

NP
NP| S
substitution N
Vs adjunction \%
NP - \
| substitution loves)
Vs
N NP
B »
at O S N
N |
NP| S he
substitution AN
\Y S*
¥ NP |
N
\
you ¢
LTAG derivation
LSym: m SJ
Arg () 7
Nbstitution rule
.......... 12
[Sym: @NP} Sym: B S
Arg : () Sym : s c
Arg Leaf : NP .
PN g
what L o
........................... left substitution rule
[Sym: .‘@NP} Sym: [7] VP)
Arg : () Sym : [B]S Sym : [0S B
. Leaf : [6] NP Leaf : 2] NP|] |,,.
VAN & L oo R >
you oot? i~ Foot? : - B
................. *--.-----....,_".“r_ight adjunction rule
Sym: V Sym: 4]s
6' Sym : [7] VP sym : [BS Sym : IS
g Lol B L ﬂ o (e DN LA
Foot? :+ Foot? : - LFoot? :—
‘ Nt substitution rule
think
[Sym : ENP} Sym: Vv
Arg : () Sym : @S Sym : [MS
. . [|Leaf : [@] NP Leaf : 2] NP
A 82' AIG Dliera < left }l D?ral left
Foot? : - Foot? : -

you ‘

love

HPSG rule applications

Figure 2.11: LTAG and HPSG parsing of the phrase “what you think he loves’ (revisited)
38

We can thus avoid overgeneration by having the identifiers checked in the substitution rules, and
avoid undergeneration by substituting all candidate trees for substitution nodes in the algorithm in
Section 2.1.3.

Strong equivalence enables us to recover an LTAG derivation tree from an HPSG parse tree by
following the history of rule applications and mapping each of them to substitution or adjunction.
Let us take the case of Figure 2.11 as an example. We start by following the trunk node when the
substitution rule was applied, or the foot node when the adjunction rule was applied. We then reach
“love,” and recognize it as the anchor of an elementary tree whose root node is identical to that
of the parse tree. We then follow the path from the anchor to the root node to recognize +' and
combinations between v and other elementary trees. Since we start by finding an application of
the substitution rule, we can map it to the substitution of v° to ! by recognizing the sibling node
of the trunk node as the root node of v3 and by recursively recovering the partial derivation from
the sibling subtree. Then, the next rule is the adjunction rule (marked with %), and we find that the
node A takes adjunction. We thus remember the length of the value of the Arg feature of the node
A, and follow the trunk with handling rule applications as ones for the adjoining tree 2 until the
length of the Arg feature is equal to that for the node A. Thisisthe case at thenode C. Thisimplies
that the construction of the adjoining tree 2 is completed at the node C'. We restart the recognition
of . After handling another application of the substitution rule, we reach the root node S, and
compl ete the recognition of ~1 and thus the whole derivation tree.

2.3.2 Definitions

We first define LTAG, according to the definition of TAG given by Vijay-Shanker (Vijay-Shanker
1987). We then define a derivation tree, which is a structural description of LTAG, and introduce
the notion of strong equivalence.

We hereafter denote atree asaset of pairs (p, X) wherep € N*, which is afree monoid of the
set of natural numbers, and X € V, which isafinite set of aphabets (Gorn 1962). For example, a
treein the left-hand side of Figure 2.3 isdenoted as { (e, S), (¢- 1, NP)(e-2, VP),(e-2-1,V), (e-
2-2,5),(e-2-1-1,think)}. Aninequality p < ¢ issatisfied if and only if thereisar € N* such
that ¢ = p - r. Another inequality p < ¢ issatisfied if and only if p < gand p # q.

Definition 2.3.1 (Lexicalized Tree Adjoining Grammar (LTAG)) A lexicalized tree adjoining
grammar G is a quintuplet (X, NT, S, I, A) where ¥ and NT are a finite set of terminal sym-
bols and a finite set of nonterminal symbols, respectively, S is a distinguished nonterminal symbol
called the start symbol, and I and A are a finite set of initial trees and a finite set of auxiliary trees,

39

respectively.’

Here, an elementary tree vy € A U [isa tree whose leaf nodes are labeled by X € NT U S
or x € X, and whose internal nodes are labeled by X € NT U S. The symbol of one leaf node in
an auxiliary tree 5 € A isidentical to that of its root node, and is specially marked as a foot node.
Note that at least one leaf node, called anchor, in an elementary tree v is labeled with = € 3, and
leaf nodes other than anchors and the foot node are marked as substitution nodes.

