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Abstract

This paper proposes a method of con-
structing an accurate probabilistic subcat-
egorization (SCF) lexicon for a lexicalized
grammar extracted from a treebank. We
employ a latent variable model to smooth
co-occurrence probabilities between verbs
and SCF types in the extracted lexicalized
grammar. We applied our method to a verb
SCF lexicon of an HPSG grammar acquired
from the Penn Treebank. Experimental re-
sults show that probabilistic SCF lexicons
obtained by our model achieved a lower
test-set perplexity against ones obtained by
a naive smoothing model using twice as
large training data.

1 Introduction

This paper proposes a smoothing model for prob-
abilistic subcategorization (SCF) lexicons of lex-
icalized grammars acquired from corpora. Here,
an SCF lexicon consists of pairs of words and lex-
ical (SCF) types (e.g, tree family), from which
individual lexical entry templates are derived
by lexical rules (Jackendoff, 1975; Pollard and
Sag, 1994) (e.g., metarules: Becker (2000) and
Prolo (2002)).1 Recently, the corpus-oriented
approaches have enabled us to acquire wide-
coverage lexicalized grammars from large tree-
banks (Xia, 1999; Chen and Vijay-Shanker, 2000;
Chiang, 2000; Hockenmaier and Steedman, 2002;

1In the linguistic literature, the term ‘lexical rules’ is
used to define either syntactic transformations (e.g., wh-
movement), diathesis alternations (e.g., dative shift) or both.
In this paper, we use the term lexical rules to define syntactic
transformations among lexical entry templates that belong to
the same lexical type.

Cahill et al., 2002; Frank et al., 2003; Miyao et
al., 2005). However, a great workload is required
to develop such large treebanks for languages or
domains where a base bracketed corpus (e.g., the
Penn Treebank: Marcus et al. (1993)) is not avail-
able. When the size of the source treebank is
small, we encounter the serious problem of a lack
of lexical entries (unseen word-template pairs).

Previous studies investigated unseen word-
template pairs in lexicalized grammars acquired
from the Penn Treebank (Xia, 1999; Chen and
Vijay-Shanker, 2000; Hockenmaier and Steedman,
2002; Miyao et al., 2005); the words can be seen
(sw) or unseen (uw), and similarly, the templates
can be seen (st) or unseen (ut), so that there are
four types of unseen pairs. All the studies reported
that unseen (sw, st) pairs caused the major problem
in lexical coverage.

This paper focuses on a verb SCF lexicon,
and employs a latent variable model (Hofmann,
2001) to smooth co-occurrence probabilities be-
tween verbs and SCF types acquired from small-
sized corpora. If we can obtain such an accurate
probabilistic SCF lexicon, we can construct a wide-
coverage SCF lexicon by setting the threshold of
the probabilities (Yoshinaga, 2004). Alternatively
we can directly use the acquired probabilistic lex-
icon in supertagging (Chen et al., 2006) and prob-
abilistic parsing (Miyao et al., 2005; Ninomiya et
al., 2005).

We applied our method to a verb SCF lexicon of
an HPSG grammar acquired from the Penn Tree-
bank (Miyao et al., 2005; Nakanishi et al., 2004).
The acquired probabilistic SCF lexicons were more
accurate than ones acquired by a naive smoothing
model.



2 Related Work

In this section, we first describe previous ap-
proaches to the problem of unseen word-template
pairs in the lexicalized grammars acquired from
treebanks. We then address smoothing methods
for SCF lexicons acquired from raw corpora.

2.1 Predicting unseen word-template pairs
for lexicalized grammars

The problem of missing lexical entries has been
recognized as one of the major problems in lexi-
calized grammars acquired from treebanks, and a
number of researchers attempted to predict unseen
lexical entries. In the following, we describe pre-
vious methods of predicting unseen (uw, st) and
(sw, st) pairs, respectively.2

Chiang (2000), Hockenmaier and Steedman
(2002) and Miyao et al. (2005) used a simple
smoothing method to predict unseen (uw, st) pairs.
They regarded infrequent words in the source tree-
bank as unknown words, and assigned the lexical
entry templates acquired for these words to un-
known words. This treatment of unknown words
substantially improved the lexical coverage, prob-
ably because infrequent words are likely to take
only a few lexical entry templates (e.g., those for
transitive verbs).

