Back to Patterns:

Efficient ONOPHOLOGICAL Analysis with Feature-Sequence Trie

Naoki Yoshinaga

Institute of Industrial Science, The University of Tokyo

Whereas data is increasing, models become slower

- Text data has been increasing since the birth of the Web
 - SNS posts 🈏 via smartphones
 - Communication via zoom/ slack

- NLP models become slower, focusing on accuracy
 - *Efficient* neural methods are only *relatively efficient* and are not fast

Implementation of Japanese Morphological Analyzer (MA)	Speed [sents/s]						
Juman [Kurohashi+ 1994]	8802]					
MeCab [Kudo+ 2004]	52410	non-neural					
KyTea [Neubig+ 2011]	4892]					
Juman++V1 [Morita+ 2015]	16 <mark>4803</mark>	neural					
Juman++V2 [Tolmachev+ 2018]	4803						
[Tolmachev+ 2018]							

The outdated yet *sota efficient* methods have been used for ages to process the increasing textual data for sociolinguistics and marketing

Proposal: Pattern-based method for Japanese MA

- **Approach**: making pattern-based methods more accurate, instead of making neural methods more efficient
- **Proposal:** Pattern-based <u>Japanese morphological analysis (MA)</u> word segmentation, POS tagging, lemmatization
 - Regard segmentation and tagging as multi-class classifciation problem

• Greedily solve this classification problem from left to right using patterns extracted from the training data and a dictionary

Avoid expensive argmax operations used in learning-based methods

Results (excerpt)

- Compare our method (Jagger) to sota *efficient* learning-based methods (MeCab, Vibrato, Vaporetto) using the same dictionary
 - Environments: M2 MacBook Air with a 3.5-GHz CPU and 24-GB RAM

	Kyoto-U. Text Corpus (news)			Kyoto-U. Web Doc. Leads Corpus				
Method	speed [sent/s]	mem [MiB]	seg (F ₁)	POS (F ₁)	speed [sent/s]	mem [MiB]	seg (F ₁)	POS (F ₁)
MeCab	66,455	55.81	98.68	95.97	92,110	53.88	97.13	94.30
Vibrato	142,983	97.75	-	-	190,703	97.92	-	-
Vaporetto	117,767	658.80	98.94	96.92	200,823	642.63	97.35	94.08
Jagger	1,007,344	26.39	98.73	96.55	1,524,305	28.89	97.17	94.20

Jagger processes 1M sents/s with accuracy comparable to baselines

Takeaways

- Since accuracies are becoming saturated on NLP benchmarks, let's focus more on underrepresented metrics, *e.g.*, efficiency
- Back to Patterns: Patterns are more powerful than you think
 - It can rival learning-based methods in Japanese MA in terms of accuracy, and is 7-16x faster with 1/2-1/20 memory footprint
- Take a speed-intensive approach to absolute efficiency in NLP
 - Making very slow neural methods (slightly) fast seems uncompelling
 - Making a fast pattern-based method more accurate is compelling

Code: http://www.tkl.iis.u-tokyo.ac.jp/~ynaga/jagger/