We hereafter use the notion of an address of anode in atree. An address of atreeis a symbol
that indicates a unique node in the tree.

Next, we define a derivation for an elementary tree ~. Let us denote atree that is derived from
an elementary tree v by having substitution and adjunction into v as~’. When we produce 7/ from
an elementary treey by applying substitutions and adjunctions of several trees~;,73, ..., 7, toy at
k distinct addresses a, as, . . ., ai, the production is denoted by v — ~[a1, vi][az, V5] - - - [ak, V]
where k > 1, and [a;, v]] indicates substitution at a; of 4} if a; is a substitution node, or indicates
adjunction at a; of ~/ if a; is an internal node. This production is called a derivation for ~ if
ai, a9, . ..,ar include al addresses of the substitution nodes in v. A derivation for v without
substitution and adjunction is denoted asy’ — ¢. The set of all possible derivations D¢; for LTAG
G=(%,NT, S, 1, A)isthen denoted as follows:

D= {4 —¢€|l1<i<m,vy € AUI,~; includes no substitution node.}
U{vi = vilar, v, lag, vi,] - - lak,vi) [k > 5 > 1,0 > my v,y € AU,
ai,az,...,a include al addresses of the substitution nodesin ; }

We use the above notations to define a derivation tree, which represents the history of combinations
of treesand is a structural description of LTAG.

Definition 2.3.2 (derivation tree) A derivation tree for LTAG G = (X, NT, S, I, A), Yq, is
formed from any subset of the set of all derivations D¢ by uniquely relabeling identical elementary
trees in the derivations of the subset. A derivation tree T must satisfy the following conditions:

e Because v; can be adjoined or substituted once, -/ can appear once respectively in the |eft-
hand side and the right-hand side of derivations in YT except for the one distinguished
elementary tree g, which is the root of the derivation tree Y. The condition implies that
trees cannot be substituted or adjoined to more than one node.

"For simplicity, we omit the notion of adjoining constraints and the proof considering the adjoining constraints in
this dissertation, and then assume al internal nodes take selective adjoining constraints.

40

e - can appear once in the left-hand side of the derivation.

e The inequality i > i; > 1 is necessary to avoid cyclic applications of substitution and
adjunction among elementary trees.

Next, we give the definition of strong equivalence between two grammars G; and G2. Strong
equivalence isintuitively that the two grammars generate equivalent structural descriptions, struc-
tural description which are the most informative data structures given by GG; examples of structural
descriptions are parse trees by CFG and derivation trees by LTAG. Thefollowing definition follows
from the one by Miller (Miller 1999, p. 7).

Definition 2.3.3 (strong equivalence) Let the set of all possible structural descriptions given by
two given grammars G; and G be Tp(G1) and Th(G2). The two given grammars G, and Go
are strongly equivalent if and only if there is a bijective (i.e., one-to-one and onto) mapping froma
structural description of G1, T, € Tp(G1), toastructural description of Ga, T, € Tp(G2).

In what follows, we assume that structural descriptions of LTAG are derivation trees in which
the root node of g islabeled by the start symbol Sin the definition 2.3.2.

2.3.3 Proof for Tree Division and Tree Substitution

In this section we give a proof that strong equivalence is guaranteed for grammars before and after
the two tree transformations.

We omit the proof of the substitution procedure, because the tree substitution depicted in Fig-
ure 2.12 isexactly the same asthe one that Schabes and Waters (Schabes and Waters 1995, pp. 494—
495) defined and proved in their strong lexicalization procedure of CFG into Lexicalized Tree In-
sertion Gramma.

The tree division procedure is formalized in the following lemma.

Lemma 2.3.1 (The tree division) Let G = (X, NT,S,1,A) bean LTAG. Lety € AU I bean
elementary tree and let 1 be an internal node not on the spine with address p of ~ that is labeled
by X. We divide v at 1 and obtain two trees v*,~" as follows. Let v* be a subtree except that a
node labeled by Y ¢ NT U S is added to its root node, and let ¥ be a supertree, except that the
symbol of y is relabeled by the symbol Y ¢ NT and by marking it for substitution as shown in
Figure2.13. Define G’ = (X, NT U{Y'},S,I', A’) where I’ and A’ are created as follows:

lfyelthenl’=(I—-{y})U{y",7’tand A’ = A
Ifye AthenI’ =TU{y"}and A’ = (A — {~}) U {»*}

41

—

substitution

A O

N _/

X-rooted initial trees
Figure 2.12: Sketch for the tree substitution
y A
Mark
cut-off nodes

Cut off

A
H

Figure 2.13: Sketch for the tree division

Then, G’ is strongly equivalent to G; that is, there is a one-to-one onto mapping from the set of
derivation trees T (G’) generated by G’ to the set of derivation trees T (G) generated by G for
the same sentence.