There are two types of approaches to predict
unseen (sw, st) pairs. The first type of ap-
proaches (Chen and Vijay-Shanker, 2000; Nakan-
ishi et al., 2004; Chen et al., 2006) exploited
an organization of lexical entry templates stud-
ied in the linguistic literature; namely, individual
lexical entry templates are grouped in terms of
higher-level lexical (SCF) types. When a word
takes a lexical entry template that belongs to a
certain lexical type t, it should take all the other
lexical entry templates that belong to t. To
identify a set of lexical entry templates that be-
long to the same lexical type, Chen and Vijay-
Shanker (2000) associated the lexical entry tem-
plates with tree families in a manually-tailored
LTAG (The XTAG Research Group, 1995), Chen

2Most of the previous studies attempted to avoid the prob-
lem of unseen (sw, ut) and (uw, ut) pairs by modifying the
source treebank so as to generalize the resulting grammar;
for example, Chen and Vijay-Shanker (2000) used a compact
label set instead of one given in the original treebank. Nakan-
ishi et al. (2004) predicted unseen (sw, ut) and (uw, ut) pairs
for a given lexicalized grammar by newly creating unseen lex-
ical entry templates using manually defined lexical rules.

et al. (2006) converted the lexical entry templates
into linguistically-motivated feature vectors, and
Nakanishi et al. (2004) manually defined lexical
rules. These methods, however, just translate the
problem of unseen word-template pairs into the
problem of unseen word-type pairs, and does not
predict any unseen word-type pairs. We will here-
after refer to four types of unseen word-type pairs
by (sw, sT), (sw, uT), (uw, sT), and (uw, uT) where
sT/uT stand for seen/unseen lexical types.

Another type of the approaches has been taken
by Hara et al. (2002) and Chen et al. (2006) to pre-
dict unseen (sw, st) pairs. Hara et al. (2002) con-
ducted a hard clustering (Forgy, 1965) of words ac-
cording to their lexical entry templates in order to
find classes of words that take the same lexical en-
try templates. It will be difficult for the hard clus-
tering method to appropriately classify polysemic
verbs, which take several lexical types. Chen et
al. (2006) performed a clustering of lexical entry
templates according to words that take those tem-
plates in order to find lexical entry templates that
belong to the same tree family. They reported that
it was difficult to predict infrequent lexical entry
templates by their method. These studies directly
encode word-template pairs into vectors for clus-
tering, which will suffer from the data sparseness
problem.

In this study, we focus on probabilistic model-
ing of unseen word-type pairs in the lexicalized
grammars, since we can associate lexical entry
templates with lexical types by using the afore-
mentioned methods (Chen and Vijay-Shanker,
2000; Nakanishi et al., 2004; Chen et al., 2006).
This reduces the number of parameters in the prob-
abilistic models drastically, which will make it
easier to estimate an accurate probabilistic model
from sparse data.

2.2 Predicting unseen word-SCF pairs for
pre-defined SCF types

There are some studies on smoothing SCF lex-
icons acquired for pre-defined SCF types from
raw corpora (Korhonen, 2002; Yoshinaga, 2004).
These studies aimed at predicting unseen (sw, sT)
pairs for the acquired SCF lexicons. Korhonen
(2002) first semi-automatically determined verb
semantic classes using Levin’s verb classifica-
tion (Levin, 1993) and WordNet (Fellbaum, 1998),
and then employed SCF distributions for represen-
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Figure 1: Probabilistic latent semantic analysis of
a co-occurrence between words and SCFs

tative verbs in each obtained verb class to calculate
accurate back-off estimates for the verbs in that
class. Yoshinaga (2004) conducted clustering of
verbs according to their SCF confidence vectors,
and then used the resulting classes to predict pos-
sible SCFs. Both studies successfully predicted un-
seen word-type pairs for the pre-defined SCF types.

