
• The amount of text has been increasing
• Microblog posts via smarphones (Twitter)
• Online communication (,)

• Models focus on accuracy and become slower
• The efficient neural methods are only relatively

efficient and much slower than classical methods

Two-stage classification

We compare Jagger (proposal) with the learning-based baselines using two dictioinaries on two common datasets
•Baselines: search-based method [Kudo+ 2004] (MeCab 0.996, Vibrato 0.5.0), classification-based method [Neubig+ 2011] (Vaporetto 0.6.2)
•Dictonaries: mecab-jumandic-5.1 (475,716 words) and mecab-jumandic-7.0 (702,358 words; augmented from Wikipedia words)

•Let’s make the fastest method more accurate (instead of making the most accurate method slightly more efficient)
for Japanese morphological analysis (word segmentation, POS tagging, and lemmatization; latter two as tagging)

Back to Patterns:
Efficient Japanese Morphological Analysis with Feature-Sequence Trie

Naoki Yoshinaga (Institute of Industrial Science, The University Tokyo)
Code in C++ (<1000 lines): https://www.tkl.iis.u-tokyo.ac.jp/~ynaga/jagger/ License: GPLv2, LGPLv2.1, BSD

Background:

Jagger (proposal):

Evaluation:

Method

Kyoto (Kyoto-University Text Corpus, newspaper) KWDLC (Kyoto-University Web Documents Lead Corpus, Web)
dict: jumandic-5.1 dict: jumandic-7.0 dict: jumandic-5.1 dict: jumandic-7.0

speed
[sents/s]

mem
[MiB]

seg
(F1)

POS
(F1)

speed
[sents/s]

mem
[MiB]

seg
(F1)

POS
(F1)

speed
[sents/s]

mem
[MiB]

seg
(F1)

POS
(F1)

speed
[sents/s]

mem
[MiB]

seg
(F1)

POS
(F1)

MeCab 66,455 55.81 98.68 95.97 59,453 77.98 98.37 96.10 92,110 53.88 97.13 94.30 81,598 76.38 97.99 95.62
Vibrato 142,983 97.75 - - 111,367 164.20 - - 190,703 97.92 - - 146,235 163.99 - -
Vaporetto 117,767 658.80 98.94 96.92 105,316 828.85 99.08 97.05 200,823 642.63 97.35 94.08 174,900 842.40 97.53 94.68
Jagger 1,007,344 26.39 98.73 96.55 974,316 35.09 98.68 96.57 1,524,305 28.89 97.17 94.20 1,503,424 40.22 97.60 94.63

Jagger is 7-16x faster than baselines with 1/2 to 1/20 as much memory, while achieving comparable accuracy

趣 味0 1 2

の な3 4

⼈ ADJ8 9

い 11 12 13る 。

。 15

<趣味, NOUN>

<の, ADP>
<の, SCONJ>

<⼈, NUM>

<。, PUNCT>

<い, AUX>

<いる, AUX>

<いる, VERB>

14

な い5 6

<⼈, NOUN>

が 10

<な, AUX>
<ない, ADJ>ADP 7

<が, ADP>

ADP

Feature-sequence trie (excerpted)

Word POS (level 1)Pattern

の|な
ない|_ADP
⼈|_ADJ
が|
いる|。_ADP
。|

趣味|
の
ない
⼈
が
いる
。

趣味
ADP
ADJ
NOUN
ADP
VERB
PUNCT

NOUN <ない, AUX>

shumi

の
no nai hito ga iru

ない⼈がいる。趣味
.

<趣, NOUN>

Because the accuracies are becoming saturated on NLP benchmark datasets with a larger foundation model,
researchers may want to set diverse goals based on underrepresented metrics besides accuracy (e.g., efficiency)

Message to researchers

Target task in this paper: Japanese morphological analysis

DP to find global argmax
Search-based [Kudo+ 2004] Classification-based [Neubig+ 2011]

東京
[NOUN]

都
[Suffix]

東
[NOUN]

京都
[NOUN]

京
[NOUN]

東

[N]

segmentation:
(binary)

POS tagging:
(multiclass)

[Suffix]

0 1

| 京 都 |

東 京 都 |

perform expensive argmax operations over class-wise feature weights

Idea:

Issue: How to obtain reliable patterns?

solution:

Classical methods are still used to process
SNS posts in sociolinguitics and marketing

Bypass expensive argmax operations via patterns
• Assume morphological analysis as single multiclass

classification (where to segment and what to tag)
• Segment and tag words by greedily applying patterns

inspired by longest-matching for word segmentation

Extract pattens as learning-based methods do
• Design a pattern template from feature templates of

learning-based methods [Kudo+ 2004, Neubig+ 2011] as:
posterior contexts + a previous tag

• Use the training data and a dictionary to extract
patterns by frequency (offline argmax)

Keep only minimum patterns for the same segmentation
offsets and tags to avoid extra matching to features

Method
Kyoto KWDLC

speed
[sents/s]

mem
[MiB]

seg
(F1)

POS
(F1)

speed
[sents/s]

mem
[MiB]

seg
(F1)

POS
(F1)

Juman++v2* 5384 300.80 99.37 97.74 7753 290.05 98.37 96.42
Jagger 974,316 35.09 98.68 96.57 1,503,424 40.22 97.60 94.63

180x faster than sota neural method, with 1-2% loss in accuracy
(* Juman++ uses more dictionary words and RNN trained on Web text)

argmax argmax

argmax argmax

Method
KWDLCàKyoto KyotoàKWDLC
seg (F1) POS (F1) seg (F1) POS (F1)

MeCab 97.90 94.82 97.78 94.48
Vaporetto 95.76 91.31 97.05 92.72
Jagger 97.25 93.30 97.22 93.12

Jagger is the fastest in segmentation
and accurate in cross-domain settings

Need for speed-intensive apparoach to NLP

Method (word
segmentation)

KWDLC (Web)
speed
[sents/s]

mem
[MiB]

MeCab 62,495 40.52
Vibrato 121,375 163.92
Vaporetto 366,119 283.49
Jagger 1,942,477 21.05
Sentencepiece, 8k 150,962 9.05

The amount of data is increasing, whereas NLP models become inefficient (larger and slower)

A remarkably simple yet accurate pattern-based method for morphological analysis

Jagger can process 1,000,000 sents/s with accuracy comparable to learning-based baselines