Proof We show that there is a one-to-one mapping from a derivation tree Y¢» € Tp(G') to a
derivationtree T € Th(G).

Assume each derivation tree Y/ consists of elementary trees {v1,...,v,}, 75 € AU I for
1 < j < n. Then, we can represent the derivation tree Y ¢ by the set of derivations as shown in
the definition 2.3.2.

Because we assume that a derivation tree is rooted by an elementary tree whose symbol of the
root nodeis S, ¥ cannot appear as aroot of derivation trees. Every occurrence of vV in Y ¢ must

42

thereby accompany with v* and vice versa. In the following procedure, we construct a one-to-one
mapping from Y to T by replacing every occurrence of ~* which takes a substitution of "
with ~ in derivationsin Y.

1. When ~* ¢ {v,...,%} or v* ¢ {v1,...,7}, T includes neither ~* nor v*. Y
therefore consists of v; € (AU I — {v}) C AU I, thereis exactly the same derivation tree
Tqin TD(G).

2. When~" € {~1,...,7}, We can construct one derivation tree YT from Y, asfollows.

() Wefirst replace every occurrence of ~'* in the right-hand side of derivations with +/.
(b) We next replace every derivation whose left-hand side is either ' or ~'*.

i. When a root node with address ¢ of vV takes substitution or adjunction, a pair
of two derivations whose left-hand side is 4" and 'V is denoted as v —
Yan, - lan-1, 7l y"] and v — P le, Yl bty Vgl - - [ViDL
where £k > h > 1. Here we assume a; z pfor1 < i < h without loss of
generality. We replace these two derivations with the following derivation:

v —=Alar,] [an—1, PR 1 bagrs Vgl - [1 b,]

ii. If aroot node with address e in 4 takes neither adjunction nor substitution, we
can also replace a pair of two derivations whose left-hand side are respectively
and 1" with one derivation whose left-hand sideis~’ in asimilar way as above.

(c) By repeating the above replacements at most the number of pairs of two derivations for
~* and v, we can obtain a set of derivations Y without v* and ~'*. The replacement
in (@) is valid since v* includes both root node and foot node of ~, and thus v can
substitute or adjoin every node at which ~* does. In the procedure (b), we replace
exactly the same number of ~"* asthe procedure (a). Theresulting derivationsincluding
v isvalidin G because~’ appear only oncein the right-hand side and the left-hand side
of the derivations, respectively.

The resulting derivation tree Y is the same as T except that every occurrences of v* which
takes a substitution of v¥ with ~. Since v* which takes a substitution of v is the same as v except
that one internal node is added, this does not cause effect on the frontier string. Also, when T,
and T2, are mapped to Y} and Y% that are equivalent with each other, Y&, and Y%, are also
equivalent owing to the formulation of the above mapping.

43

On the other side, we can also construct a one-to-one onto mapping from Y to Y ¢ by replac-
ing every occurrence of v in Y by ~v* which takes a substitution of .

In this way, we can construct a one-to-one onto mapping from aderivationtree Y» € Tp(G')
to aderivationtree Y € Th(G) for the same sentence. Thisindicatesthat G isstrongly equivalent
to G'. O

2.3.4 Proof for Conversion from Canonical LTAG to HPSG-style Grammar

We prove that strong equivalence is guaranteed for a conversion from canonical LTAG G to an
HPSG-style grammar G’. We first define an HPSG parse, which is a structural description of an
HPSG-style grammar. We then prove strong equivalence by giving a bijective mapping from a
derivation tree by G to an HPSG parse by G’.