3 PLSA-based Probabilistic SCF Lexicon

This section first applies the probabilistic latent se-
mantic analysis (PLSA: Hofmann (2001)) to co-
occurrences between verbs and SCFs, and then de-
scribes a PLSA-based smoothing model to estimate
the co-occurrence probabilities.

3.1 PLSA to model co-occurrences between
verbs and SCF types

We employ the probabilistic latent semantic anal-
ysis to model co-occurrences between words and
SCF types, where the latent variables are classes
whose members have the same SCF distribution.
Our modeling is inspired by the studies by Schulte
im Walde and Brew (2002) and Korhonen et al.
(2003), which demonstrated that a semantic clas-
sification of verbs can be obtained by clustering
verbs according to their SCF distributions.3 The
PLSA is suitable for this task since it performs a
kind of soft clustering, which can naturally handle
highly polysemic nature of verbs.

We assume that a lexicon of a lexicalized gram-
mar is acquired from a source treebank. Let the
conditional probability that a word w ∈ W ap-
pears as a member of a latent class c ∈ C be
p(c|w), and each latent class c ∈ C takes an SCF

s ∈ S with a conditional probability p(s|c). Here,
W and S are a set of words and lexical types
seen in the source treebank. When we assume that
a word w occurs with a probability p(w), a co-
occurrence probability between w and s, p(w, s),

3Although a comparison between classes obtained by our
method with those obtained by their methods must be inter-
esting, we focus on the effect of smoothing in this paper.

is given by:

p(w, s) = p(w)
∑
c∈C

p(c|w)p(s|c).

Figure 1 shows our SCF modeling. This genera-
tive model has a smoothing effect since the number
of free parameters becomes smaller than a simple
tabulation model, which directly computes p(w, s)
from the observed frequency, by setting the num-
ber of the latent variables to a small value.

We then apply a variant of the Expectation Max-
imization (EM) algorithm (Dempster et al., 1997)
called tempered EM (Hofmann, 2001) to estimate
parameters of this model. In what follows, We first
derive the update formulas for the parameters in
our model by the EM algorithm, and then explain
the tempered EM algorithm.

We assume that the set of parameters θt at the t-
th iteration is updated to θt+1 at the next iteration,
and refer to the individual parameters at the t-th
iteration by pθt(·). The update formulas for the
individual parameters are derived by constrained
optimization of Q(θ, θt), which defined by

Q(θ, θt) =
∑

w∈W

∑
s∈S

n(w, s)
∑
c∈C

pθt(c|w, s)

× log[pθ(w)
∑
c∈C

pθ(c|w)pθ(s|c)](1)

where

pθt(c|w, s) =
pθt(c|w)pθt(s|c)∑

c∈C pθt(c|w)pθt(s|c)
and n(w, s) is the observed frequency of a co-
occurrence between w and s in the source tree-
bank. Using the Lagrange multiplier method, we
obtain the updated parameters θ = θt+1 which
maximize the Q-function in Equation 1 as follows:

pθt+1(c|w) =
∑

s∈S n(w, s)pθt(c|w, s)
n(w)

,

pθt+1(s|c) =
∑

w∈W n(w, s)pθt(c|w, s)∑
w∈W

∑
s∈S n(w, s)pθt(c|w, s)

,

pθt+1(w) =
n(w)∑

w∈W n(w)

where n(w) is the observed frequency of a word w
in the source treebank.

The tempered EM is closely related to determin-
istic annealing (Rose et al., 1990), and introduces
an inverse computational temperature β to the EM



algorithm to reduce the sensitivity to local optima
and to avoid overfitting. The update formulas for
the tempered EM are obtained by replacing pθt in
the original formulas by the following equation4:

pθt(c|w, s) =
[pθt(c|w)pθt(s|c)]β∑

c∈C [pθt(c|w)pθt(s|c)]β .

We follow Hofmann’s approach (Hofmann, 2001)
to determine the optimal value of β. We initialize
β to 1 and run the EM iterations with early stop-
ping (as long as the performance on held-out data
improves). We then rescale β by a factor η (= 0.5,
in the following experiments) and again run the
EM iterations with early stopping. We repeat this
rescaling until it no longer improves the result.

3.2 Smoothing model for SCF lexicons

We then use the PLSA model described in the
previous section to obtain accurate estimates for
the co-occurrence probabilities between words and
SCFs. In this study, we focus on smoothing co-
occurrence probabilities of word-type pairs for
seen SCF types, (sw, sT) and (uw, sT). Acquisi-
tion of unseen SCF types (and corresponding tem-
plates) is beyond the scope of this study.

In what follows, we first mention a smoothing
model for co-occurrence probabilities of (uw, sT)
pairs, and then describe a smoothing model for co-
occurrence probabilities of (sw, sT) pairs.

3.2.1 Estimation of word-type co-occurrence
probabilities for unknown words

Following the previous studies (Chiang, 2000;
Hockenmaier and Steedman, 2002; Miyao et al.,
2005) described in Section 2.1, we calculate a co-
occurrence probability between an unseen word w′

and a seen SCF type s as follows:

pm
unseen(s|w′) = μ1p

m
MLE(s) + μ2pMLE(s) (2)

where

pm
MLE(s) =

∑
w∈{w|n(w)≤m} n(w, s)∑

w∈{w|n(w)≤m}
∑

s∈S n(w, s)
,

pMLE(s) =
∑

w∈W n(w, s)∑
w∈W

∑
s∈S n(w, s)

, (3)

and μi is a weight of each probabilistic model,
which satisfies the constraint

∑2
i=1 μi = 1. We es-

timate μi by the EM algorithm using held-out data.
4The interested readers are referred to the cited litera-

ture (Hofmann, 2001) to see the technical details.

In short, we regard infrequent words that ap-
pear less than or equal to m in the source tree-
bank as unknown words, and use the observed
frequency of SCFs for these words to calcu-
late the co-occurrence probabilities. We assume
p0

unseen(s|w′) = pMLE(s).

3.2.2 Estimation of word-type co-occurrence
probabilities for known words

To estimate a co-occurrence probability be-
tween a seen word w and a seen SCF s, we in-
terpolate the following three models. The first
model provides the maximum likelihood estima-
tion (MLE) of the co-occurrence probability, which
is computed by:

pMLE(s|w) =
n(w, s)∑

s∈S n(w, s)
.

The second model provides a smoothed proba-
bility based on the PLSA model, which is calcu-
lated by:

pn
PLSA(s|w) =

∑
c∈C

p(c|w)p(s|c)

where p(c|w) and p(s|c) are probabilities esti-
mated under the PLSA model and n is the number
of the latent classes. We should note that the above
two models are computed using all the word-type
pairs observed in the source treebank (including
the word-type pairs for the infrequent words used
in Equation 2).

The last model provides pMLE(s) in Equation 3,
which is the maximum likelihood estimation of
p(s). We combine these three models by linear
interpolation:

pn
seen(s|w) = λ1pMLE(s|w) + λ2p

n
PLSA(s|w)

+λ3pMLE(s)

where
∑3

i=1 λi = 1.
In summary, when we regard words that appear

less than or equal to m as unknown words, we ob-
tain a co-occurrence probability of a word w and
an SCF type s as follows:5

pm,n(s|w) =

{
pn

seen(s|w) (n(w) > m)
pm

unseen(s|w)(n(w) ≤ m)
(4)

5We can use pn
seen(s|w) to estimate the co-occurrence

probabilities for the infrequent words (e.g., 0 < n(w) ≤ m).
However, preliminary experiments showed that it slightly de-
teriorates the accuracy of the resulting probabilistic lexicons.