Definition 2.3.4 (HPSG-style grammar converted from LTAG) Given a canonical LTAG G =
(X, NT, S, I, A), an HPSG-style grammar G’ converted from GG is denoted by a sextuplet (X, NT',
S, Ar, As, R)whered; € Ayandé; € Ay arelexical entries converted from~y; € I and v; € A,
respectively, and R denotes the substitution and adjunction rules. §; is denoted as follows: §; =
(so, (s1, U1, di1, t1), ..., (Sk, li, di, ti)) Where k > 1, sg € X U NT isthe symbol of the mother
node of the anchor in~;, and s; € XU NT, l; € XU NT, d; € {right, left}, t; € {+,—} are
values of Sym, Leaf, Dir, and Foot? featuresin the j-th element of the Arg featurein §;. When the
length of the Arg feature of §; is 0, §; isdenoted as d; = (so, @).

First, we introduce the notion of origination for the Sym and Leaf features in HPSG lexical
entries in order to define an HPSG parse, which represents the histories of rule applications to
lexical entries and is a structural description of an HPSG-style grammar. We define the origination
of thefeaturein §; as (p,), which indicates that the value of the feature originates from the symbol
of a node with address p in ~;. Figure 2.14 shows examples of the originations for HPSG lexical
entries 9, and o, converted from LTAG elementary trees v, and ~- for “think” and “love” In the
figure, a subscript attached to an internal node in the elementary trees indicates the address of the
node.

Next, we define a rule history for ¢;, which is a history of rule applications to alexical entry
0;. We take each rule application to ¢; and its ancestor nodes as an element of the sequence of rule
applicationsfor ¢; if and only if the applied rule pops an element that originates from an element of
the Arg featurein §;. For examplein Figure 2.11, alexical entry for “think” and its ancestor nodes
A and B take the right adjunction rule, the left substitution rule, and the left substitution rulein this
order. Among these applied grammar rules, the right adjunction rule and the first left substitution

V1. Se Y- Se

/\
NP4e1 Se2 NP{e1 VPe2
NPye11 Ve22 Ve11 S*e22
| |
loved think ¢
<€22, 1> <€2,y1> <€, 11> <e1l1, B1> <e2, y>
origination ! |
bosm22ye) ey) €227) el . !
Sym:V Sym: V
6 . Sym : S Sym 6 . Sym : VP
11 Arg ¢ [| Leaf © NPT | Leaf 2+ Arg : [| Leaf @S ’
Dir :left |1 | Dir Dir :right
Foot? : - Foot? : - Foot? :+
love think

Figure 2.14: The origination for the Sym and Leaf features in the HPSG lexical entries converted
from elementary trees

rules pop an element that originates from an element of the Arg feature in the lexical entry. Thus,
applications of these grammar rules are chosen as an element of the sequence of rule applications
for the lexical entry of “think.”

Assuming that §; is denoted as the one given in definition 2.3.4, when (a;, ;) isthe origination
of I; and (b,~;,) is the origination of s;, unified with /; in the grammar rule, a sequence of rule
applications for ¢, is denoted as follows:

67{ - 6i[xi17yi1”xi27 y’bz] o [‘Tik7yik]7

where k > j > 1, (v, yi;) is (a;, 6§j) if t; = —, or (b, 0;) if t; = +. Each [z;,,y;,] ex-
presses an application of one grammar rule to the lexical entry §; and its ancestors, and assume
that these are sorted according to the order of the rule applicationsin the bottom-up manner. When
Tiy, Tig, - - - Xy, INClUde b where k > h > 1 and ¢, = + or a; wherek > j > 1, and t; = — in
the sequence of rule applications for ¢;, we call the sequence of rule applications a rule history for
d;. When the length of the Arg feature of ¢; is O, arule history for ¢; is denoted by 6, — €. For
example in Figure 2.11 and the tree naming given in Figure 2.14, rule histories for a lexical entry

45

01, 05 for “love” “think” in the HPSG parse tree can be denoted as follows:
8 — O1e-2-2,6][e - 1,685].
8y — dole - 2,01][e - 1,84]

where deltas, deltay, and deltas, are lexical entries for “what”, “you”, “love” Note that the
application of the right adjunction rule in this example is denoted by [e - 2, d;], which includes the
information in the adjoined tree ;.

Lemma 2.3.2 Given an HPSG-style grammar G’ = (3, NT, S, Ay, A4, R), arule history for
0; € Ar U Ay must be the following form.

e \When the length of the Arg feature of 9; iSO, §, — ¢
¢ \When the length of the Arg feature of §; isnot 0, and
- When§; € Ay, 5; — 57;[(11,521][&2,522} R [ak,d’-]

1k

- When §; € Ay, 5; — 51[&1,5{»1} ce [ah—l’égh,l][a 5ih][ah+1’6£h+1] . [ak,égk] where
th = +.