Table 1: Specification of SCFs for HPSG acquired from WSJ Sections 02-21 and their subsets

SOURCE TREEBANK
02 02-03 02-05 02-07 02-09 02-11 02-13 02-15 02-17 02-19 02-21

# SCF types 78 93 135 151 164 175 197 209 215 235 253
# verbs 1,020 1,294 1,936 2,254 2,476 2,704 2,940 3,134 3,334 3,462 3,586
Ave. # SCFs/verb 1.46 1.53 1.61 1.68 1.69 1.72 1.75 1.78 1.80 1.82 1.85
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Figure 2: The average number of SCF types as-
signed to words in WSJ Section 02

In the following section, we compare the above
smoothing model with a naive smoothing model,
which estimates the co-occurrence probabilities
only from pm

MLE(s|w) and pMLE(s) as follows:

p′m(s|w) =

⎧⎪⎨
⎪⎩

λ′
1pMLE(s|w) + λ′

2pMLE(s)
(n(w) > m)

pm
unseen(s) (n(w) ≤ m)

(5)

where
∑2

i=1 λ′
i = 1.

4 Experiments

We investigate the effect of our smoothing model
on SCFs acquired for HPSG grammars.

4.1 Data and Settings

We start by extracting word-SCF pairs from Sec-
tions 02-21 of the Wall Street Journal (WSJ) por-
tion of the Penn Treebank and their subset sections
by use of the existing methods (Miyao et al., 2005;
Nakanishi et al., 2004).

Table 1 shows the details of the acquired SCFs.
The average number of SCF types acquired for
each verb increases rather mildly with the size of
the source treebank. However, when we focus on
verbs that appeared in Section 2, the average num-
ber of SCF types for these verbs increases more

rapidly (Figure 2). This is because most of fre-
quent verbs appeared in Section 2, and such verbs
took the larger number of SCF types than other in-
frequent verbs. Figure 2 also confirms that most of
the ‘frequent’ SCF types were seen in a small por-
tion of the treebank (WSJ Section 2). Thus, pre-
dicting unseen word-type pairs for seen SCF types
will have more impact on the grammar coverage.

We then applied our smoothing model to the ac-
quired SCF lexicons. We constructed five PLSA

models pn
PLSA(s|w) for each acquired set of word-

SCF pairs by ranging the number of latent variables
n from 40 to 640, and then obtained the linear-
interpolated models (Equations 4 and 5) with m =
0, 1, 2. The PLSA models and the weights of the
linear interpolation are estimated by using WSJ

Section 22 as held-out data. To estimate the
PLSA models, we ran the tempered EM algorithm
100 times, and chose the model that obtained the
largest likelihood on the held-out data, because the
estimation of the PLSA models is likely to suffer
from local optima due to the large number of free
parameters. To estimate the weight μi of the mod-
els for unknown words pm

unseen(s) in Equation 2,
we used word-type pairs (in the held-out data) for
the infrequent words and words that did not appear
in the source treebank, (w ∈ {w|n(w) ≤ m}).

To evaluate the accuracy of the estimated co-
occurrence probabilities, we employ the test-set
perplexity, PP , which is defined by:

PP = 2−
1
N

∑
w∈Wt

∑
s∈St

nt(w,s) log p(w,s)

where Wt and St are a set of words and lexical
types seen in the test data, N =

∑
w∈Wt

nt(w),
and nt(w) and nt(w, s) are the observed frequency
of a word w and a co-occurrence between w and s
in the test data, respectively. This measure indi-
cates the complexity of the task that determines an
SCF type for a given verb w ∈ Wt with a model
p(w, s).



Table 2: Test-set perplexity of p(s|w) against the test SCFs acquired from WSJ Section 24 for the SCF

types that are observed in WSJ Section 2

SOURCE TREEBANK
MODEL m n 02 02-03 02-05 02-07 02-09 02-11 02-13 02-15 02-17 02-19 02-21
unknown 10.809 10.779 10.769 10.750 10.747 10.754 10.759 10.751 10.746 10.748 10.739
naive 0 4.030 3.730 3.414 3.303 3.273 3.224 3.172 3.137 3.132 3.124 3.116
PLSA 0 40 3.786 3.532 3.253 3.192 3.157 3.118 3.056 3.039 3.048 3.026 3.025

0 80 3.809 3.540 3.239 3.167 3.132 3.098 3.055 3.034 3.033 3.024 3.019
0 160 3.843 3.500 3.241 3.153 3.126 3.081 3.051 3.038 3.023 3.023 3.027
0 320 3.813 3.498 3.244 3.139 3.127 3.078 3.037 3.023 3.025 3.008 3.021
0 640 3.804 3.524 3.215 3.142 3.118 3.060 3.039 3.016 3.011 3.015 3.009

naive 1 3.865 3.616 3.371 3.256 3.225 3.194 3.144 3.104 3.094 3.087 3.071
PLSA 1 40 3.651 3.432 3.217 3.147 3.110 3.090 3.031 3.006 3.010 2.990 2.982

1 80 3.675 3.443 3.202 3.131 3.083 3.067 3.030 3.005 2.996 2.988 2.974
1 160 3.704 3.402 3.210 3.106 3.078 3.058 3.025 3.006 2.993 2.988 2.983
1 320 3.676 3.405 3.205 3.099 3.082 3.050 3.015 2.995 2.988 2.975 2.977
1 640 3.671 3.425 3.178 3.097 3.071 3.035 3.013 2.989 2.979 2.979 2.967

naive 2 3.846 3.629 3.384 3.294 3.230 3.205 3.156 3.115 3.104 3.088 3.074
PLSA 2 40 3.650 3.460 3.232 3.185 3.125 3.102 3.040 3.014 3.017 2.991 2.985

2 80 3.675 3.463 3.219 3.171 3.098 3.080 3.038 3.013 3.004 2.989 2.978
2 160 3.694 3.432 3.225 3.147 3.089 3.071 3.033 3.014 3.001 2.989 2.986
2 320 3.685 3.437 3.218 3.139 3.096 3.062 3.022 3.002 2.997 2.976 2.980
2 640 3.676 3.449 3.197 3.139 3.083 3.049 3.019 2.996 2.987 2.980 2.970

4.2 Results

Table 2 shows the test-set perplexities against
word-SCF pairs acquired from WSJ Section 24. In
this result, we excluded SCF types unseen in WSJ

Section 2 from the test set to compare models us-
ing different source treebanks. In Table 2, un-
known refers to a model that uses only the ob-
served frequency of SCFs, pMLE(s), as shown in
Equation 3. This model indicates the difficulty
of this task. The models naive and PLSA refer to
the interpolated models with and without the PLSA

model which are defined in Equations 4 and 5, re-
spectively. The treatment of unknown words re-
duced the test-set perplexity (cf. the models with
m = 0 vs. their counterparts with m = 1, 2),
and the PLSA-based models further reduced the
test-set perplexity compared to the naive models,
when they were estimated using the same size of
corpora. It is also noteworthy that we can achieve
a lower test-set perplexity by making the number
of latent classes of the PLSA model larger. The
optimal number of the latent classes would be be-
tween 320 and 640. The probabilistic SCF lexicons
obtained with our PLSA-based models achieved
a lower test-set perplexity against ones obtained
with naive models with twice as much training
data (cf. naive (m = 1) estimated with WSJ Sec-
tion 02-21 vs. PLSA ((m, n) = (1, 640)) estimated
with WSJ Section 02-11), and even improved the

accuracy of the probabilistic SCF lexicon when we
use the large source treebank (cf. naive and PLSA

estimated with WSJ Section 02-21).
Table 3 shows a test-set perplexity against word-

SCF pairs acquired from WSJ Section 24, when
the test-set perplexity is calculated on all the SCF

types observed in the source treebank. In this set-
ting, only models in the same column can be fairly
compared. For all the subsets of the treebank, our
PLSA-based model achieved a lower test-set per-
plexity than the naive smoothing model.