Proof When the length of the Arg feature of §; is 0, no rule application is assigned as arule
application for 9; because it is defined according to elements in the Arg feature. The rule history
for ¢; isthus denoted as §; — e.

When 6; € Ay, the elements in the Arg feature of ¢; keep their order until the grammar rules
consume al the elements. Thisis because both substitution and adjunction rules do not change the
order of the Arg feature, and also do not remove an element of the Arg feature without unifying it
with another node. The rule history for ¢; isthus denoted as d;[ax, 07, |[az, d;,] - - - [ak, 07, .

When 9; € A 4, the elementsin the Arg feature of ¢; keep their order during rule applications
until the grammar rules consume all the elements as in the case where §; € A;. One difference
is that there exists h sothat 1 < h < k and t, = +, in other words, it includes exactly one
element [;, where ¢;, = + that originates a foot node. The rule history for ¢§ is then denoted by
i — dilar, 05, - - - [an—1,9;, 1[b, 0,][ant1, 5§h+1] ... [ax, 0},] where t;, = +. O

By using lemma 2.3.2, we can define the set of rule historiesby G’ = (2, NT, S, A1, A4, R)
asfollows:

De = {0/ — e|1<i<m,~ € I,thelength of the Arg feature of ¢, isO }
U{0; — dilar, 0] .. a0,] [m <i<n,k>j>1,0,0;; € Ar}
U{6; — dila1, 9] - [an—1,6;, 1[b,di,][ant, 5gh+1] oo lans, 67,

’n<i7k2h217k2j217th:+75i€AA757jjEAI}

46

We use the above notations to define an HPSG parse,® which represents the history of rule appli-
cations and is a structural description of an HPSG-style grammar.

Definition 2.3.5 (HPSG parse) Given an HPSG-style grammar G’ = (X, NT, S, Ay, A4, R)
converted from GG, an HPSG parse VU isformed from a subset of the set of all rule histories D¢
by renaming identical lexical entries in the rule histories of the subset uniquely. An HPSG parse
W must satisfy the following conditions:

e 0/ whered; € A; can appear once respectively in the left-hand side and the right-hand side
of rule histories except for the one distinguished lexical entry 65 where §%; appears once in
the left-hand side of the rule history for §g.

e 0/ whered; € A4 must appear only once in the left-hand side of the rule history for ¢;.
e 1 <i; < ifortherulehistory for 6; € Ar.
o 1 <i; <iwherej # h,andi; > i, for therulehistory for §; € A 4.

The third and fourth conditions are necessary to avoid cyclic applications of grammar rules to
lexical entries.

Lemma2.3.3 Let G = (3, NT, S, I, A) be a canonical LTAG and G’ = (2, NT, S, Ay, A,
R) be an HPSG-style grammar converted from G. Then, we can map a derivation tree T by G
one-to-one onto to an HPSG parse ¥ by G'.

Proof We first show a mapping from W to a set of derivations Y, and then show that T ¢
isavalid derivation by GG. Suppose an HPSG parse satisfying definition 2.3.5. We can map it one-
to-one to a set of derivations T with the following procedure. For each 6; where §; € A4, we
eliminate [b, ¢;, |, which corresponds to an application of the adjunction rule, and insert the element
[b, 6/] to the right-hand side of the rule history for ¢;, at the position immediately after [b - =, _,]
where » = 1 or 2. Then, we obtain a set of derivations Y- by replacing ¢;; and 5§j with +;; and
y;j in the rule history for ¢; and by regarding it as the derivation for +; in T¢s. This mapping
is one-to-one because the operation pair of eliminating [b, ¢;, | and adding [b, d/] is a one-to-one
mapping.

Following the definition 2.3.2, we show that Y is a valid derivation tree by G. First, every
substitution and adjunction in the derivations in YT must be valid in G. Since the substitution

8We omit the proof showing that an HPSG parse by G' corresponds to a unique parse tree derived by G.

a7

and adjunction rules preserve the order of the elements in the Arg feature of ¢;, substitution rules
aways unify the symbol of the substitution node with the symbol of the root node of +;,. This
unification represents the same constraint as the one imposed by substitution. We can give an
analogous argument for an adjunction rule. The substitution and adjunction in the derivations in
T arethen valid in G. Second, all addresses in the substitution nodes of ~; must be included in
the derivation for ~;. Thisis apparently guaranteed by definition of the rule history for §;. Third, ~/
can appear only once respectively in the right-hand side and the left-hand side of the derivations.
This is apparently guaranteed for 4, where »; € I by definition 2.3.5, and is guaranteed for +/
where ; € A because ¢, does not appear in the right-hand side of rule histories, [b, ¢;, | appears
only oncein therule history for ¢;, and the elimination of [b, ¢;, | accompanies the addition of [, /]
once to the right-hand side of the derivation for ;, . Fourth, the elements in the right-hand side of
the derivation for v; must be [Gj,’)’,gj] where i; < 7. This is apparently guaranteed for ~; where
vi € I by definition 2.3.5, and is guaranteed for ~ where~; € A because the addition of [b,~/] for
the derivation for v;, satisfiesi; > i from definition 2.3.5.

Thefrontier string is preserved before and after thismapping from W to T v, because §; stores
the same linear precedence constraints between §; and 6; for i # j as the constraints between ~;
and ;. Thus, an HPSG parse ¥ by G’ is mapped one-to-one onto a derivation tree Y that is
vaidinG.

We can construct a mapping from Y onto an HPSG parse ¥ by inverting the procedure for
the above mapping from ¥« onto Y. The obtained ¥; isavalid HPSG parse by G’ because we
can give an analogous argument for the validity of the rule historiesin U;.

2.4 Chapter Summary

We proposed an algorithm for the conversion of grammars from an arbitrary FB-LTAG grammar
into a strongly equivalent HPSG-style grammar. Our algorithm first convert LTAG elementary trees
into a set of tree structures that have only one word and can be decomposed into immediate con-
stituency. We then convert the tree structures into HPSG feature structures by encoding the tree
structures in stacks. A set of pre-determined rules manipulates the stack to emulate substitution
and adjunction. The nature of strong equivalence guaranteed by the grammar conversion enables
us to obtain parsing results of an LTAG grammar from parsing results of the HPSG-style grammar
obtained by conversion. The definition of strong equivalence and a formal proof on the strong
equivalence between the original and obtained grammars are also provided. The obtained gram-
mar successfully abstracted away surface differences on computation devices that underlie the two

48

formalisms. Our method thus enables the sharing of LTAG resources with the HPSG community,
the application of HPSG technologies to LTAG grammars, and the clarification of the differences
between linguistic analysis according to the two grammar formalisms.

49

Chapter 3

Experiments on Collaboration between
the LTAG and HPSG formalisms

This chapter demonstrates applications of grammar conversion to collaboration between the
LTAG and HPSG formalisms. Section 3.1 shows experiments on grammar resource sharing, which
converts a sizable LTAG grammar into an HPSG-style grammar, and shows specification of the
obtained HPSG-style grammar. Section 3.2 conducts comparison between parsersfor the LTAG and
HPSG formalisms, and clarifies their algorithmic differences that cause performance difference.

3.1 Experiments on Grammar Resource Sharing

We applied our conversion algorithm to the latest version of the XTAG English gram-
mar (XTAG Research Group 2001),* a large-scale LTAG grammar for English. We successfully
converted all elementary trees® in the X TAG English grammar to HPSG lexical entries. Table 3.1
shows the classification of the elementary trees of the XTAG English grammar according to the
conditions we introduced in Section 2.1. In thetable, A shows the number of canonical elementary
trees, while 3, C, and D respectively show the number of trees that violate only Condition 1, only
Condition 2, and both conditions. The second row shows the number of the obtained HPSG lexical
entries converted from the LTAG elementary trees.

"We used the grammar attached to the |atest distribution of the LTAG parser which we used in the parsing experiment.
Thisparser isavailable at: ftp://ftp.cis.upenn.edu/pub/xtag/lem/lem-0.14.0.tgz

2These elementary trees should more strictly be called elementary tree templates. That is, elementary trees are
abstracted from lexicalized trees, and one elementary tree template is defined for one syntactic construction, which is
assigned to a number of words.