5 Conclusion

We have presented a PLSA-based smoothing model
for co-occurrence probabilities between verbs and
SCFs to construct an accurate probabilistic SCF

lexicon for a lexicalized grammar acquired from
a small-sized corpus. We applied our smooth-
ing model to SCFs for an HPSG grammar acquired
from the Penn Treebank. The proposed smoothing
model provided an accurate probabilistic SCF lexi-
con with a lower test-set perplexity against the one
obtained with the naive interpolation model.

In future research, we plan to evaluate the
acquired probabilistic SCF lexicon in terms of
its contribution to the performance of supertag-
ging (Chen et al., 2006) and probabilistic pars-
ing (Miyao et al., 2005; Ninomiya et al., 2005).
We will apply our smoothing model to SCFs for



Table 3: Test-set perplexity of p(s|w) against the test SCFs acquired from WSJ Section 24

SOURCE TREEBANK
MODEL m n 02 02-03 02-05 02-07 02-09 02-11 02-13 02-15 02-17 02-19 02-21
unknown 10.809 10.837 11.134 11.162 11.214 11.213 11.349 11.355 11.344 11.338 11.354
naive 0 4.030 3.753 3.524 3.425 3.419 3.362 3.364 3.323 3.297 3.282 3.275
PLSA 0 40 3.786 3.552 3.348 3.299 3.280 3.236 3.213 3.197 3.193 3.165 3.169

0 80 3.809 3.564 3.334 3.268 3.253 3.214 3.209 3.190 3.176 3.163 3.162
0 160 3.843 3.520 3.337 3.254 3.250 3.197 3.207 3.194 3.168 3.162 3.172
0 320 3.813 3.520 3.342 3.241 3.247 3.193 3.193 3.180 3.171 3.148 3.166
0 640 3.804 3.543 3.309 3.244 3.244 3.173 3.195 3.166 3.153 3.156 3.153

naive 1 3.865 3.638 3.480 3.377 3.369 3.331 3.334 3.289 3.257 3.244 3.228
PLSA 1 40 3.651 3.452 3.311 3.253 3.232 3.207 3.188 3.163 3.154 3.127 3.124

1 80 3.675 3.466 3.296 3.232 3.203 3.182 3.184 3.160 3.137 3.125 3.116
1 160 3.704 3.422 3.305 3.206 3.201 3.174 3.179 3.160 3.136 3.126 3.126
1 320 3.676 3.427 3.303 3.200 3.201 3.165 3.170 3.151 3.133 3.114 3.120
1 640 3.671 3.444 3.272 3.199 3.196 3.149 3.168 3.138 3.119 3.118 3.109

naive 2 3.846 3.651 3.493 3.416 3.375 3.343 3.347 3.300 3.268 3.245 3.231
PLSA 2 40 3.650 3.480 3.326 3.293 3.247 3.221 3.197 3.172 3.162 3.128 3.127

2 80 3.675 3.487 3.314 3.274 3.220 3.197 3.193 3.168 3.146 3.127 3.119
2 160 3.694 3.452 3.320 3.248 3.213 3.187 3.188 3.168 3.145 3.127 3.129
2 320 3.685 3.459 3.316 3.242 3.216 3.177 3.178 3.159 3.142 3.115 3.123
2 640 3.676 3.468 3.292 3.242 3.209 3.163 3.175 3.146 3.127 3.119 3.113

LTAGs and other lexicalized grammars acquired
from treebank, by using lexical rules (Prolo, 2002)
to reduce lexical entries into lexical types. We
will also investigate the correspondence between
the verb classes obtained by our method and the
semantic verb classes suggested by Levin (1993)
and Korhonen and Briscoe (2004).
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