51

ftp://ftp.cis.upenn.edu/pub/xtag/lem/lem-0.14.0.tgz

Table 3.1: Classification of elementary trees in the XTAG English grammar (LTAG) and lexical
entries converted from them (HPSG)

Grammar A B C D Total

LTAG 326 763 54 50 1,193
HPSG 326 1,989 1,083 2474 5,872

Table 3.2: The classification of the non-canonical elementary trees in Table 3.1: multi-anchored
trees (corresponding to 15)

Construction # of trees
Compound expressions 413
Verb with PP 194
Idioms 140
Others 16
Total 763

Table 3.2 shows how multi-anchored elementary trees are employed in the X TAG English gram-
mar. Thetable showsthat they are mainly used for compound expressionsor idioms. Although such
multi-word expressions are reported to be an important issue in the HPSG formalism (Riehemann
2001; Copestake et a. 2002), the obtained grammar is able to handle them when multi-anchored
trees that represent multi-word expressions are converted into multiple lexical entries. Another
case of multi-anchored trees is multi-anchored trees for verbs that take a prepositiona phrase as
their complement, in which a preposition is specified as another anchor. Such a case is shown in
Figure 3.1.3 The obtained grammar expresses this construction by cut-off nodesto require specified
subtrees. In linguistic specifications in HPSG, on the other hand, such constraints are expressed
by having a PFORM feature, which takes the values that represent the type of the corresponding
prepositional phrase. This HPSG account seems to be consistent with the obtained grammar, that
is, the LTAG analysis.

Table 3.3 shows the grammatical phenomena represented by elementary trees with non-

3We borrow examples in this section from elementary trees included in the current version of the XTAG English
grammar (XTAG Research Group 2001). For simplicity, we omit some leaf node anchored by an empty category and an
internal node that has such aleaf node.

52

[ne 1] give [Np a gift] to [Ne hissister] [nP 1] depend on [Ne you]

S

N
NP| VP

Figure 3.1: Non-canonical elementary trees for verbs that take a PP complement (the preposition
is specified as another anchor)

Table 3.3: The classification of the non-canonical elementary trees in Table 3.1: trees with non-
anchored subtrees (corresponding to C U D)

Construction # of trees

Verb with PP 85
It-cleft 12
Others 7
Total 104

anchored subtrees. These elementary trees express constructions requiring specifications beyond
immediate dominance. As we can seein Table 3.1 (C U D), these trees are expanded to include
quite a large number of lexical entries. This result leads us to expect that these constructions
might be difficult to handle in the standard HPSG formalism. The most common case of such
constructions is single-anchored elementary trees for verbs that take a prepositional phrase as their
complements. These elementary trees have non-anchored subtrees that express the expanded PP
structure (Figure 3.2) (see also discussion on PP complement verbs (XTAG Research Group 2001,
pp. 117-121)). This construction allows the extraction of the object of the preposition, and ex-
presses the verb taking the object of the preposition as its argument rather than taking the PP as
shown in Figure 3.2. In the HPSG formalism, on the other hand, this NP extraction is explained
by using the SLASH feature, and the predicate-argument relation between the verb and the object

53

[ne 1] glance [P over] [ne the papers) [ne What] did [ne you] glance [P over]?

NP

argument

Figure 3.2: A non-canonical elementary tree for averb that takes PP complement and its syntactic
aternation of wh-moved object of aP

It was [ad fortunately] [np that John won the prize]

S

/\
NP VP

I S
N Vv VP

L

ito waso v Ad! S|

&

Figure 3.3: A non-canonical elementary tree that expresses it-cleft without gap

of the preposition is expressed by linking the argument in the predicative-argument structure (the
CONTENT feature) with the object of the preposition. This construction is hence explained dif-
ferently in LTAG and HPSG. Further case is akind of it-clefts without gaps (Figure 3.3) (see also
discussion on it-clefts (XTAG Research Group 2001, pp. 122-123)). These structures are handled
as adjunct extraction in HPSG (Pollard and Sag 1994, pp. 384-388), which allow interaction be-
tween extracted adjuncts (e.g., prepositional phrases and adverbs) and their modifiees through the
SLASH feature of the modifiees.

As exemplified by these cases, the treatment of some linguistic phenomena in the obtained

HPSG-style grammar is analogous to the one employed in the HPSG formalism, especially in the
way to specify a syntactic structure taken by a node subcategorized by a trunk node (or a head in
HPSG). However, these grammars differ in the treatment of some type of unbounded dependency,
which conveys dependency beyond the thelocality normally assumed in LTAG. Further elaboration
would be necessary for the conversion of el ementary trees that include such convoluted unbounded
dependencies.

3.2 Experiments on Parsing Comparison

In this section, we perform a comparison between LTAG and HPSG parsers based on generic pars-
ing techniques. As described in Introduction, we focus on two generic parsing techniques, namely,
dynamic programming (Sarkar 2000; Haas 1987) and CFG filtering (Harbusch 1990; Poller 1994;
Torisawaand Tsujii 1996; Poller and Becker 1998; Torisawa et a. 2000; Kiefer and Krieger 2000).

In what follows, we introduce dynamic programming and CFG filtering in Sections 3.2.1
and 3.2.2, respectively, and also review how these techniques have been employed in parsers for
LTAG and HPSG. We then compare LTAG and HPSG parsers in Section 3.2.3 and 3.2.4, respec-
tively. Since dynamic programming forms the basis of most contemporary parsing techniques, a
comparison of parsersusing it allows us to roughly grasp the difference between the performance
of LTAG and HPSG parsers. Since the impact of CFG filtering for LTAG is quite different from
that for HPSG, CFG filtering can be a good material for demonstrating our methodology towards
improving generic parsing techniques through parsing comparison. After showing each set of ex-
periments, we also identify the algorithmic difference between the LTAG and HPSG parsers that
causes performance difference, and then suggest the way of improving generic parsing techniques.

3.2.1 Dynamic Programming Techniques

The LTAG and HPSG parsers with dynamic programming used in our experiments (van Noord
1994; Haas 1987) perform factoring, a common-sense parsing technique that avoids generating
duplicate equivalent partial parsetrees. In the following sections, we briefly describe how factoring
isaccomplished in parsers for the two formalisms.

Head-corner parser for LTAG

One of the LTAG parsers used in our experiments is a head-corner LTAG parser (Sarkar 2000).
Its parsing algorithm is a chart-based variant of van Noord's (van Noord 1994). The parser uses a

55

Sl:run S3: run Sh: canrun S7: wecanrun

a2 S o2 S o2 S o2 °g?3
predict NPy VP NP} VP’ NPy VP’ NPy VP
\Y \% Y \%
f | | |
run’® run run run
. . Accept
p‘red}/ predlc/ oy S
Bl vp Bl'vp’ ol Np al’Np' /}P\
< N | | NP V VP
Vo VPib-m Vo VP N --» N | |
b | 1 | N %
can can Owel we | |
S4-1: $4-2: can S6-lwe S6-2:we , Ve can run,

Figure 3.4: Example of head-corner parsing for an LTAG grammar

data structure called an agenda. The agenda stores states to be processed. A state is represented
by a quintuplet consisting of an elementary tree, its root node, its processing node, a span of the
foot node over the input, and a span of the tree over the input, which denote the processed and
unprocessed parts of the tree.

Figure 3.4 depicts the process of head-corner parsing for the sentence “we can run.” In the
figure, nodes in bold face, arrows in states, arrows between states,* and superscripts (subscripts)
of processing nodes (foot nodes) respectively indicate processing nodes, directions of processing,
relations between the states, and spans of the trees (the foot nodes) over the input string. 1n head-
corner parsing, the parser traverses a tree from one leaf node called the head-corner to the root
node. Thistreetraversa is called head-corner traversal. During head-corner traversal, the parser
recognizes the siblings of the processing node and possible adjunctions at this node. In Figure 3.4,
the parser first performs prediction, which pushes into the agenda a new state of an initial tree a1
whose root node matches the symbol S corresponding to the sentence (state S1 in Figure 3.4). The
parser proceeds in a bottom-up manner from the head-corner “run” to S by pushing into the agenda
new states which are generated by moving the processing nodes of states in the agenda, until the

“Dotted arrows between statesimply that there is at least one intermediate states between them.

56

Atriangular table

El EI ‘j El E5
we 7~ we) we
E2| « ‘ E2 | E47 ‘ E2 | E4
can can can
E3/ E3 E3
run run run
Grammar rule E{ym: }
rg :
ES5
B8 @ B B
unify
) b B | i%?mf N) o e]
o o, ity o unity 9 9
] o] g e]] e] B n] et e)
we can run we can run we can run

Figure 3.5: Example of CKY-style parsing for an HPSG grammar

processing nodes reach to the root node and recognizes the elementary